International Journal of Innovative
Computing, Information and Control ICIC International ©)2013 ISSN 1349-4198
Volume 9, Number 12, December 2013 pp. 46654679

REDUCING THE COST OF WINDOW OPERATIONS
BY DOCKING WINDOWS

HIROHITO SHIBATA AND KENGO OMURA

Communication Design Office, Research and Technology Group
Fuji Xerox Co., Ltd.
430 Sakai, Nakai-machi, Kanagawa 259-0157, Japan
{ hirohito.shibata; kengo.omura }@fujixerox.co.jp

Received August 2012; revised January 2013

ABSTRACT. When we open many windows on computers, it becomes difficult to find nec-
essary windows. Moreover, we must switch windows frequently to compare information
from different windows, which degrades work efficiency. To resolve these problems, an
extended multi-window system called the Docking Window Framework is proposed herein.
In this framework, users can connect multiple windows through a novel interaction tech-
nique called docking, which resembles plugging in a jigsaw puzzle piece. Using this feature,
users can group windows of the same task together and thereby create workspaces for each
task. To evaluate the system, we conducted two experiments. In window arrangement
tasks, participants performed tasks faster when using the proposed system than when us-
ing a popular window system (Windows XP). Moreover, participants reported that they
felt fun to use the system. In the second experiment using task-switching tasks, partici-
pants using our system performed multiple tasks in parallel more efficiently. We verified
the effectiveness of our approach to support multitasking in computer work.
Keywords: Window systems, Workspaces, Multitasking

1. Introduction. Alto, a personal computer (PC) that included a window system in its
graphical user interface (GUI), was produced in 1973. Nearly 40 years have passed since
then. Although the visual appearance of windows has changed during that time, the basic
behavior of window systems has changed very little. Windows are moved by dragging their
title bars and are resized by dragging their window frames. A hidden window is activated
by clicking the window. Most people are well familiar with these operations because of
the widespread use of PCs. However, are current window systems truly ideal for the
operation of digital documents? Cannot further improvement be considered?

When performing a task using computers, one cannot necessarily complete the task
using a single document or a single application. People often refer to multiple documents
of various applications to perform a single task. For example, when writing an academic
paper, people usually make use of their own papers or reports that they wrote previously,
documents written by other people, dictionaries, drawing tools to create figures, and
spreadsheets to calculate data, as well as a word processor to compose the paper. When
programming, people usually use an editor to edit source code, a development environment
to compile and debug the code, manuals of libraries, and a web browser to search as quickly
as necessary.

In addition, people usually perform several tasks in parallel such as writing reports, ex-
ploring information, and reading news or emails. They conduct their work while switching
their attention among these tasks. Furthermore, tasks are sometimes interrupted uninten-
tionally by external events such as scheduled meetings or urgent requests from colleagues.

4665

4666 H. SHIBATA AND K. OMURA

Such phenomena are known collectively as multitasking, which is frequently performed in
office work [1-5].

In short, people generally need multiple documents to perform a single task and they
perform multiple tasks in parallel by switching sets of documents. In this situation,
many windows become scattered on the desktop. It becomes difficult to find a necessary
window!. People must switch foreground windows frequently because many windows
mutually overlap?. Moreover, people must move and resize windows repeatedly to lay out
the windows side by side.

Window operation costs spent for such operations are not negligible by any means. We
analyzed window operation logs of workers engaging in intellectual property management
in their actual work environment [7]. Results showed that the workers spent 7.4-9.1% of
time for window operations such as switching, moving, or resizing windows when they
worked on computers. However, for most PC users, these window operations are not the
primary purpose to use PCs. Therefore, it is desirable to reduce the window operations
to the greatest extent possible.

Furthermore, we have conducted various experiments to compare the performance of
reading (e.g., reading speed or error-detection rate in proofreading) when reading from
paper and when reading from computer displays [8-10]. Results showed that reading from
displays was inferior to reading from paper in cross-reference reading for multiple docu-
ments and reading with frequent moving between different pages®. And the difference of
reading performance among media is caused by the difference of operability of documents
such as arranging documents spatially or turning pages.

Window systems are used by almost all PC users irrespective of gender or nationality.
Therefore, the improvement of the systems brings considerable value in total. To reduce
window operation costs of digital documents, we propose an extended multi-window en-
vironment called the Docking Window Framework (DWF) [13]. This paper describes our
approach, a prototype system, and its evaluation.

2. Approach.

2.1. Constructing workspaces. Several systems have been proposed to support mul-
titasking during PC work [14-21]. They enable users to create groups of windows called
workspaces and to switch multiple windows easily and simultaneously. Rooms [14], a pi-
oneer of systems of this type, is exemplary. It supports management of windows using a
room metaphor. Each room corresponds to a workspace. Users can switch workspaces by
moving virtual rooms. Other systems also support switching tasks, but they originally
devised the mode of visualizing workspaces.

Nevertheless, previous systems have emphasized the support of task switching af-
ter creating workspaces. They have not supported creation of workspaces. To con-
struct workspaces in previously proposed systems, users needed to determine what kind
of workspace they should create, to specify which windows should be included in the
workspace, and to organize the layout of windows in each workspace. In other words,
users were required to formalize group structures of windows in advance for performing
tasks. However, such formality often impedes the task performance [22].

"Hutchings and Stasko [6] analyzed window operation logs of 39 office workers. Results show that
workers opened more than eight windows at the same time in most of their time when they operated
PCs.

2According to the above Hutchings and Stasko’s analysis [6], the average amount of time that any
window was active was merely 20.9 seconds.

3These kinds of reading are frequently observed in a work situation [11,12].

REDUCING THE COST OF WINDOW OPERATIONS 4667

Furthermore, workspaces are often restructured while performing tasks. For example,
while performing tasks, users might realize that they must refer to other documents to
perform tasks, or they might find that some documents are not necessary. Workspace
construction is not a one-time procedure that occurs only at the initial setup of tasks. It
occurs dynamically during task performance. Therefore, we consider that improvement
of the user interface to construct workspaces can improve work efficiency meaningfully
during computer use.

Considering these facts, we aim to support workspace creation. Followings are design
requirements of our approach.

e We must allow creation of workspaces without declaring group relationships of win-
dows. Window layout within a workspace cannot be determined automatically with-
out users’ specifications. Therefore, it would be advantageous for users to construct
workspaces using a procedure of arranging windows.

e We must provide an easy intuitive user interface for grouping windows.

e Reconstruction of workspaces should also be performed easily.

To achieve this, we propose an interaction technique called docking that enables con-
necting of windows as if users were to plug in a piece of a jigsaw puzzle. After connecting
windows, connected multiple windows can be activated or moved simultaneously. There-
fore, they can behave as workspaces. In this framework, users need not construct group
relations of windows. When users arrange windows, multiple windows are mutually con-
nected automatically and workspaces are created to support multitasking.

As a user interface to arrange windows next to each other, the window-snapping tech-
nique, which is implemented in MagnetWindow and Virtual Desktop for Win32, is well
known. In these systems, when two windows are placed closer together, those windows
are magnetized and connected to contact each other. However, the magnetized windows
cannot be used as workspaces because they cannot be operated simultaneously. The
docking technique not only sets up adjacency relationships but also connects windows.
The metaphor of a jigsaw puzzle helps users to realize that docked windows are strongly
connected each other. We use this technique as a user interface to create workspaces.

We also provide a feature to save and restore workspaces. When constructing a
workspace, users must execute multiple applications, arrange the window layout, and
open all necessary documents. They must perform this procedure to set up a task envi-
ronment, every time they start up a PC. Furthermore, users might want to return to a
previous state of a workspace so that they can recall the situation of the work or they can
redo their work again. Our framework provides features to save the status of workspaces
such as applications, the position of windows, and documents opened in each window,
and to restore the status of workspaces merely using a single action.

2.2. Reducing window operation costs. The previous section presented a description
of the approach to support creating workspaces of multiple tasks. This section provides
an approach to reduce the cost of window operations within a single task. As we described
before, window operation costs during working on PCs are not small. This is not a problem
that can be resolved using a large screen space. In general, as the screen space becomes
large, users tend to open many windows [6,7,23], which increases window overlapping.
Consequently, window operation costs might increase because users frequently need to
switch, move, and resize windows to refer to multiple sources simultaneously.

Many systems and techniques have been proposed to improve the operability of win-
dows. They facilitate the selection and switching of windows [24-27], coordinate the
window layout [28], and support the exchange of data between windows [29,30]. They
are all solutions for problems that arise in situations in which the contents of windows

4668 H. SHIBATA AND K. OMURA

are partially invisible because of the window overlapping. If windows do not mutually
overlap at all, these solutions are unnecessary. Moreover, some evidence suggests that
a tiled window system is superior to an overlapping window system. In an experiment
conducted by Bly and Rosenberg [31], users were able to extract information faster from
multiple windows when using a tiled window system than when using an overlapping
window system.

Considering these facts, we adopt an approach to layout windows as a tile and avoid
overlapping of windows. Currently, most window systems allow window overlapping.
However, overlapping window systems were developed originally to display many docu-
ments in a small display area. Computer displays have become larger and cheaper recently.
On the assumption that many people will use large displays or multiple displays in the
future, it is important to provide an environment that supports performance of tasks ef-
ficiently by making use of large screen space effectively in contrast to earlier approaches
that make use of small screen space efficiently.

3. System. We developed an extended window system called the Docking Window Fr-
amework (DWF) based on our approach of the previous section. This system has four main
features: a docking user interface to construct workspaces, multiple window operations,
tile layout to avoid overlapping, and saving and restoring workspaces. It runs on .NET
Framework 2.0 and is implemented with C#.

3.1. Docking user interface. Figure 1 presents the docking behavior. The top of the
figure shows the situation before docking. When a user drags a window, if another window
is near the dragged one, jagged hooks appear on edges of both windows, as shown in the
top of the figure. These hooks show that the two windows can be mutually docked and
that the edges with the hooks would be connected if the windows were docked. When the
user drops the window in this state, docking of windows starts. The bottom of Figure
1 portrays the docking result. After docking, the dropped window position and size are
changed so that the two connected windows constitute a single rectangle. The process of
changing the layout of the dropped window is visualized as an animation so that the user
can follow the change of the window layout.

Two windows connected by the docking operation are activated and moved simultane-
ously. They behave as if they were a single window. Therefore, we call the connected
windows a docking window. After docking, in addition to the connected two windows, a
new title bar, called a docking bar, appears at the top of the two windows. It provides
commands to operate all windows of the workspace such as closing the workspace, mini-
mizing and maximizing the workspace, releasing the connected windows of the workspace,
saving the workspace, and changing the title and icon of the workspace.

Users can connect windows without limitations in the number of windows. They can
also connect two docking windows. Figure 2 presents two examples of a window layout
consisting of four windows. To construct the left layout of the figure, users might dock
window 2 beneath window 1, dock window 3 beneath window 2, and finally dock window
4 at the right of the created docking window. To construct the right layout, users might
dock window 2 beneath window 1, dock window 4 beneath window 3, and finally connect
the two docking windows horizontally.

All docked windows can be detached using the release command of the docking bar.
Detaching only a single window from a docking window is also possible. At that time
the size of other remaining windows is coordinated so that they all constitute a single
rectangle again. For example, when window 1 is detached in the left of Figure 2, window
2 expands vertically so that it covers the area of window 1. When window 4 is detached

REDUCING THE COST OF WINDOW OPERATIONS 4669

Before
=12 x

FriME BRE BT WA ‘W T=ni TisE

DI ARIE Adke PIFE) {3 cocking Google #_ hicrosolt Tnter BLTE)
DFEES @ 5 - O s - @ oy 27 AE & nmm{nuJ\'ww-&mn ol
BN - Al <2 n AT I Tl QR - D - (=] (3] o e eaneAn T
[« v e wwwnsng | P AR [l e oo o e _=docie =]) 1588

W Daching . Wikpsska the bas 2
s dua - I, i

Dacking ma et 1. & hips, B e of 3 Bk, & 5. mosring or dna—|
SEACE SLIBCA MO, P BAOLASS OGS 08 31N 0F SOTIETD 401
Dochang {arama, he prachos of

Wisdows bacuss Eustic Wendows munages o wadoes
with o pasticuier dula struchars. Comavgueetly, o Elutie =
Windows, no mastng sppbcitian et man oo lhe rtem.-

In e povses mdy, on the premsse of making vk o
+Eistng spplcions we prOpoM 4 system e recbrw o
thews o s ARbogh

ffurect mppleaticns and implement 2.

Addticrally, we am b3 provide o mimph mtutve w9

[
]

miedace 1o construct wolkspace cormtng of mutple 8
wjafE 3| .
ERORNE- & A-haifw- s W OO@ ¥
TR ikrae 9Lk T4
iy Wi Frammermoek doc - M B o g - Googhe 9 - Microsalt Intert B x|
Fridlpr @RE ETO) AR FRO H-40 Dew rrAbE HERE BT B A =
D PO AR Adbe PO T, . »
S DE - O - x] 2 | O em esneAn
Dgn@‘\-\‘-.mgmm.gn_o) - 1x] 2] G| S L
BN x ical S rn A Teenw FELAD)] rop: o googe o, pysearchias_gecocks = B3 1588
[UmE =« v v e v v e s on o W Docking - Wikipadia, the fres |
scyclegedn - |2 J¥ET)
Wmndows betwse Elarte Wisdows munages o wndows Dacking may reter to: for $hips, e us4 of 3 Deck, & g macnng
wih & pasiles s et Consequently, in Elutie =) e Ervaatkng fer dnkaanEE Snd aie $1NBen moduinl, T
- o the &y . PROCESS OF j0ANiN O $Hp OF MOCUM D aN0HHT - S8 SpaE J
kng um of rnoenvout Decking (srirmil 0. M priciicn of .
d 1escives ol L " E
on. Althaugh
o problems af
on wd wndow cpelon,
" ioas implemnind
crdnals wmdse urngmaeLs I ik T mabacular racebng, docking i 4 method
dow cpeintion for saisting
™ isanstion far) @ ppcond when bound o each oifer i Srm & ytable
2 comples Knawiedgs of he prafeiTed arentaBon in ium
AdGtOA. we A B provide 4 mimphe inbative see B iy e,
Mbfice 10 consint watkepaon conmAng of mcigh W st o Dy
afafEs]s . i bipacha g ocking i .
(A L =1=1" I] | .
TAT T 9N [o% T ‘Iarw:f,h\wtpd\u' [B ek i

FiGure 1. Before and after docking. The right window was docked to the
left window.

(]
=

FiGURE 2. Examples of window layout in workspaces

in the left of Figure 2, windows 1, 2, and 3 all expand horizontally so that they cover the
area of window 4.

Additionally, when docking is performed, two separate icons in the Windows task bar
are integrated into a single one. This can prevent an overflow of icons in the task bar. The
name of the icon, and therefore the title of the docking window, is created automatically
by connecting each window title, but it can be modified later to facilitate discrimination
among windows.

Users might want to put windows side by side sometimes without connecting windows.
In such a case, if they drag windows while pressing the Shift key, then the jagged hooks
do not appear and windows are not mutually connected.

A docking window consisting of multiple windows visually resembles a single window.
In addition, users can activate and move all windows of a docking window simultaneously.
A docking window can behave like a single window as a whole. Therefore, it can be used
as workspaces to support multitasking because users can switch tasks easily by changing
active docking windows.

In all previous systems introduced in the previous section, before performing tasks,
users must determine what kind of workspace they create. They must also specify which

4670 H. SHIBATA AND K. OMURA

windows should be included in the workspace. In contrast, we provide a framework in
which windows behave as a single window when multiple windows are docked and in
which the connected windows are useful as a workspace. In this framework, users can
construct a workspace through the action of juxtaposing windows without declaring a
group structure of windows. In other words, when a user allocates windows side by side,
then these windows are mutually connected and the workspace is created automatically
without selecting any command to create a workspace and without arranging a window
layout.

3.2. Multiple window operation. People often organize paper documents as piles and
move them simultaneously. Similarly, users might want to operate on multiple documents
within a workspace simultaneously. Not only do such operations reduce the window
operation load; they also help users to realize a workspace consisting of multiple documents
as a single window. DWF supports the following simultaneous operations for connected
multiple windows.

Activating When users click any area of a workspace or the icon of the workspace in
the task bar of Windows OS, all windows of the workspace are activated simultaneously.
Using this feature, users can switch tasks easily with one click.

Moving When users drag any window or a docking bar of a workspace, all windows
within the workspace are moved simultaneously. Using this feature, users can arrange
and organize workspaces easily.

Resizing DWF always maintains the workspace shape as a rectangle, which helps users
to realize a workspace as a single window. It also enables the effective use of the display
area. When users change the size of any window, the sizes of other windows are changed to
maintain the rectangular shape. Figure 3 shows a situation where the resizing of window
B leads to the resizing of window A.

Enlarging/Narrowing DWF provides a feature to display a specified window as large
(or small) as possible with all remaining window contents visible. This feature is called
enlarging (or narrowing). It differs from maximizing (or minimizing) of traditional window
systems in that maximized windows cover the entire display area such that users cannot
view any contents of other windows (or users cannot view any content of minimized
windows). Although maximizing and minimizing are features to use a small display space
efficiently, enlarging and narrowing are features to use large display space effectively.
When users enlarge a window, other windows change size, as shown in Figure 4. The
process of layout change resulting from enlarging and narrowing can be visualized as an
animation so that the user can follow the change of the window layout.

To provide uniform interaction for windows of different applications, the Task Gallery
[17] provides a solution that pops up original command buttons. Our system uses this
solution. When a mouse cursor is on a title bar of any window, the system pops up
a floating bar, as shown in Figure 5. It provides commands for the individual window
positioned below the floating bar. The system currently provides the following commands:

FIGURE 3. Resizing windows

REDUCING THE COST OF WINDOW OPERATIONS 4671

Before enlarging After enlarging

FicURE 4. Before and after enlarging

Floating bar

IPAMF) BRE BElv) D) Y-UT) DaEciw
B e s - ,;'T,a

FiGUure 5. Floating bar

detaching the window from the workspace, enlarging and narrowing the window, and
closing the window.

3.3. Tile layout. In DWF, we use a tiling window approach that eliminates window
overlapping. This approach sustains a tiling layout at all times. Even if users change
the size of a certain window, the window layout remains tiled, which is to say that the
change of the window size affects other windows. The total window layout is coordinated
to avoid overlapping. The mode of window coordination is fundamentally the same as
that of Elastic Windows [15] except for small differences (see [13] for details).

3.4. Saving and restoring workspaces. DWF provides a feature to save the state of
workspaces (title, icon, applications, position and size of windows, and documents) to
a file and to restore the previous state of workspaces later. Using this feature, users
need not reconstruct workspaces from scratch whenever a PC is started up. We describe
implementation of this feature later.

4. Evaluation. Using DWF, we expect the following effects:

A. users can arrange windows and construct workspaces easily using a docking user
interface,

B. users can switch tasks easily by switching workspaces, and

C. users can perform tasks efficiently using the tile layout of windows and the feature
of enlarging and narrowing.

To confirm the effect A, we conducted an experiment using a window arrangement
task (Experiment 1). To confirm the effects B and C, we conducted an experiment for a
task-switching task (Experiment 2).

4672 H. SHIBATA AND K. OMURA

Initial lavout Target lavout

FIGURE 6. Initial layout and target layout in the window arrangement task

600 —— UTraditional system

500 fmmmm e e

400 fo-mmmemmeoeee . oy
300 f-mmmememeeo E REEEE --

200 presmgesoeemmeeef [beeee-

100 F-f b -1 | -

Task completion time (sec)

C.0 : :

The number of windows

FiGure 7. Task completion time in window arrangement tasks

4.1. Experiment 1: Window arrangement. To construct workspaces in DWF', users
must connect windows and adjust the window layout. Our hypothesis is that DWF yields
faster performance than traditional window systems for a window arrangement because
it provides an easy docking user interface and multiple window operations after docking.
We also hypothesize that the performance difference between two systems is remarkable
when using many windows.

(1) Method. The experimental design was a 2x3 within-participants design. The first
factor was the system condition (a traditional window system and DWF). The second
factor was the number of windows (2, 4, and 6 windows). Each participant performed
all conditions of tasks and performed two trials in each condition. The order of the
system conditions and the number of windows in the series of participants’ trials were
counterbalanced to cancel the overall effect of the trial order.

Participants were 12 people (6 men, 6 women). Their ages were 21-38 years (avg. 28.0).
Each had three or more years’ experience using a PC. The vision of each, after correction,
was better than 0.7.

The PC used in the experiment (Dimension C512; Dell Inc.) was connected to a 23-inch
TFT display (FlexScan; Eizo Nanao Corp.). The OS was Windows XP.

The experiment task was to arrange windows. The left of Figure 6 shows the initial
window layout: a cascade layout. We presented the target window layout as shown in the
right of Figure 6, and requested that participants allocate windows to match the target
layout. We drew a four-by-four lattice in pink on the desktop and required allocation of
the specified number of windows to the specified position.

(2) Results and discussion. Figure 7 presents the task completion times. The
error bar shows plus or minus one standard error from the average. Two-way repeated
measures analysis of variance was conducted to assess the task completion time. Results

REDUCING THE COST OF WINDOW OPERATIONS 4673

show that the main effects of the system condition [F'(1, 11) = 26.3, p <.001] and the
number of windows [F'(2, 22) = 144.5, p <.001] were significant. Interaction of the two
factors was significant [F'(2, 22) = 3.4, p <.05]. Then we tested the simple main effects
for each number of windows. They were all significant [for 2, 4, an 6 windows, F'(1, 11) =
17.2, p <.01; F(1, 11) = 21.4, p <.001; F(1, 11) = 12.4, p <.01, respectively]. In DWF,
participants arranged windows 22.9%, 23.4% and 23.4% more quickly than when using
the traditional system for 2, 4 and 6 windows, respectively.

We compared the accuracy of window layouts among the system conditions. The dis-
tance between two windows was defined as the sum of the four Euclidean distances be-
tween corresponding vertices of the windows. Furthermore, we defined the window layout
accuracy as the distance between the target layout and the actually allocated layout.
Two-way repeated measures analysis of variance was conducted to assess the accuracy of
the window layout. Although the main effect of the number of windows was significant
[F(2, 22) = 59.8, p <.001], the main effect of the system condition was not significant
[F(1,11) = 0.4, p >.1].

According to the results, participants arranged windows with DWF 20.9-23.4% faster
than when using the traditional window system. No difference in the accuracy of the
window layout was found between DWF and the traditional window system. Results
show that users of DWF can arrange windows rapidly without sacrificing accuracy.

A noteworthy point in this experimental task is that DWF users not only arranged
windows but also created workspaces by connecting windows. In DWF, users adjust the
window layout after creating a workspace, but they can still arrange windows more than
20% faster than when using the traditional window system. We consider the following
two points as reasons for this faster performance.

First, the operation of window allocation doubles as the operation of workspace con-
struction. Therefore, no cost accrues to construction of the workspace, where we can
consider that the cost to construct a workspace is included in the cost to allocate win-
dows.

Second, in DWF, users can operate multiple windows simultaneously after the construc-
tion of workspaces, which engenders rapid window organization. Furthermore, because
DWEF creates a tile layout automatically, users need not devote attention to trivial layout
adjustment of windows after they merely set up a rough window layout.

In this experiment, the target layouts were all tiled. For arranging windows in layouts
of other types such as cascading layouts, DWF requires users to continue to press the
Shift key to avoid docking windows unintentionally. Although that requirement might
bother users, our framework is designed on the basis that the tiling approach is superior
to an overlapping approach when used for a large display space.

We are also interested in the comprehensibility of systems because DWF provides an
unusual user interface in terms of the docking and the tile layout. In the post-task
interview, one participant described that he “became accustomed to DWF right away
after actual use of it”. Some participants reported that it “felt fun to use DWF” and
that they “felt a pleasurable sensation when docking windows”. These comments suggest
that the framework of window docking is easy to learn; it also provides a pleasurable
experience for users sometimes.

4.2. Experiment 2: Task switching and performing tasks. Although the most
characteristic point of DWF is in the mode of workspace construction, the aim of con-
structing workspaces is to support task switching. The second experiment takes up a
multitasking situation and compares the user performance between DWF and a tradi-
tional window system.

4674 H. SHIBATA AND K. OMURA

Tile lavout Cascade layout
——————Tr———

FicUure 8. Initial window layout in task-switching tasks

Multitasking requires multiple documents. Therefore, the initial layout of windows is
an important factor affecting the user performance. In the traditional window system,
we set two initial layouts: the tile layout and the cascade layout. Furthermore, observa-
tions revealed that physical paper effectively supported the reading of multiple documents
[12,32,33]. We are interested in whether or not DWF is superior to physical paper when
performing multitasking. Our hypothesis is that DWF yields faster performance than the
conditions of the traditional window systems, but it does not reach the level of physical
paper.

(1) Method. The experimental design was a one-way within-participants design. We
set the following four conditions as factors: using paper documents (Paper), using our
system (DWF), using a traditional window system in which the initial window layout
was a tile layout, as shown at the left of Figure 8 (Tile), and using a traditional window
system in which the initial window layout was a cascade layout, as shown at the right of
Figure 8 (Cascade).

Participants were 18 people (9 men, 9 women). Their ages were 21-39 years (avg.
29.5). Each had three or more years’ experience of using a PC. The vision of each, after
correction, was better than 0.7.

Each participant performed two trials in each condition. The order of conditions and
document sets in the series of participants’ task trials was counterbalanced to cancel the
overall effect of the order.

The display and the PC used in this experiment were the same as those described for
Experiment 1.

In this experiment, participants performed two independent tasks in parallel, where
each task is to count products that match the specified conditions.

We created documents used in the experiment related to product specifications such
as digital cameras, printers, and TFT displays. For each task, four one-page documents
were used. Three of the four were product lists. The remaining one was a question
list for which participants were asked to count products matching the condition in the
product lists. We created eight document sets consisting of these four documents for the
experiment and two document sets for exercises.

In the product list, each item was created using product names, manufacturers, weights,
prices, sales rankings and other attributes of products. FEach page of a product list
consisted of 16 products; all products in each counting task included 48 items in total.
Each document set included six questions. Samples of questions are shown for TFT
displays in the following.

e How many displays for which the manufacturer is ACER are there?
e How many displays for which the power consumption is less than 20 W are there?

The experimental task was to perform two counting tasks in parallel while switching
them. Figure 9 shows that participants answered the initial three questions of the first

REDUCING THE COST OF WINDOW OPERATIONS 4675
Task1 Task?2
Question list
First halfof |:| Product list
the task 1 Question list -
Productlist | pirst halfof
Product list \ thetask 2
Product list
Produet list
Product list
[
g L
Question list
Last half of Product list
the task 1
Question list -
o \ Product list Last halfof
roduct list
Product list I:I the task?2
Product list
Product list
L |

FIGURE 9. Order of performing task-switching tasks

task and then answered the initial three questions of the second task. Next, they answered
the last three questions of the first task and then answered the last three questions of the
second task. This procedure was written in question lists to prevent mistakes in the order
of answering questions.

In each task, participants switched between the two counting tasks three times. They
were asked to perform this procedure as quickly and as accurately as possible.

In the paper condition, electronic documents were printed on one side of A5 paper in
black and white. Electronic documents were all given in PDF and displayed with Adobe
Reader 9. We adjusted the character size of electronic documents to be the same size as
those of paper documents. We prohibited changing of the display character size.

In all conditions, we delivered answer sheets of question lists printed in paper and
requested that participants write down answers on the sheets. We required that they
refer to the answer sheets only when they wrote down the answers and they referred to
electronic and paper documents for performing tasks. Participants wrote down answers
on additional answer sheets to unify the mode of writing between paper and electronic
conditions, thereby excluding the effect of the mode of writing. In electronic conditions,
participants need to change the device from a mouse to a pen to write answers. Therefore,
we prohibited participants from performing tasks while holding a pen when counting
products in the paper condition.

In the paper condition, the initial documents were provided as two piles corresponding
to two counting tasks. The initial layout of the DWF condition was two workspaces, where
each consisted of four tiled windows, as shown on the left of Figure 8. The initial layout
of the tile condition was the same as that in the DWF condition, except that all windows
were independent and unconnected. The right half of Figure 8 shows that the initial
layout of the cascade condition was two stacks of cascading windows. In all electronic
conditions, participants were allowed to change the size and position of windows when
performing tasks.

(2) Results and discussion. Figure 10 presents the task completion times in each
condition. The error bar shows plus or minus one standard error from the average.

4676 H. SHIBATA AND K. OMURA

g00.0

5000 prommsseeesmsssssessossssessoooooes T

4000 pe-mmeemmeeees R e
clola ol el EEEE I S O S

2000 - ----- S -

1000 p-off-meeme e feeee-

Task completion time (sec)

OO 1 1 i
Faper CWF Tile Cascade

FiGURE 10. Task completion time in task-switching tasks

Repeated measures analysis of variance was conducted to assess the task completion time.
Results show that the main effect of conditions was significant [F'(3, 51) = 20.35, p <.001].
According to multiple comparison using the LSD method, the task completion time in
the paper condition was significantly shorter than in the DWF condition [p <.01]. The
task completion time in the DWF was also significantly shorter than in the tile condition
[p <.01]. A tendency was also apparent by which the task completion time in the tile
condition was shorter than that in the cascade condition [p <.1]. In the paper condition,
the tasks were performed 14.9% faster than in the DWF condition, 26.8% faster than in
the tile condition, and 33.6% faster than in the cascade condition. Additionally, regarding
DWF, the tasks were performed 13.9% faster than in the tile condition and 21.9% faster
than in the cascade condition.

We compared the accuracy of product counting. The percentage of the correct answers
was highest in the cascade condition (79.9%) and lowest in the tile condition (71.5%).
However, the difference was not significant [p >.1].

We provide the following three suggestions based on the results. First, using DWF,
the participants were able to perform multitasking more efficiently than with traditional
window systems. According to the participants’ report, they felt that, using DWF, they
were able to switch tasks quickly, understand what tasks they engage in, and grasp an
overview of all tasks. With DWF, users can switch workspaces with one click and can
view whole contents of the document by enlarging and narrowing them. The use of these
features was observed frequently while performing tasks. We consider that these features
engender efficient task performance.

Second, even if users used the same window system, the task completion time differed
depending on the initial window layout. Users were able to perform multitasking more
efficiently when using the tile layout than when using the cascade layout, which demon-
strates that the tile layout is superior to the cascade layout in multitasking when opening
many windows. This result underscores the validity of the DWF approach, which avoids
window overlapping.

Third, the use of paper enables performance of multitasking far more efficiently than
electronic environments, which demonstrates that physical paper is an excellent tool to
support multitasking. DWF is an extended window system that provides many features
that physical paper cannot provide, such as tile layout, multi-window activation, and
enlarging. However, paper remains superior to DWF, which indicates that we can learn
a methodology to support multitasking by analyzing human interaction with paper.

REDUCING THE COST OF WINDOW OPERATIONS 4677

5. Implementation. In the DWF implementation, a resident application called a DWF
manager monitors the behavior of all windows and controls the positions and sizes of
windows.

To save and restore the states of workspaces, including files opened in each window,
and to make the task state persistent, the DWF manager must ascertain which file is
opened in each window. However, in the current Microsoft Windows architecture, no
general solution for this issue functions for all application [23]. Therefore, DWF takes
an approach by which each application running on DWF sends messages when opening
files and closing files to the DWF manager. Existing applications can be run on DWF by
being added as plug-ins to send messages.

We briefly describe the development cost of applications running on DWF, which we
call DWF clients. When we implement a new DWF client, programmers merely add one
line of source code to specify the use of a DWF library. To make an existing application
run on DWF, a user must implement a plug-in for the application. However, the logic of
plug-ins is simple. We can easily implement plug-ins with a small quantity of source code
(about 50 lines). We have implemented plug-ins for MS Office and Internet Explorer, and
have confirmed their reliable operations.

However, this architecture is one example implemented within the restriction of Win-
dows OS. We do not regard it as ideal. We believe that our framework should be im-
plemented as one module of an OS from the perspective of reliability and processing
speed.

6. Conclusions. We proposed a framework to reduce window operation cost on PC
work called the Docking Window Framework (DWF). The most characteristic point of
the system is the means of constructing workspaces by connecting windows through a
simple intuitive user interface called docking. In this framework, users can construct a
workspace through the action of juxtaposing windows without declaring a group structure
of windows.

We verified the effectiveness of our system using two experiments. The first experiment
of window arrangement tasks revealed that DWF enabled setting up of a window layout
more than 20% more quickly than when using a traditional window system. The second
experiment of performing multitasking revealed that users were able to perform multiple
tasks in parallel more than 10% faster when using DWF than when using a traditional
window system.

After the experiments, not a few participants expressed their strong desire to use our
system in their daily activities. We are currently preparing the use of DWF in real-world
settings. Additionally, our system can be extended so that connected windows exchange
data and change behavior according to the status change of other windows. We would
like to examine the methodology of such coordination among windows.

Trademarks.

e Microsoft, Windows, and Internet Explorer are trademarks or registered trademarks
of Microsoft Corp.

e Adobe Reader is a trademark or registered trademark of Adobe Systems Inc.

e All brand names and product names are trademarks or registered trademarks of their
respective companies.

REFERENCES

[1] B. O’Conaill and D. Frohlich, Timespace in the workplace: Dealing with interruptions, Proc. of
CHI’95, pp.262-263, 1995.

4678 H. SHIBATA AND K. OMURA

[2] J. M. Hudson, J. Christensen, W. A. Kellogg and T. Erickson, I'd be overwhelmed, but it’s just one
more thing to do: Availability and interruption in research management, Proc. of CHI’02, pp.97-104,
2002.

[3] M. Czerwinski, E. Horvitz and S. Wilhite, A diary study of task switching and interruptions, Proc.
of CHI'04, pp.175-182, 2004.

[4] V. Gonzalez and G. Mark, Constant, constant, multi-tasking craziness: Managing multiple working
spheres, Proc. of CHI’0/, pp-26-29, 2004.

[5] G. Mark, V. Gonzalez and J. Harris, No task left behind? Examining the nature of fragmented work,
Proc. of CHI'05, pp-321-330, 2005.

[6] D.R.Hutchings and J. Stasko, Revisiting display space management: Understanding current practice
to inform next-generation design, Proc. of Graphics Interfaces’04, 2004.

[7] H. Shibata, Operational efficiency of single and multiple display systems in an actual work environ-
ment, Proc. of IDW’11, 2011.

[8] H. Shibata and K. Omura, Effects of paper in moving and arranging documents: A comparison
between paper and electronic media in cross-reference reading for multiple documents, The Journal
of Human Interface Society, vol.12, no.3, pp.301-311, 2010 (in Japanese).

[9] H. Shibata and K. Omura, Comparison between paper and electronic media in reading documents
with going back and forth through pages, The Journal of the Human Interface Society, vol.13, no.4,
2011 (in Japanese).

[10] K. Takano, H. Shibata and K. Omura, Microscopic analysis of document handling while cross-
reference reading for multiple documents, The Journal of the Human Interface Society, vol.14, no.4,
2012 (in Japanese).

[11] A. Adler, A. Gujar, B. Harrison, K. O’Hara and A. J. Sellen, A diary study of work-related reading:
Design implications for digital reading devices, Proc. of CHI’98, pp.241-248, 1998.

[12] A. J. Sellen and R. H. Harper, The Myth of the Paperless Office, The MIT Press, 2001.

[13] H. Shibata and K. Omura, Docking window framework: Supporting multitasking by docking win-
dows, Proc. of APCHI’12, 2012.

[14] J. A. Henderson and S. K. Card, Rooms: The use of multiple virtual workspaces to reduce space
contention in a window-based graphical user interface, ACM Transactions on Graphics, vol.5, no.3,
pp.211-241, 1986.

[15] E. Kandogan and B. Shneiderman, Elastic windows: Improved spatial layout and rapid multiple
window operations, Proc. of AVI’96, pp.29-38, 1996.

[16] E. Kandogan and B. Shneiderman, Elastic windows: Evaluation of multi-window operations, Proc.
of CHI’97, pp.250-257, 1997.

[17] G. Robertson, M. Dantzich, D. Robbins, M. Czerwinski, K. Hinckley, K. Risden, D. Thiel and V.
Gorokhovsky, The task gallery: A 3D window manager, Proc. of CHI’00, pp.494-501, 2000.

[18] B. MacIntyre, E. Mynatt, S. Voida, K. Hansen, J. Tullio and G. Corso, Support for multitasking
and background awareness using interactive peripheral displays, Proc. of UIST’01, pp.41-50, 2001.

[19] G. Smith, P. Baudisch, G. Robertson, M. Czerwinski, B. Meyers, D. Robbins, E. Horvitz and D.
Andrews, GroupBar: The TaskBar evolved, Proc. of OZCHI’03, 2003.

[20] G. Robertson, E. Horvitz, M. Czerwinski, P. Baudisch, D. Hutchings, B. Meyers, D. Robins and G.
Smith, Scalable fabric: Flexible task management, Proc. of AVI’0/4, pp-85-89, 2004.

[21] T. Matthews, M. Czerwinski, G. Robertson and D. Tan, Clipping lists and change borders: Improving
multitasking efficiency with peripheral information design, Proc. of CHI'06, pp.989-998, 2006.

[22] F. M. Shipman and C. C. Marshall, Formality considered harmful: Experiences, emerging themes,
and directions on the use of formal representations in interactive systems, Proc. of CSCW’99, pp.333-
352, 1999.

[23] G. Robertson, M. Crzerwinski, P. Baudisch, B. Meyers, D. Robbins, G. Smith and D. Tan, The
large-display user experience, IEEE Computer Graphics and Applications, vol.25, no.4, pp.44-51,
2005.

[24] M. Beaudouin-Lafon, Novel interaction techniques for overlapping windows, Proc. of UIST’01,
pp.503-512, 2001.

[25] G. Faure, O. Chapuis and N. Roussel, Power tools for copying and moving: Useful stuff for your
desktop, Proc. of CHI’09, pp-1675-1678, 2009.

[26] C. Tashman, WindowScape: A task oriented window manager, Proc. of UIST 06, pp.77-80, 2006.

[27] Q. Xu and G. Casiez, Push-and-pull switching: Window switching based on window overlapping,
Proc. of CHI’10, pp.1335-1338, 2010.

REDUCING THE COST OF WINDOW OPERATIONS 4679

[28] G. J. Badros, J. Nichols and A. Borning, SCWM: An intelligent constraint-enabled window manager,
Proc. of AAAI Spring Symposium on Smart Graphics, 2000.

[29] P. Dragicevic, Combining crossing-based and paper-based interaction paradigms for dragging and
dropping between overlapping windows, Proc. of UIST’ 04, pp.193-196, 2004.

[30] O. Chapuis and N. Roussel, Copy-and-paste between overlapping windows, Proc. of CHI’07, pp.201-
210, 2007.

[31] B. Bly and J. Rosenberg, A comparison of tiled and overlapping windows, Proc. of CHI’86, pp.101-
106, 1986.

[32] K. O’Hara and A. Sellen, A comparison of reading paper and on-line documents, Proc. of CHI’97,
pp-335-342, 1997.

[33] K. P. O’Hara, A. Taylor, W. Newman and A. J. Sellen, Understanding the materiality of writing
from multiple sources, International Journal of Human-Computer Studies, vol.56, no.4, pp.269-305,
2002.

