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ABSTRACT. The modified two-stage multithreshold Otsu (TSMO) method based on a two-
stage Otsu optimization approach is proposed for multilevel thresholding. The proposed
method yields the same set of thresholds as those obtained by using the conventional
Otsu method, but it greatly decreases the required computation time, especially for a large
number of clusters. In addition, an effective method of histogram-based valley estimations
is presented for determining an appropriate number of clusters for an image. Various
real-world images were used to evaluate the performance of the proposed method. Experi-
mental results show that the speed of computation for the proposed method is about 19000
times faster than that for the conventional Otsu method when the number of clusters is
7.
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1. Introduction. Image multilevel thresholding is a very straightforward and effective
approach that is widely used in the fields of image processing, pattern recognition and
computer vision. The main goal of image segmentation is to isolate regions that represent
objects or meaningful parts of objects from the rest of the image. The image is generally
separated into two or more regions that are homogeneous in features such as gray level,
color and texture. The practical applications of image segmentation include video secu-
rity [1], human-computer interfaces (HCI) [2], optical character recognition (OCR) [3],
content-based image retrieval (CBIR) [4], moving object tracking [5], image enhancement
[6,7] and medical image diagnoses [8,9].

Image thresholding methods can be roughly divided into two groups: parametric and
nonparametric approaches. In parametric approaches, a statistical model is first assumed
to fit the gray level distribution of an image, and a set of parameters that control the fitness
of the model are found using a histogram. Bazi et al. [10] proposed a parametric global
thresholding method, which searches for the threshold by estimating parameters based on
the expectation-maximization (EM) method under the assumption that the object and
background classes follow a generalized Gaussian distribution. In nonparametric methods,
thresholds are chosen by optimizing an objective function, such as maximizing between-
class variance [11] or minimizing entropy [12,13]. Nonparametric approaches have proven
to be more accurate and robust than parametric ones.
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For bilevel thresholding, Otsu’s method [11] is a very popular nonparametric threshold-
ing technique, which searches for an optimum threshold by maximizing the between-class
variance in a gray level image. However, the objects and backgrounds in real-world images
are usually complicated, so bilevel thresholding cannot always achieve satisfactory results.
Therefore, multilevel thresholding [14-16], which determines many thresholds to segment
images into several clusters, was developed. Although the Otsu method can be easily ex-
tended to a multi-threshold version, it suffers from a serious drawback of computational
inefficiency when the number of segmented clusters is large. This is due to the fact that
Otsu’s thresholding involves iterations of the zero- and first-order cumulative moments
of a gray level histogram, which requires a great number of multiplication and division
manipulations.

Several improved versions of Otsu’s method have been developed to reduce the com-
putational cost for multilevel thresholding [14-16]. Liao et al. [14] proposed a modified
version of Otsu’s method, called recursive Otsu’s method, to find the optimal thresholds
by accessing pre-computed modified between-class variance values in a look-up table (i.e.,
H-table). Their method greatly improves the computational efficiency when the number
of clusters is relatively small, but it still suffers from poor performance when the num-
ber of clusters is high (number of clusters > 5). Dong et al. [15] presented an iterative
algorithm for finding optimal thresholds based on the minimization of a weighted sum-
of-squared-error objective function, which was proven to be mathematically equivalent to
the Otsu method, but it requires a much lower number of computations.

Huang and Wang [16] proposed a two-stage approximation of Otsu’s method, called
the two-stage multithreshold Otsu (TSMO) method, to improve performance. In the
first stage, bin grouping and then multilevel Otsu’s thresholding are used for finding the
bin groups (or sets) with the maximum between-class variance. In the second stage,
bilevel Otsu’s thresholding is used to refine each threshold within the set that contains
the optimal threshold. Since the gray levels in the histogram are decreased from 256 to
32 sets in the TSMO method, the time required is greatly reduced. However, the sets
of thresholds determined by the TSMO method and Otsu’s method are slightly different
because the estimation of the threshold in stage two of the TSMO method is confined to
each chosen set.

Most multilevel thresholding algorithms [10,12-16] can segment objects of interest from
their background well, but the number of clusters must be manually determined in ad-
vance. In recent years, some methods, such as morphological watersheds [17] and isoperi-
metric ratios [18,19], have been developed to automatically determine the number of
clusters. In [17], Liu et al. employed the watershed method to determine the number
of clusters using a gray-level histogram and then used a fuzzy C-mean (FCM) method
to separate the object of interest (i.e., a cucumber plant) from complicated backgrounds.
Recently, image segmentation based on isoperimetric graph theory has become a pop-
ular method in research for determining the number of clusters for multilevel thresh-
olding problems [18,19]. However, due to their high computation complexity and poor
real-time performance, these techniques are rarely applied to actual image segmentation
problems. Sahoo et al. [20] presented a comprehensive survey of thresholding approaches
and concluded that Otsu’s method was one of the best thresholding methods for image
segmentation with respect to uniformity and shape measures.

In the last decade, Sankur and Sezgin [21] conducted an exhaustive survey of 40 selected
image thresholding methods. The results show that the thresholding evaluation rank of
40 NDT (nondestructive testing) images according to the overall average quality score for
Otsu’s method is relatively high up to rank 6. It means that Otsu’s method can provide
reasonable thresholds for image segmentation. This result motivates us to propose a
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method that not only obtains the same thresholds as those of Otsu’s method, but also
significantly improves the computational inefficiency of the Otsu method. Recently, the
research of automatic determination of the number of clusters is increasingly popular.
However, thus far most of the multilevel thresholding methods are either lack of the
capability of determining the number of clusters [10,12-16], or computational inefficiency
to determine clusters [17-19].

To solve the issues mentioned above, a multilevel thresholding method based on a two-
stage Otsu’s optimization method with automatic cluster determination by valley estima-
tion for image segmentation is proposed. The main advantages of the results over other
studies for the proposed method are clear in that it has the following two unique features:
(1) it provides the same set of thresholds as those obtained by using the conventional Otsu
method [11], but it completely avoids the heavy computational cost of Otsu’s method es-
pecially for a larger number of clusters. In addition, the proposed method’s efficiency
is comparable to that of the TSMO method; (2) it can automatically and efficiently de-
termine the number of clusters using a histogram-based valley estimation method, which
eliminates both the high computation complexity and poor real-time performance of wa-
tershed [17] and isoperimetric graph partitioning [18,19] methods. To verify the perfor-
mance of the proposed method, several real-world images are used. Experimental results
show that the speed of computation for the proposed method is about 19000 times faster
than that for the conventional Otsu method when the number of clusters is 7. This result
confirms the effectiveness and superiority of the proposed method.

The rest of this paper is organized as follows: in Section 2, brief overviews of multilevel
Otsu’s thresholding method and the TSMO method are given; in Section 3, the determi-
nation of the number of clusters using valley estimation is introduced and the proposed
method for multilevel thresholding is described; in Section 4, the results for the proposed
method and those for the TSMO and Otsu methods are compared and discussed; Section
5 concludes the paper.

2. Overview of Otsu’s Method and the TSMO Method. In this section, the ex-
tended version of Otsu’s method for multilevel thresholding problems is described. The
principle of the TSMO method is then outlined in Section 2.2.

2.1. Overview of multilevel Otsu’s thresholding method. Otsu’s method [11] is
popular for image segmentation. It selects a global threshold value by maximizing the
separability of the clusters in gray levels. Assume that an image can be represented in L
gray levels (0, 1, ..., L — 1). The number of pixels at level i is denoted by f;; then, the
total number of pixels equals N = fy + f1 + ...+ fr_1. For a given gray level image, the
occurrence probability of gray level 7 is given by:

fi
Pi =55 Pi=0, Zpizl (1)

If an image is segmented into K clusters (Cy, C4,...,Ck 1), K —1 thresholds (to, t1,. ..,
tx_2) must be selected. The cumulative probability wy and mean gray level py for each
cluster C are respectively given by:

wk:Zpi and uk:Zi-pi/wk,ke{o,l,...,[(—l} (2)
1€Cy, 1€Cy

Therefore, the mean intensity of the whole image pr and the between-class variance o
are respectively determined by:
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-1 K—1
MT:Zi'pi:ZMkwk (3)
i=0 k=0
and
K-1 K—1
op = wy (e — MT)2 = Z Wity — P (4)
k=0 k=0
Hence, the optimal thresholds (¢, t},...,t% _5) can be determined by maximizing the
between-class variance as:
{to. 5, th o} = arg max {05 (to, t1, ++ ,tx—2)} (5)

0<tp<...<tg_o<L-—1

2.2. Overview of the TSMO method. TSMO [16] uses the concept of bin grouping
in the first stage to reduce the computation complexity of the original Otsu method. The
histogram of L (= 256) gray levels is divided into Mz sets that contain Nz (= 256/Mz)
gray levels. In this paper, Mz is set to 32, with Nz = 8. Let ) represent the sets of
the total image space; then, Q = {Qq|l¢ =0,1,---, Mz — 1}, where ¢ represents the set
number. Therefore, the occurrence probability po, and the mean intensity iq, in the gth
set, i.e., g, are respectively given by:

qu:Zpi, and qu:Zi.pi/Zpi:

1€Qq 1€Qq 1€Qq

> i-pi (6)

1
Pag jco,

Similarly, the cumulative probability w; and mean gray level p; for each cluster C}

(k=0,1,---, K — 1) can be respectively estimated as:
wy, = Z pag and = Z ig * Pag/Wk (7)
QqeCy, QqeCy,

Therefore, the mean intensity of the whole image u7 and the between-class variance 0%
can be respectively determined as:

Mz—1 K-1
pr = Z iag " Pag = Z HkWr (8)
q=0 k=0
and
K-1 K-1
o= wi (e — pr)’ =Y we} — 115 9)
k=0 k=0

In the first stage of the TSMO method, the sets with the numbers {q(")‘, qi, - ,q;(ﬂ}
can be determined using multilevel Otsu’s thresholding method. That is:

{6, 4, Ghe_s} = arg max {05 (¢o, q1,- - - qr—2) } (10)
0<qo<...<qrg—2<Mz—1

Therefore, the possible optimal threshold for each set should fall into the chosen sets
{Qqé, Qgr, - ’Qqhg}' Then, in stage two of the TSMO method, bilevel Otsu’s thresh-
olding method is used to determine the optimal threshold ¢j for each chosen set (24
(k=0,1,--- K —2) as:

t; = arg max{og(ty)}, k=0,1,--- K —2 (11)

tk—EQq;;
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3. The Proposed Method for Determining the Number of Clusters and Mul-
tilevel Thresholds. A flowchart of the proposed method is shown in Figure 1. The
histogram of input gray levels is first statistically computed. The method of valley es-
timation is then used to determine the number of clusters for the image to be properly
segmented. Furthermore, a modified version of the TSMO method is proposed to provide
the same set of thresholds as those obtained using the conventional Otsu method. The
high computation complexity of Otsu’s method is completely avoided, especially when
the number of clusters is relatively high. The valley estimation method is described in
Section 3.1, and the modified version of the TSMO method is given in Section 3.2.

Histogram

Valley Estimation (VE) method
To determine cluster number

Y
Modified version of TSMQ
To perform multilevel thresholding

FiGURE 1. Flowchart of the proposed method for multilevel thresholding

3.1. Determination of the number of clusters using the histogram-based valley
estimation method. In this paper, a histogram-based valley estimation method (see
Figure 2) is proposed for determining the number of clusters for an image to be properly
segmented. The approach consists of the following three procedures: (1) normalized
histogram binning, (2) probability estimation and (3) valley estimation.

To complete the bin grouping statistically (see Figure 2(b)), 32 counters containing 8
pixels, denoted as Cj to (31, are used. Hence, when the gray levels are in the ranges of 0
to 7,8 to 15, ..., and 248 to 255, they will be grouped into counters Cy, C1, ..., and Cjy,
respectively. Therefore, the normalized histogram binning process is used to estimate the
probability of occurrence in bin group C; as:

B
Hi:mxloo, ie€{0,1,---,31}, where hi:Zfi (12)
i€Cy
where f; represents the number of pixels at gray level i, and H; is called a normalized
histogram of bin group (), which has a range of values from 0 to 100. Normalized
histogram binning reduces noise since bin grouping operates like a smoothing spatial
filter. Bin grouping also greatly increases the stability of the valley estimation process.
The purpose of probability estimation is to determine the probability of one bin be-
coming a valley location in a histogram distribution. In this stage, the bin groups are
scanned from C to Cjg (see Figure 2(c)). The scanning counter, Cj, is assigned a proba-
bility Pr(C;) of 0%, 25%, 75%, 100% or Pr(C;_;) according to the normalized histogram
distribution (H; 1, H;, H;y1) of the counters (C; 1, C;, Ci;1) (see Figure 3). Figure 3
shows the 9 possible combinations of the bin group C; between C;_; and C;,;, where in
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3(a)-3(e), the bin group C; is not the candidate of a valley location since the probability
of occurrence of C; is greater than that of either C;_; or Cj;;, and where in 3(f)-3(h)
whether the bin group C} is a valley location cannot be determined. The probabilities for
the bin group to become a valley location are set to 25% for Figure 3(f) and to 75% for
Figure 3(h), as determined from experience. In Figure 3(i), the bin group C; is a valley
location because the probability of occurrence of C; is less than those of both C;_; and
Ciy1-

Al2)

Histogram statistics

|

Normalized histogram 10 K (b)
binning with 32 groups

v (%)
100 “[Q]

Probability estimation =
scanning from C; to C;, -
40
20
; Jf,.
(%)
y 100 A(d)
Valley estimation G
scanning from Csq to C; s2

40

20

o = =

FIGURE 2. Flowchart of the proposed valley estimation method: (a) His-
togram statistics; (b) normalized histogram binning with 32 sets; (c) prob-
ability estimation and (d) valley estimation

Therefore, the probabilities for the 9 combinations of bin group C; can be given as
follows:

( Pr(C;) = 0% if (H;>H; 1) or (H;> H;)
Pr(C;) = 25% if (H;<H; 1) and (H;=H;y)
Pr(C;) = 75% if (H;=H; 1) and (H;<H;y) .
Pr(C;) = 100% if (H;<H,_,) and (H; < Hy,) 'S {1,2,---,30}
PI'(CZ) = PI"(Ci_l) if (Hz = Hi—l) and ( P = z—I—l)
\ PI"(C()) = PI'(Cgl) = 0%

(13)
where Pr(C;) = 0% means that the probability of bin group C; to be a valley loca-
tion is zero, which corresponds to the cases in Figures 3(a)-3(e). The probabilities of
Pr(C;)= 25%, 75% and 100% represents the cases in Figures 3(f), 3(h) and 3(i), respec-
tively. However, if the probabilities of occurrence of the three counters (C; 1, C;, Ciyq)
are the same, which corresponds to the case of Figure 3(g), the probability of C; is then
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@P(C)=0% ®PC)=0% @©@PC)=0% DP(C)=0% (&) Pr(C)=0%

® Pr(C) =25% (2) Pr(C) = Pr(Ci) () Pr(C) =T75%

(@) Pr(C) = 100%

FiGure 3. Nine combinations of the normalized histogram distribution
(H; 1, H;, H; ;1) and their corresponding probability of the counter C; when
scanning from C to C3g

set to that of C;_;. Additionally, the probability of 0% is used for bin groups Cy and Cj;
because these two locations are not the valleys.

For the valley estimation stage, the bin groups are scanned in the opposite direction,
from Cj to C1, as shown in Figure 2(d). The probabilities (Pr(C;_1), Pr(C;) and Pr(C;41))
determined in the previous stage (i.e., probability estimation) are then added together
only if the probability of the scanning counter C; is not equal to zero. If the sum of
probabilities is higher than or equal to 100%, the probability of C; is reset to 100%;
otherwise, it is 0%. This is given by:

Pr(C;) = 100% if (Pr(Ci—1) + Pr(C;) + Pr(Ciyq)) > 100% i € {30,29,---,1}
PI‘(C()) = Pr(Cgl) =0
(14)
where the bin group C; with Pr(C;) = 100% is the valley location. After all the valley
locations are summed, the number of clusters is determined.

3.2. Proposed method for multilevel thresholding. As mentioned in Section 2.2,
the TSMO method first generates a coarse partition of the input gray levels into Mz sets,
and estimates a set of thresholds for these sets in the first stage. Then, the TSMO method
searches for each threshold within the set that contains each threshold in the second stage
(see Equation (11)). This leads to a difference of thresholds found by the TSMO method
and Otsu’s method. In this paper, a modified version of the TSMO method that can
provide the same set of thresholds as those obtained using the original Otsu method but
without the high computational efforts is presented.

As illustrated in Figure 4, the multilevel thresholds selected by the TSMO method are
always close to the one decided by bilevel Otsu’s thresholding. This indicates that the
distribution of between-class variance o% for bilevel thresholding forms approximately a
single mode (see Figure 4). In this case, the bilevel threshold of 133 is obtained by the
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conventional Otsu method. However, the 5-level thresholds determined by the TSMO
method are 79, 119, 160 and 200, which fall into the sets Cy (72~79), C14 (112~119), Cy
(160~167) and Cy5 (200~207), respectively, where the values in parentheses represent the
range of gray levels in group C;. Clearly, the values of 79 in group Cy, 119 in group C'4,
160 in group Cy and 200 in group Css, are the closest values to 133 for each bin group,
respectively. This occurs because the TSMO method searches for each threshold using
bilevel Otsu’s method confined to each set that is chosen by the first stage.

79] 119] | [160  |200
gL R

| |
I..
‘ I ‘ H H [T

20 140 160 180 200 220

Il
0 60

8
FIGURE 4. Thresholds of 79, 119, 160 and 200 chosen by the TSMO method
(K = 5) (green dashed lines) for each bin group and bilevel threshold of
133 determined by Otsu’s method (red dashed line). The solid red line
represents the distribution of between-class variance for bilevel Otsu’s
thresholding.

Butterfly

]
0o 20 0 100 1

The TSMO method uses bin grouping to speed up the searching process of sets (or bin
groups) that contain each threshold in the first stage. For bilevel thresholding, TSMO
(using 32 bins) finds the set (say 2,) that has the maximum between-class variance (see
Figure 5(a)). However, the optimal threshold determined by Otsu’s method (using 256
gray levels) may fall into the set €,,, which is immediately to the right of Q, (see Figure
5(b)). This result can be extended to the cases of multilevel thresholding. Therefore,
in the second stage of the TSMO method, a bigger bin group extending the set {€2,} to
{Q, + Qy+1} should be considered to find the thresholds. A method that provides the
same set, of thresholds as those obtained using the original Otsu method, where only the
second stage of the TSMO method is modified, is as follows:

{to: 15, th s} = arg max {05 (to, t1, - ,tx_2)}
toe{ﬂqé—i_ﬂqgﬂ}""’tK72E{QqZK72)+QqEK72)“}
(15)
The computation complexity of the proposed method is estimated as (Mz — K +
DX+ (2 x N2)%~! (note that Mz = 32 and Nz = 8 in this work). The first term
(M, — K + 1)KL involves the possible combinations of the search in the first stage for

finding the sets {QQS Qs Qq;(fz} into which the possible optimal thresholds fall, and

the second term (2 x Nz)%~! is required for the second stage to determine the optimal
thresholds {tg,t’{, - ,t}}_2}. The computation complexities for the TSMO method and
Otsu’s method are (Mz — K +1)*"' + (N2 —2+ 1) x (K — 1) and (L — K + 1)*~!
(L = 256), respectively. Hence, the difference of computation complexity between the
proposed method and the TSMO method is in the second term. For example, the number



AUTOMATIC MULTILEVEL THRESHOLDING WITH CLUSTER DETERMINATION 5639

{a) TSMO's method

{b) Otsu's method

. it ool v . . ; .
0 20 40 60 80 100 120 140 160 180 200 220 240

FIGURE 5. (a) Bilevel thresholding obtained using the TSMO method and
(b) bilevel thresholding obtained using Otsu’s method

of required iterations for the TSMO method and the proposed method in the second stage
are 42 and 16,777,216, respectively, if the cluster number K is set to 7.

4. Results and Discussion. To evaluate the efficiency of the proposed method, the
results are compared with those of Otsu’s method and the TSMO method. The efficiency
evaluations for the three methods were carried out on a computer with a Pentium 3.4
GHz Core Duo processor and 4 GB DDR II memory. In this section, the accuracy of the
determined number of clusters using the valley estimation method is first discussed. The
efficiency of the proposed method is then compared with those of the TSMO method and
Otsu’s method.

To evaluate the accuracy of the valley estimation method for determining the optimal
number of clusters, two images that have two and four gray levels, shown in Figures 6(a)
and 6(c), respectively, were used. To verify the robustness of the proposed method, some
Gaussian noise with a standard deviation o0 = 10 was added to the two images, as shown
in Figures 6(b) and 6(d), respectively. In Figure 6, the numbers of clusters, denoted as
K, for the four images were correctly determined by the proposed method. The proposed
method was also used to segment images Airplane, Butterfly, Blocks and Soldier, which
were acquired from [22], as shown in Figures 6(e)-6(h), respectively. The method found
optimal numbers of clusters of 2, 4, 5 and 6, respectively. The thresholds estimated for
K = 2 to 7 clusters are shown in Figure 7, in which the proposed method and Otsu’s
method yield the same results.

In the proposed method, the determination of the number of clusters highly depends on
the shape of the histogram of gray level images. For example, if 32 bin groups are used,
the histogram of Figure 8(a) is shown in Figure 8(b). Clearly, no valleys in Figure 8(b)
can be found, indicating that the proposed valley estimation method cannot be applied
any more. If this is the case, 32 bin groups should be increased to 64 ones. In Figure 8(c),
several valleys in the histogram can be found when 64 bin groups are used, indicating
that the proposed valley estimation method can be properly utilized. In our experiments,
the test images of which have the same histogram as that of Figure 8(b) are quite few.
However, if the case really happens, the use of 64 bin groups can provide us a reasonable
estimation of the number of clusters.
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(a) two gray level, K=2 airplane, K=2

o o oW w8 E M8 e

(b} two gray level with noise, K=2 (f) butterfly, k=4
I
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|
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TEERRRRRy

b,

TTTTEREEENL

TR

(d) four gray level with noise, K=4 (h) solider, k=6

FIGURE 6. Results of the proposed valley estimation method for determin-
ing the number of clusters for images to be properly segmented. The red
dashed lines represent the thresholds determined. (a) Two gray levels; (b)
two gray levels with noise; (c) four gray levels; (d) four gray levels with
noise; (e) Airplane; (f) Butterfly; (g) Blocks and (h) Soldier.

As described earlier, the thresholds determined by the TSMO method are close to that
estimated by bilevel Otsu’s thresholding. For instance, the bilevel threshold for image
Blocks is 140 for Otsu’s method. The thresholds of 63, 111 and 168 chosen by the TSMO
method for 4 clusters are the closest ones to 140 for each group, where the thresholds of 63,
111 and 168 fall into groups C7 (56~63), C13 (104~111) and Cy; (168~175), respectively.
Finally, the segmented results, optimal number of clusters, and thresholds determined by
the proposed method are shown in Figure 9. As indicated in the figure, the segmentation
results of image Airplane show the ability of the proposed method to completely isolate
the object of interest (the airplane) from its background.

To evaluate the overall performance of the proposed method (i.e., the modified TSMO
method) versus Otsu’s method and the TSMO method, the four test images (i.e., Airplane,
Butterfly, Blocks and Soldier) in Figure 7 are used. The runtimes of the number of clusters
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The proposed

Airplane Cluster number Otsu’s method TSRO method
method
2 g2 73 a2
3 66, 117 71,112 66, 117
4 £1, 108, 128 63,104, 120 61,108, 128
54, 36, 55, 885, 54, 96,
> 116,131 112,128 116,131
52,91, 105, 55,858,104, 52,931,109,
2 122,134 120,128 122,134
- 51, 50, 108, 55,88, 104, 51,580,108,
119,128,137 112,120,128 115,128, 137
Butterfly Cluster numkber Otsu’s method TS O method e PILETEG
method
2 133 132 133
3 83, 1532 739,144 83,153
4 81,143,137 79,136,152 81,143,137
76, 120, 79,113, 76,120,
? 166, 205 160, 200 166, 205
6 59, 88, 127, 53, 87, 127, 59,88,127,
165, 206 160, 200 165, 206
58, 86, 121, 53, 87,119, 58, 86,121,
? 159,190,217 152, 184,208 159,120, 217
Blocks Cluster number Otsu's method TS O rmethod LRt
method
2 140 140 140
3 73,155 71,152 #3153
4 62,108, 173 63,111, 168 62,109,172
5 37, 96, 55,95, 37, 96,
136,183 135, 184 136, 1858
44, 74,104, 39, 71,103, 44, 74,104,
B 142,192 140,184 142,132
5 42,70, 94, 38, 71, 85, 42,70, 54,
118,154,158 115,144,152 118,154, 138
Saldier Cluster number Otsu's method TS O method 1he yiopned
method
2 123 119 123
2 74, 149 71,144 74,148
4 67,123,174 71,123, 168 67,123,174
5 63, 111, 63, 111, 63, 111,
157, 205 152, 200 157, 205
c 61,104,138, 63,103, 128, 61,104, 138,
171,208 160, 200 171, 208
32, 67,105, 31, 63,103, 32,67, 105,
L 138,171, 209 128, 160, 200 138,171,209

FIGURE 7. Set of thresholds determined by the three methods for 2 to 7

clusters for the images Airplane, Butterfly, Blocks and Soldier
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of 4, 5, 6 and 7 for the four test images are estimated, respectively. The mean value of a

: K
runtime 7

TK

mean

K K K
NT X (TAirplane + TButterfly + TBlocks +

for different clusters can be estimated as follows:

.Sl'f)ldier)

4:XNT

(16)

where Ny denotes the total number of calculations, and T is the individual runtime of
K clusters for image X, i.e., Airplane, Butterfly, Blocks and Soldier. In our experiments,
Nr is taken as 1000 for the TSMO method and the proposed method. However, since the
Otsu method is quite time consuming, Np is taken as 1000, 20, 2 and 1 for K =4, 5, 6
and 7, respectively. The runtimes for various numbers of clusters are listed in Table 1.
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(a) (b) ()

Ficure 8. Illustration of the effect of different bin groups on the proposed
valley estimation method for determining the number of clusters. (a) The
image of The Pentagon; (b) histogram with 32 bin groups (Mz = 32); (c)
histogram with 64 bin groups (Mz = 64).

The ratios of runtimes of the Otsu method to the proposed method are about 1580, 1760,
6290 and 19000 when the number of clusters is 4, 5, 6 and 7, respectively.

TABLE 1. Runtimes of the three methods for K =4 to 7 (unit: seconds)

Methods K=4| K=5|K=6| K=17
Otsu’s method 1.29700 | 110.102 | 6098.64 | 299707
TSMO method 0.00023 | 0.03899 | 0.19500 | 0.89100
The proposed method | 0.00082 | 0.06250 | 0.96900 | 15.7500

5. Conclusions. Otsu’s method is widely used in the fields of video surveillance, com-
puter vision, and pattern recognition as a low-level image processing technique for isolat-
ing objects of interest from their backgrounds. It is one of the best thresholding methods
for image segmentation with respect to uniformity and shape measures. However, a se-
rious drawback of Otsu’s method is high computational complexity when extended to a
multilevel thresholding problem.

In this paper, a modified TSMO method based on a two-stage Otsu optimization ap-
proach for multilevel thresholding was proposed. The major contribution of this paper is
to propose a method that can yield the same set of thresholds as those obtained using
Otsu’s method but without the high computational efforts when the number of clusters
is large. The proposed method achieves real-time performance for multilevel thresholding
when the number of clusters is fewer than 6.

In addition, an effective method of histogram-based valley estimation was presented to
determine the appropriate number of clusters for an image. To evaluate the performance
of the proposed method, various real-world images were segmented. Experimental results
show that the speed of computation for the proposed method is about 19000 times faster
than that for the conventional Otsu method when the number of clusters is 7.
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