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Abstract. In this paper, a new model of broadband microphone array system is pro-
posed, where wireless transmission is employed to relay the signals to a fast server nearby
in order to find the optimal filter coefficients continuously before the filter weights are
sent back to the device. By using sequences of calibration signals, we formulate a total
least squares problem and transform it into an equivalent optimization problem. By ex-
ploiting the structure of the problem, analytic expressions for the optimal solution can be
obtained. For illustration, two numerical results are presented.
Keywords: Total least squares, Microphone array, Beamforming

1. Introduction. In modern hands-free communication systems, there are many distur-
bance sources that cause unwanted sound [4], which may degrade the comprehension of
the wanted speech. These disturbances vary depending on the environmental preliminar-
ies. In this particular acoustic environment, the microphone array is usually deployed
to suppress the noise as well as the echo from the hands-free loudspeaker, while leaving
the distortion of the speech to a minimum [8]. If the environment is complicated, this
problem is very difficult to be described by a priori models [13]. With the use of cali-
bration signals, it is possible to design the beamformer satisfactorily [6]. In the design
process, the minimum square errors and the maximum signal-to-noise plus interference
power ratio are often used [7], and a multi-criteria decision problem is applied in [11] to
optimize on the level of distortion, the level of noise suppression, and the level of interfer-
ence suppression. Other filter design techniques (such as [1, 3, 10]) are also possible for
designing beamformers.

With smart devices proliferating in the home and becoming universally networked, mi-
crophone array is often incorporated into the devices. It is getting popular to include
noise reduction capability into blue-tooth headsets, mobile phones and other devices with
communications or voice control functionality. On the other hand, in adapting the algo-
rithms real time, high computational powers are required. Power consumption of portable
devices become a major concern. The adaptation is impossible to be achieved inside the
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portable devices. Nevertheless, because of the advance in wireless technology [5, 9], it
is possible to make use of the computational powers of nearby computer servers. For
example, a wireless local area network (WLAN) links devices via a wireless distribution
method (typically spread-spectrum or OFDM) and usually provides a connection through
an access point to the wider network. This gives users the mobility to move around within
a local coverage area and still be connected to the network. Wireless LANs have also be-
come popular at home due to ease of installation and the increasing popularity of laptop
computers.
The wireless transmission of multimedia signals requires a large amount of bandwidth.

For transmitting such signals, lossy protocols (e.g., UDP protocol) are often used. Be-
sides, for real time adaptation of filter coefficients, it is impossible to resend the signals
again if certain packets are lost. However, for voice control systems and for human hear-
ing system, they are usually fairly tolerant to some perturbation to the original signals.
Signal restoration algorithms [2] can be applied to recovering some of the missing signals.
Under this framework, it is advantageous to design the beamforming system such that
small perturbation to the signals will not affect the overall quality too much. When this
procedure is carried out, the original least squares or signal-to-noise ratio formulation is
no longer optimal for the design. In this paper, we propose a novel configuration, where
the received data is transferred wirelessly to a remote high power device, which is then
used for calculating the optimal filter coefficients. Under this framework, there exists
another perturbation to the signal data due to the lossy feature and signal restoration.
Consequently, a total least squares technique must be used to formulate the problem.
The resultant optimization problem has a special Toeplitz structure. By exploiting this
property, the analytic expression for the optimal solution can be obtained. Compared
with the ordinary least squares method, the performances both on SNR and segmental
SNR are improved and the complexity of the algorithm is the same.
The rest of the paper is organized as follows. In Section 2, we propose a new model

of broadband beamformer design and formulate it as a total least squares optimization
problem. In Section 3, we show that this optimization problem can be simplified into
an equivalent optimization problem. In Section 4, the optimal solution to the problem is
derived analytically. Two numerical examples are illustrated in Section 5. Conclusion is
given in Section 6.

2. The Problem. A new model of microphone array design can be found in Figure 1,
where the voice signal is received by the microphone array and processed by the filters
behind the array. It is required to design the beamformer to filter out the background
noise. Using a calibration signal, the filter coefficients are designed such that the error
between the output signal and the source signal is minimized.
In order to adapt to the changing background noise, the beamformer filter coefficients

need to be updated continuously. This will also require a very fast processor to recalculate
the coefficients in real time. Assuming the device is running inside a battery-driven sys-
tem, the adaptation process demands very high power consumption and will quickly drain
the batteries. To overcome this difficulty, wireless communications can be established to
transmit the received signals to a nearby computer server with very fast processors. Then,
after updating the optimal beamforming filters, the coefficients are transmitted back to
the wireless device for filtering.
During the transmission between the wireless devise and the computer server, the signal

noise due to lost packets should not be neglected. Hence, the beamforming filters should
be designed to minimize the background noise and the signal noise at the same time.
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Figure 1. Model of the microphone array

In this model, we assume that there are M elements in the microphone array. In
general, the signals received by the i-th microphone element can be represented by

xi(n) = si(n) + vi(n), i = 1, 2 . . . ,M, n = 1, 2, . . . ,m, (2.1)

where si(n) is the source signal and vi(n) is the background noise signal.
The output of the beamformer is given by

y(n) =
M∑
i=1

L−1∑
j=0

wi(j)xi(n− j), n = 1, 2, . . . ,m, (2.2)

where L is the length of the filters and wi(j), j = 0, 1, . . . , L − 1, are the coefficients of
the i-th FIR filter. Basically, (2.2) can be rewritten as

y = H(x)w, (2.3)

where
y = [y(1), y(2), . . . , y(m)]ᵀ,

x = (xᵀ
1, . . . ,x

ᵀ
M)ᵀ, xi = (xi(1), . . . , xi(m))ᵀ, i = 1, . . . ,M,

w = (wᵀ
1, . . . ,w

ᵀ
M)ᵀ, wi = (wi(0), . . . , wi(L− 1))ᵀ, i = 1, . . . ,M,

and H : RmM → Rm×ML is an injective function defined by

H(x) =


x1(1) 0 · · · 0
...

...
. . .

...
x1(L) x1(L− 1) · · · x1(1)

...
...

. . .
...

x1(m) x1(m− 1) · · · x1(m− L+ 1)

 · · ·

· · ·


xM(1) 0 · · · 0

...
...

. . .
...

xM(L) xM(L− 1) · · · xM(1)
...

...
. . .

...
xM(m) xM(m− 1) · · · xM(m− L+ 1)

 . (2.4)

Denote sr as the reference signal, which is selected from a good separate channel. Then,
the least squares problem can be formulated as

min
w,η

E{||η||2}

s.t. y = H(x)w = sr + η, (2.5)
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where η = [η(1), η(2), . . . , η(m)]ᵀ is the difference between the output signal and the
reference signal, and E{·} is the expectation operation.
However, since there exists signal noise from the wireless device to the high power device

due to lost packets, we need to restore the missing signal x. With some algorithms, such
as interpolation method [2], we can estimate the signal x̄, which is used for calculating
the coefficients. The estimated signal x̄ can be expressed by

x̄ = x+ ε,

where x is the true signal and ε is the estimation noise given by

ε = [εᵀ1, ε
ᵀ
2, . . . , ε

ᵀ
M ]ᵀ, εk = [εk(1), εk(2), . . . , εk(m)]ᵀ, k = 1, . . . ,M.

Then, the optimization problem (2.5) becomes

min
w,η

E{||η||2}

s.t. ȳ = H(x̄)w = sr + η. (2.6)

Hence, since the additional estimation noise exists, the optimal coefficients obtained by
(2.6) is not suitable for (2.5). Then, we need to estimate x from x̄ by eliminating the
estimation noise. That is, the problem is formulated as to find the coefficients of FIR
filters w, such that

H(x̄− ε)w = H(x̄)w −H(ε)w = sr + η. (2.7)

There are two error vectors ε and η to be minimized in (2.7). Since they are minimized
in the same time, the vector ε should have some relations with the vector η. That is, if
ε is chosen properly and ||ε|| increases, then ||η|| should decreases. On the other hand,
||ε|| should not be very large, since it will cause aliasing of the signal and the solution
will become very poor.
Since there are M elements in the microphone array, there are M estimation noise

vectors εi to be minimized. To adjust the amplitude of εi, we add a positive weight vector
c = (c1, . . . , cM) to M channels. Then, we choose the cost function to be minimized as

f(w, ε,η) =E

{
||η||2 +

M∑
i=1

ci||εi||2
}
. (2.8)

The vector c is used to adjust the amplitude ||ε||. That is, if ci is chosen very small,
the amplitude of εi can be large and if c is large, the amplitude of ε must be very small.
Hence, c is a weight vector to control the amplitude of signal noise.
The total least squares problem can be formulated as

Problem 1. Find the coefficients of FIR filters w, the noise vector ε and the vector η,
such that the cost function (2.8) is minimized, subject to the constraint (2.7).

Problem 1 is a general optimization problem. However, m, the dimension of the estima-
tion noise vector ε, is always very large in practical application and the computation will
be very expensive. Since the vectors ε and η are random, it’s not necessary to find these
error vectors for each sample. For this, we can transform this problem into a deterministic
problem as follows.
Basically, we assume the estimation noise vector ε satisfies the following assumptions:

(A1) ε is a zero mean vector.
(A2) For each i 6= j, εi and εj are uncorrelated.
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(A3) For each i, the normalized autocorrelation matrix is known from a priori information
and is given by

Rεiεi =


rεiεi(0) rεiεi(1) · · · rεiεi(L− 1)
rεiεi(1) rεiεi(0) · · · rεiεi(L− 2)

...
...

. . .
...

rεiεi(L− 1) rεiεi(L− 2) · · · rεiεi(0)

 ,

where rεiεi(k) is normalized by

rεiεi(k) = E

{
m∑

n=k+1

(εi(n− k)) (εi(n))

}
/E{||εi||2}, if k ≥ 0.

(A4) The intensities of εi in different channels are proportional, that is,

E{||ε1||2} : E{||ε2||2} : · · · : E{||εM ||2} = d1 : d2 : · · · : dM ,

where {di, i = 1, . . . ,M} are given positive constants.

For the assumption (A1), the average value of the noise is always zero for interpola-
tion methods. The assumption (A2) states that the noise data of different channels are
mutually independent. This is reasonable in practice. For the assumption (A3), εi can
be treated as a white noise vector in general, and then Rεiεi is the identity matrix. The
assumption (A4) is motivated by the setting of the microphones, where the noises of some
channels are high, while the noises of other channels are small.

Then, by the assumption (A2), we can obtain the covariance matrix of ε as

Rεε =E{(H (ε))ᵀ H (ε)}

=


E{||ε1||2}Rε1ε1 0 · · · 0

0 E{||ε2||2}Rε2ε2 · · · 0
...

...
. . .

...
0 0 · · · E{||εM ||2}RεMεM

 .

Since the intensities of εi in different channels are proportional, we can choose to
minimize the noise error of a reference channel. For this, suppose that the noise vector of
the reference channel is εr. Then, we rewrite the second term of (2.8) as

M∑
i=1

ci||εi||2 = ||εr||2
M∑
i=1

ci||εi||2/||εr||2 = ||εr||2
M∑
i=1

cidi/dr.

Let cr =
M∑
i=1

cidi/dr. The cost function (2.8) is equivalent to

f(w, ε,η) =E{||η||2 + cr||εr||2}. (2.9)

Since η is a random vector, the cost function is required to be transformed. To remove
these random vectors, we denote p = H(x)w − sr, then

η = p−H(ε)w. (2.10)

Let H(ε) be denoted by

H(ε) = [Hε1,Hε2, . . . ,HεM ],

where for each k = 1, . . . ,M , Hεk ∈ Rm×L is a sub-matrix in H(ε). Furthermore, let
Hεk be denoted by

Hεk = [hεk(0),hεk(1), . . . ,hεk(L− 1)],
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where for each j = 0, . . . , L− 1, hεk(j) is the corresponding column in Hεk. Then, (2.10)
can be rewritten as

η = p−
M∑
i=1

L−1∑
j=0

hεi(j)wi(j).

Next, since the estimation noise exists and is not zero, we have ||εi|| > 0, i = 1, 2, . . . ,M .
Then, we express p in the subspace spanned by the vectors {hεi(j), i = 1, . . . ,M, j =
0, . . . , L− 1} as follows.

p =

(
M∑
k=1

L−1∑
l=0

αklhεk(l)

)
+ h̄ = H(ε)α+ h̄, (2.11)

where

α = (α10, . . . , α1,L−1, α20, . . . , α2,L−1, . . . , αM0, . . . , αM,L−1)
ᵀ,

and h̄ is a vector orthogonal to the subspace spanned by the vectors {hεi(j), i = 1, . . . ,M ,
j = 0, . . . , L− 1}.
By (2.11), we have

||η||2 =(p−H(ε)w)ᵀ(p−H(ε)w)

= ||p||2 − 2wᵀ(H(ε))ᵀp+wᵀ(H(ε))ᵀH(ε)w

=αᵀ(H(ε))ᵀH(ε)α+ ||h̄||2 − 2wᵀ(H(ε))ᵀH(ε)α+wᵀ(H(ε))ᵀH(ε)w

=(w −α)ᵀ(H(ε))ᵀH(ε)(w −α) + ||h̄||2.
Then, we have

E{||η||2} = (w −α)ᵀRεε(w −α) + β, (2.12)

where β = E{||h̄||2} ≥ 0.
Define R̄εε = Rεε/||εr||2. Then, (2.12) becomes

E{||η||2} =E{||εr||2}(w −α)ᵀR̄εε(w −α) + β, (2.13)

and the cost function (2.8) becomes

f(w, ε,η) = E{||εr||2}(w −α)ᵀR̄εε(w −α) + β + crE{||εr||2}
= E{||εr||2}

(
(w −α)ᵀR̄εε(w −α) + cr

)
+ β

= f̄(w,α, β, ||εr||2). (2.14)

Furthermore, by simplifying

E{||H(x)w − sr||2} = E{||p||2} = E{||H(ε)α+ h̄||2},
we have

wᵀRxxw − 2wᵀrs + rc = E{||εr||2}αᵀR̄εεα+ β, (2.15)

where rc = E{||sr||2} and Rxx is defined by

Rxx = E{(H(x))ᵀH(x)}, (2.16)

and similarly has the structure of

Rxx =


Rx1x1 Rx1x2 · · · Rx1xM

Rx2x1 Rx2x2 · · · Rx2xM

...
...

. . .
...

RxMx1 RxMx2 · · · RxMxM

 ,
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where

Rxixj
=


rxixj

(0) rxixj
(−1) · · · rxixj

(1− L)
rxixj

(1) rxixj
(0) · · · rxixj

(2− L)
...

...
. . .

...
rxixj

(L− 1) rxixj
(L− 2) · · · rxixj

(0)

 ,

rxixj
(k) =


m∑

n=k+1

E{xi(n− k)xj(n)} if k ≥ 0

m+k∑
n=1

E{xi(n− k)xj(n)} if k ≤ 0
,

and

rs = (rᵀ
1, r

ᵀ
2, . . . , r

ᵀ
M)ᵀ, ri = (ri(0), ri(1), . . . , ri(L− 1))ᵀ, i = 1, . . . ,M,

with

ri(k) =
m−k∑
j=1

E{xi(n)sr(n+ k)}.

Then, by (2.15), we have

E{||εr||2} =
wᵀRxxw − 2wᵀrs + rc − β

αᵀR̄εεα
,

and (2.14) becomes

f̂(w,α, β) =
wᵀRxxw − 2wᵀrs + rc − β

αᵀR̄εεα

(
(w −α)ᵀR̄εε(w −α) + cr

)
+ β. (2.17)

Hence, we transform Problem 1 into a deterministic problem as

Problem 2. Find the coefficients w, α, and β ≥ 0, such that the cost function (2.17) is
minimized.

3. Method. Problem 2 can be solved by any optimization methods. However, we can
simplify this problem by decreasing the number of variables as follows.

In general, the matrix Rεε or R̄εε are always nonsingular in real applications. Then,
we have the lemma as follows.

Lemma 3.1. For a given w 6= 0 and β, the optimal α to minimize the cost function
(2.17) is given by α = b ·w, where

b = 1 + cr/w
ᵀR̄εεw. (3.1)

Proof: For a given w 6= 0 and β, the minimization of the function f̂(w,α, β) is
equivalent to the minimization of the function

g(α) =
(
(w −α)ᵀR̄εε(w −α) + cr

)
/αᵀR̄εεα. (3.2)

Denote w̄ = (R̄εε)
1/2w and ᾱ = (R̄εε)

1/2α, (3.2) becomes

ḡ(ᾱ) =
(
||w̄ − ᾱ||2 + cr

)
/||ᾱ||2. (3.3)

Then, the first order necessary condition of ḡ(ᾱ) is given by

∂ḡ(ᾱ)

∂ᾱi

=
2(ᾱi − w̄i)||ᾱ||2 − 2ᾱi(||w̄ − ᾱ||2 + cr)

||ᾱ||4
= 0, i = 1, . . . ,ML.

Since the optimal ᾱ cannot be zero, we obtain

(ᾱi − w̄i)||ᾱ||2 = ᾱi(||w̄ − ᾱ||2 + cr), i = 1, . . . ,ML. (3.4)
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Multiplied by ᾱi on both sides of (3.4) and sum up from i = 1 to ML, we have(
||ᾱ||2 −

ML∑
i=1

ᾱiw̄i

)
||ᾱ||2 = ||ᾱ||2

(
||w̄ − ᾱ||2 + cr

)
.

It can be simplified as

||ᾱ||2 −
ML∑
i=1

ᾱiw̄i = ||w̄ − ᾱ||2 + cr. (3.5)

Multiplied by w̄i on both sides of (3.4) and sum up from i = 1 to ML, we have(
ML∑
i=1

ᾱiw̄i − ||w̄||2
)
||ᾱ||2 =

(
||w̄ − ᾱ||2 + cr

) ML∑
i=1

ᾱiw̄i. (3.6)

Substituting (3.5) into (3.6) yields(
ML∑
i=1

ᾱiw̄i − ||w̄||2
)
||ᾱ||2 =

(
||ᾱ||2 −

ML∑
i=1

ᾱiw̄i

)
ML∑
i=1

ᾱiw̄i.

Then, we obtain ∣∣∣∣∣
ML∑
i=1

ᾱiw̄i

∣∣∣∣∣ = ||w̄|| · ||ᾱ|| =

(
ML∑
i=1

ᾱ2
i

)1/2(ML∑
i=1

w̄2
i

)1/2

. (3.7)

Since w 6= 0 and R̄εε is nonsingular, we have w̄ 6= 0. Then, the equal sign of (3.7) is
true if and only if there is a constant b such that ᾱ = b · w̄. Without lost of generality,
we suppose that w̄i 6= 0. Then, (3.4) becomes

(b− 1)b2w̄i||w̄||2 = bw̄i

(
(b− 1)2||w̄||2 + cr

)
, i = 1, . . . ,ML.

It can be simplified as

b = 1 + cr/||w̄||2 = 1 + cr/w
ᵀR̄εεw.

Furthermore, since R̄εε is nonsingular, it follows from ᾱ = b · w̄ that α = b ·w. This
completes the proof.
Hence, by Lemma 3.1, we only need to minimize the cost function

f̃(w, β) = f̂(w,α∗, β)

=
wᵀRxxw − 2wᵀrs + rc − β(

1 + cr
wᵀR̄εεw

)2
wᵀR̄εεw

((
cr

wᵀR̄εεw

)2

wᵀR̄εεw + cr

)
+ β

=(wᵀRxxw − 2wᵀrs + rc)
cr

cr +wᵀR̄εεw
+

βwᵀR̄εεw

cr +wᵀR̄εεw
. (3.8)

Since β ≥ 0 and wᵀR̄εεw/(cr +wᵀR̄εεw) ≥ 0, the optimal β is β∗ = 0 and we have

f̃(w, β∗) = (wᵀRxxw − 2wᵀrs + rc)
cr

cr +wᵀR̄εεw
.

Thus, Problem 2 is equivalent to a simplified problem as

Problem 3. Find the coefficients w, such that the cost function

F (w) =
cr(w

ᵀRxxw − 2wᵀrs + rc)

cr +wᵀR̄εεw
(3.9)

is minimized.
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Problem 3 is an optimization problem and can be solved by any gradient based op-
timization algorithms. Basically, we can solve this problem very easily by some basic
matrix computations. For this, we denote

ŵ = [−1 wᵀ]ᵀ, Ĥ(x) = [sr H(x)],

R̂xx = E{(Ĥ(x))ᵀĤ(x)}, R̂εε =

(
cr 0
0 R̄εε

)
.

Then, by ignoring the multiplier cr, the objective function (3.9) can be rewritten as a
simplified form:

F̂ (ŵ) =
ŵᵀR̂xxŵ

ŵᵀR̂εεŵ
. (3.10)

To minimize the cost function (3.10), we first do the Cholesky factorization of R̂εε as

R̂εε = U ᵀU , (3.11)

where U is an upper triangular matrix. Denote

w̃ = Uŵ, R̃xx = (U−1)ᵀR̂xxU
−1,

then (3.10) is transformed into

F̃ (w̃) =
w̃ᵀR̃xxw̃

||w̃||2
. (3.12)

Considering the cost function (3.12), the optimal value F̃ ∗ is given by the minimal eigen-

value of R̃xx and the optimal w̃∗ is given by the corresponding eigenvector. Then, the
optimal ŵ∗ and w∗ are given by

ŵ∗ = U−1w̃∗,

(
−1
w∗

)
= − w̃∗

w̃∗
1

,

where w̃∗
1 is the first element of w̃∗.

Hence, we have solved this problem with some basic matrix transformations and it has
a very low complexity of computation.

4. Choice of Coefficient. From Problem 2 and Problem 3, we can see that these prob-
lems are formulated with a given weight coefficient cr > 0. However, what is the value of
a suitable coefficient cr? How to choose this value?

Basically, the coefficient cr varies according to the estimation noise level. If the intensity
of the estimation noise changes, the coefficient cr should also be adjusted. From the cost
function (2.9), we can see that when cr becomes larger, the weight of εr increases in (2.9).
Then, the vector εr should not be too large and ||εr||2 becomes smaller. If cr → +∞,
it means that ||εr||2 will approach to zero. Then, the total least squares problem is
equivalent to ordinary least squares problem. This can also be seen from the limit of the
cost function (3.9) as cr → +∞, that is,

lim
cr→∞

F (w) = lim
cr→∞

cr(w
ᵀRxxw − 2wᵀrs + rc)

cr +wᵀR̄εεw
= wᵀRxxw − 2wᵀrs + rc.

On the other hand, if cr → 0, the weight of εr decreases in (2.9) and ||εr||2 can become
larger, while the other term ||η||2 → 0.

Hence, the choice of a suitable cr depends on the intensity of the estimation noise. It
should never be a large number or it will approach to the ordinary least squares formula-
tion. Also, it should not be too small, or the fluctuation of ||εr||2 will change excessively
and the solution may not be optimal. Then, a suitable cr is given such that the fluctuation
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of ||εr||2 is of similar magnitude to the intensity of the estimation noise. This can be seen
from the examples in the next section.
Basically, a best choice of cr can be obtained from a priori information with calibration

data, that is, we can check the performance of many cr and choose the best one. Fur-
thermore, whether the choice of cr is good depends on the criteria of performance. For
different criteria of performance, the best cr can be different. That is, if the criterion of
performance with respect to w is g(w), the best coefficient cr can be optimized as

c∗r = min
cr

g(w∗(cr)),

where w∗(cr) denotes the solution of Problem 3. Furthermore, the c∗r value also changes
if the estimation noise changes. This relationship can be seen in the next section.

5. Illustrative Examples. In this section, we apply the model to two examples, where
calibration signals are collected for the speech signal and the background noise. In the
first example, the signals are collected in a Volvo station wagon environment with a multi-
channel microphone array in a hands-free situation. An artificial talker was mounted in
the passenger seat to simulate a real person leading a conversation. The desired sound
source signal was created from a speaker’s sound sequence in a non-moving car with the
engine turned off. The background noise signal was created when the car was driving
at a speed of 110km/h. In the second example, the signals are collected in an anechoic
chamber where the speech signal and the noise signal are recorded separately.
In order to simulate the lossy nature in the wireless transmission of audio data, we

artificially add random noise to the calibration signals resembling the situation that part
of the signals are loss and restored mathematically. The proposed total least squares
method is used and is compared with the LS method described in [7] by designing FIR
filters with a filter length of 16. The computation is implemented in Matlab.
In the first example, the acoustic data was sampled with the rate of 12KHz and the

duration of these signals was 4 seconds. The initial SNR values for two channels are both
2dB and the corresponding initial segmental SNR values for two channels are −4.5812dB
and −4.5808dB. The SNR and segmental SNR values obtained by LS method and TLS
method are given in Figure 2. If the SNR criterion is used, the best coefficient c∗r is 0.0380,
where the SNR value can achieve 8.0945dB. If the segmental SNR criterion is used, the
best coefficient c∗r is 0.0380, where the segmental SNR value can achieve −1.7212dB.
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Figure 2. SNR and segmental SNR in Example 1

For the relation between the best coefficient c∗r and the estimation noise, we calculate
the best coefficient c∗r for different scales of εr. This relationship can be seen in Figure
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3, where the SNR and segmental SNR criteria are used, respectively. It can be seen that
the best coefficient c∗r decreases when the intensity of the estimation noise increases.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Magnitude of the estimation noise

V
al

ue
 o

f t
he

 b
es

t c
oe

ffi
ci

en
t

 

 

SNR criterion
Segmental SNR criterion

Figure 3. Relation between ||εr|| and the best coefficient cr

In the second example, the acoustic data was sampled with the rate of 8KHz and the
duration of these signals was 6 seconds. The initial SNR values for two channels are both
5dB and the corresponding initial segmental SNR values for two channels are −0.6490dB
and −0.6205dB. The SNR and segmental SNR values obtained by LS method and TLS
method are given in Figure 4. If the SNR criterion is used, the best coefficient c∗r is 0.0224,
where the SNR value can achieve 10.0737dB. If the segmental SNR criterion is used, the
best coefficient c∗r is 0.0355, where the segmental SNR value can achieve 3.3497dB.
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Figure 4. SNR and segmental SNR in Example 2

For the relation between the best coefficient c∗r and the estimation noise, we calculate
the best coefficient c∗r for different scales of εr. This relationship can be seen in Figure
5, where the SNR and segmental SNR criteria are used, respectively. It can be seen that
the best coefficient c∗r decreases when the intensity of the estimation noise increases.

6. Conclusion. A novel total least squares design of a broadband beamforming system
has been proposed. This problem is formulated as an optimization problem and shown
to be equivalent to a simplified one. The analytic expression for the optimal solution can
be derived. Compared with the ordinary LS method, this method can yield improved
performance both on SNR and segmental SNR with a similar computation complexity.
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Figure 5. Relation between ||εr|| and the best coefficient c∗r
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[10] K. F. C. Yiu, N. Grbić, S. Nordholm and K. L. Teo, A hybrid method for the design of oversampled
uniform DFT filter banks, Signal Processing, vol.86, pp.1355-1364, 2006.
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