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Abstract. Multivariate temporal data are hybrid data. Numeric and categorical data
type could be consisted of. Most past researches cannot be operated directly on the mul-
tivariate temporal data with both types. Additionally, no useful and readable rules are
provided in their methods for advanced classification analysis. We proposed Progressive
Temporal Class Rule Miner (PTCR-Miner) algorithm to achieve the classification on
multivariate temporal data with a rule-based designed. Through our algorithm, all re-
ally useful classification rules are discovered. The rules follow the purification concept
we defined, which makes rules comprehensible and intuitive for general users on data
classification. We did several experiments to evaluate our method with a multivariate
temporal data simulator. Experimental results show PTCR-Miner performs effectively
and efficiently on the different simulated multivariate temporal datasets. That means the
discovered rules are really helpful and comprehensible for data classification. Further-
more, the rule-based and flexible architecture enables PTCR-Miner more applicable to
different areas of multivariate temporal data classification.
Keywords: Rule-based, Progressive, Multivariate temporal data, Classification, Data
mining

1. Introduction. Useful information discovery is a main purpose of data mining. With
the complexity of recorded data, different kinds of data mining methods are proposed
continuously. Multivariate temporal dataset is a popular recorded format recently, which
describes the states of an event using different variables with the time. The completeness
of these data type is preferred in many study areas, such as weather data and medical
data. For classification of multivariate temporal data, there are relatively rare suitable
methods and it is due to the complexity of the data type. Many temporal datasets are
hybrid data, which contain categorical and numeric values. Most data mining methods
focus only on numerical data or only on categorical data and their modules or methods
cannot apply to this kind of dataset appropriately. Additionally, the datasets recorded in
multivariate temporal mode are generally significant for advanced analyses or diagnoses.
Therefore, the supply of the information about classification is important for the studies on
multivariate temporal data. Many temporal related researches focused on the time series
data which consisted of only numeric values and performed high accurate classification
results. Several different studies applied similar concepts to multivariate time series data
which consisted of multiple numeric time series data. The datasets are regarded as a
matrix and transformed into lower dimension format for easier similar measurements
[23,24]. However, many temporal variables are recorded in categorical type and even in
different sample rate for a multivariate temporal dataset. Thus, a dataset with many

5925



5926 C.-H. LEE AND V. S. TSENG

temporal variables is very different from the multivariate time series datasets and cannot
be processed directly with their approaches.
The learning behavior of human being is a key point of machine learning. For classifi-

cation, people always expect simple and easily comprehensible rules. The more matching
descriptions make the target close the result of the rule intuitively, such as rules for sweet
fruit selection and rules for disease diagnosis. Therefore, if we want to generate a human
readable rule, it should not only keep the description simple and clear, but also be in-
tuitive. In this regard, decision tree [17] is a very successful classification algorithm. It
represents all classification rules in tree architecture and data are closer to a classifica-
tion result, when it is matched to a deeper path of the tree. For temporal data mining,
progressive confident mining [28] inherits this concept. Each discovered rule describes an
event chain for one class. When an unknown-class event sequence S follows the event
chain of a progressive confident rule gradually, the class of S has high probability to be
the class of the rule.
The purpose of this paper is to overcome above problem to build a multivariate temporal

data classifier. Besides classification, the classifier could provide classification rules and
comprehensible causes and related information of each classification for users. Hence, we
proposed the purification concept to enhance discovered multivariate temporal rules for
classification accuracy and users comprehension. Based on the purification concept, we
designed an algorithm named Progressive Temporal Class Rule Miner (PTCR-Miner), for
multivariate temporal data classification. The algorithm extracts the classifiable value
sequences or feature sequences following the purification concept build a classifier. Each
sequence keeps its target class individually. Therefore, with matching more elements of a
sequence, class of a multivariate temporal instance can be recognized more obviously as
the target class of the sequence. Even matching more sequences with the same target class
makes classification result of a multivariate temporal instance clear and comprehensible.
Besides intuitive rules for classification, the accuracy of our method is also proven

great through experimental evaluation. K-nearest neighbor algorithm for classification
is a popular and high accurate mechanism. We compared our method with this clas-
sic classification mechanism. In experiments, a multivariate temporal data generator is
designed to simulate possible datasets with different conditions for several performance
evaluations. The classifier of PTCR-Miner performs better on accuracy and execution
time than a KNN-based classifier in experimental results. Therefore, we infer that the
purification concept does really work in our method to enhance class feature discovery on
multivariate temporal datasets.
The rest of this paper is organized as follows: in Section 2, several related research

works are discussed; subsequently, the problem definition and the proposed method are
described in detail in Section 3; Section 4 shows all experimental results to evaluate our
method; finally, all of this paper is concluded in Section 5.

2. Related Work. The main goal of data mining is to discover useful information. For
information discovery, efficient machine learning methods and algorithms are designed
in data mining study area [1,2,4,12,15,16,20,26,27]. Time series is a special data type
and is one kind of temporal data. Few studies contributed practical mining method
on temporal data [6,9,13]. Nevertheless, many traditional classification methods are not
suitable to be applied directly. Most of time series data classification methods are based on
statistical models, neural network [8,14], feature-based [5] or similarity-based techniques
[25]. However, these similarity based methods and neural networks can not perform well
on categorical temporal data classification.
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In the past studies [18,19], KNN is proven a good and accurate classification policy when
a suitable similarity measurement is chosen on time series data. Although it performs
classification without any module training, but large time cost of each classification is its
main drawback. In the research [19], the execution time had been improved. The speed
of KNN is accelerated and the high accuracy is also kept simultaneously. In multivariate
time series classification, most past researches built classifiers with mathematical models
as preprocessing, such as SVD (Singular Value Decomposition) [23] and LPP (Locality
Preserving Projections) [24]. In these researches, KNN is generally applied as a final
classification policy. Although these methods perform well on multivariate time series data
classification, their feature selection causes users more difficult to seek the possible reasons
of each classification. Moreover, many dataset recorded over time are not numeric, and
the importance of each temporal variable cannot be judged directly by the basic statistical
information. KNN-based methods cannot be performed directly on multivariate temporal
data classification.

Among the data mining studies, sequential pattern is a suitable pattern for temporal
data. There exists many issues related to sequential mining [12,15,16,26]. These studies
make sequential pattern more efficient and effective for different data mining techniques.
These mining sequential pattern techniques are less applied on multivariate temporal se-
quence analyzing. In 1998, Lesh et al. [7] proposed a policy to classify temporal database
in sequential patterns. The asthma related study [22] integrated similar concept and
CBA algorithm for multivariate temporal data classification well. Helen et al. [16] pro-
posed multidimensional sequential pattern mining method. Its architecture enables to be
applied on multivariate temporal data. However, the defined patterns must involve all
variables and this setting removes many possibly significant features of the data. The
study [27] adopted sequential pattern as classification features on time series dataset, but
it is still not suitable for multivariate temporal data. Besides, several methods based
on sequential pattern mining offer users useful patterns as hidden important information,
such as progressive confident patterns [28], change patterns [3] and surprising patterns [6].
In which increasing class confidence is considered in progressive confident pattern mining
and the concept is similar the purity of decision tree. The accuracy of classification is
proven to be enhanced with this concept. However, there are few methods using this
property to build a multivariate temporal data classifier.

For the rule-based classifier, statistical features of useful rules are generally discussed
and evaluated. Frequency threshold is a usual setting for importance of discovered items
in data mining yet it is not significant enough for data classification. Many past studies
[10,11,21] pointed out that confidence is the most important property of a classification
rule, which consists of descriptions and an implied class label.

3. Proposed Method: PTCR-Miner. In this paper, we proposed a classification
method on multivariate temporal dataset. Confidence is adopted as an important indica-
tor of our classification mining. We considered the concepts about the class purification
of decision tree mining and the increasing confidence of progressive confident pattern to
extract features from datasets. Following these concepts, redundant features are reduced
and each discovered rule is meaningful for data classification.

3.1. Problem definition. Consider a multivariate temporal dataset D. Each instance d
of D consists of a multivariate temporal instance and its class label c. The whole dataset D
contains m classes, and their class labels are denoted as {c1, c2, c3, . . . , cm}. In the dataset
D, each instance records e temporal variables in a period of time, and these temporal
variables are denoted as {F1, F2, F3, . . . , Fe}. Thus, each instance consists of e temporal
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sequences which represent recorded value series of e temporal variables respectively. We
defined a temporal sequence of Fe as T = {Fev1, Fev2, . . . , Fevt, . . . , Fevn}. The value Fevt
represents the value of Fe at time point t. Each recorded value of temporal variables
may be numerical or categorical. In general case, we assume each temporal variable
keeps the same sample rate, that is, each time interval between t to (t + 1) is the same
length. As temporal variable assumption, the dataset D can also be denoted as D =
{Dk|1 ≤ k ≤ e}. Dk is a temporal dataset, which consists of the temporal data sequences
of the kth temporal variables of all instances in D. In a practical case, these temporal
variables may be different measurements for one object need to be described, such as
many bio-signals for a patient, daily climate measurements for the atmosphere of a city.

3.2. PTCR-Miner. In this paper, we proposed Progressive Temporal Class Rule Miner
(PTCR-Miner), to achieve multivariate temporal data classification. PTCR-Miner is a
rule-based classifier. All its rules are generated from the features of each temporal variable
and the relations between the features, which associate with the classes of data.

3.2.1. The concept of PTCR-Miner. In a multivariate temporal dataset, each data is
composed by sequences of different temporal variables. In order to reduce the dimension
and complexity of data, symbolization of data value is required in data preprocessing.
In this paper, we assume each temporal variable keeps its own class related features.
These features and the relations between the feature set of different variables would be
key points for classification. The amplitude of each temporal variable is determined by
the nature of the variable and it should be not affected by other variables theoretically.
Meanwhile, the amplitude of a temporal variable is usually not directly related to data
classification. So, we separate variable data firstly before symbolization. As regards the
discretization methods, users can choose suitable one for different temporal variable or
the ones suggested by experts, such as PAA and SAX [9].
According to many classification studies, confidence of rules in a rule-based classifier

is a very important attribute for accurate classification. In our method design, we not
only add it in scoring policy of classification, but also put it into class rule mining as
an important threshold. That is expected to makes the accuracy results of our method
better and each rule in our classifier more comprehensible.
For multiple class data classification, most features in classifier building usually support

more than one class. The importance of a feature for classification can not be evaluated
only with its confidence values easily. Thus, we take confidence concept and classification
related factors into consideration and integrate them into a “purification” concept. The
purpose of purification is to extract really useful features and to make the rules generated
by the features simpler and stronger for classification. The major definition of purification
is to seek less class support and higher class confidence of the generated rules. For example,
a generated classification rule R supports a class set {c1, c3, c6}, that means that the data
predicted by R are possible to be classified as one of the class set. Given another rule R’
which is extended from R has a class set c1, c3, that is the descriptions of R’ totally cover
the descriptions of R. So, the confidence values of c1 and c3 of R’ must be higher than
those of R. We say that this extension obey our purification concept. R’ is simpler and
stronger than R for classification.
For convenience of algorithm description, few symbols and words should be defined. In

our method, we expect to discover classifiable rules from the dataset D for classification.
We define each discovered rule as a Progressive Temporal Class Rule (PTCR), which con-
sists of one temporal sequence and a supported class set. The temporal sequence is defined
as Progressive Temporal Sequence (PTS) or Multivariate Progressive Temporal Sequence
(M-PTS). A PTS is formed by a sequence, {vr1, vr2, . . . , vra, vrb, . . . , vm|a ≤ b, 1 ≤ ra ≤
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rb ≤ rn and a, b ∈Z}, of single temporal variable. One M-PTS is composed by time or-
dered PTSs of different temporal variables and we defined it as {PTSs1, PTSs2, . . . , PTSsa,
PTSsb, . . . , PTSsn| a ≤ b, 1 ≤ ra ≤ rb ≤ rn and a, b ∈Z}. Besides, the supported class
set is generally the subset of the class set of dataset D, which are highly supported by
PTS or M-PTS. Therefore, a PTCR can be denoted as PTS: {a sub-classset of dataset
D} or M-PTS: {a sub-classset of dataset D}.

3.2.2. The algorithm of PTCR-Miner. We integrate the key points mentioned above to
propose an algorithm, namely Progressive Temporal Class Rule Miner (PTCR-Miner)
for multivariate temporal data classification. Through the algorithm class rules of a
multivariate temporal dataset can be discovered and a classification mechanism can be
built by the class rules indirectly. Rule generation part is designed as an apriori-like
architecture and following the purification concept.
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Figure 1. Progressive temporal class rule miner algorithm (PTCR-Miner)

Figure 1 is the algorithm of PTCR-Miner. The algorithm needs three input parameters,
which are a multivariate temporal dataset, minimum support and minimum confidence.
The output is the discovered Progressive Temporal Class Rule set of the input dataset. As
the descriptions of the algorithm, the whole input dataset are separated into several sub-
dataset according to temporal variables of the dataset firstly. Each sub-dataset represents
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one temporal variable data in the whole multivariate temporal dataset. In general, each
data instance in a multivariate temporal dataset consists of many sequences, which are
recorded for different temporal variables. For example, a weather dataset is a multivari-
ate temporal dataset, and temperature, humidity and pressure are its temporal variables.
Subsequently, discretization is performed to transform data values into meaningful sym-
bols if the data type of any sub-dataset is numeric. The data values of other categorical
sub-datasets also can be processed into readable symbols if it is necessary.
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Figure 2. Algorithm of progressive temporal sequence mining (PTS-Mining)
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3.2.3. The algorithm of PTS-Mining. Progressive temporal sequence mining is major part
of our method. It is performed twice for mining PTS set and M-PTS set in PTCR-
Miner. After data values are preprocessed, the progressive temporal sequence mining
(PTS-Mining) is performed on each sub-dataset to extract progressive temporal sequences
(PTS) for each temporal variable. All discovered PTSs are not only frequent sequences but
also keeping with the purification concept. Figure 2 shows the algorithm of progressive
temporal sequence mining in detail. We utilize the combination of branches of prefix
tree architecture to handle sequence generation. Following the principle of apriori-like
mechanism, the support values and confidence values for each new leaves are checked
when new level of the tree is generated. Each path of the tree represents one PTS if its
leaf node passes the set minimum support and follows our purification concept. With the
deeper extension of the tree architecture, the longer candidate PTSs can be formed.

At the first of PTS-Mining, the items which pass minimum support and minimum
confidence thresholds are discovered (line 1). Subsequently, minimum confidence setting
is no longer used. We designed some tricks for keeping frequency and purification of
discovered PTSs. When k-length candidate pattern generation is executed, the depth of
all paths of the tree must be k − 1. According to our tree architecture mining, k-length
candidate PTSs can be absolutely generated by extension of all leaf nodes in the k − 1
depth tree. For each leaf node, the extension is to add the elements of itself and the
elements of all its sibling nodes which have the same parent node with it as its child
nodes. However, the intersection of the class sets of the node and the extended one must
be not null in order to obey the concept of purification. Meanwhile, each confidence value
of the class sets of the extended nodes must be higher than that of their parent nodes
after the whole dataset counting is completed.

3.2.4. M-PTS Mining. After all PTSs of each variable sub-dataset are prepared, the ad-
vanced relations between the PTSs of different temporal variables could be generated. All
discovered PTSs represent important features of their own temporal variables. However,
there must be useful class information hidden in relations between different temporal vari-
ables. Therefore, we translate the whole original multivariate temporal dataset into a new
PTS sequence dataset. In the new dataset, each data consists of the PTSs it contains
and all PTSs are ordered by their happen time. This translation makes the progressive
temporal sequence mining can be performed directly on the dataset. New progressive
temporal sequences consist of feature sequences instead of value sequences and they rep-
resent classifiable relations between different temporal variables. We name these relations
as multivariate progressive temporal sequences (M-PTS).

After twice PTS-Mining processes, all class related features of the multivariate temporal
dataset are extracted, which consists of PTSs and M-PTSs. Each feature consists of a
sequence of values or PTSs and a class set they support. Following the purification
definition, so the confidence values of the class set of these features are very significant.
The higher confidence of a class Cy in a feature F represents that the data contains F
has higher probability to belong to the class Cy. Therefore, we set directly the confidence
values of class set of features as scores for temporal data classification. We name these
features with the set score as “progressive temporal class rules” (PTCR).

3.3. Classification with PTCR-Miner. In following segments, we explain how to clas-
sify a class unknown multivariate temporal data in detail with PTCR classifier. Figure
3 shows the detail algorithm of classification with the discovered PTCRs. For a class
unknown multivariate temporal data X, we must check which PTCR it contains. The
PTCR consists of PTSs and M-PTSs, so all PTSs and M-PTSs must be checked. The
contained PTSs can be discovered by tracing a reconstructed tree structure of all PTSs,
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instead of brute-force matching, and M-PTSs can also be check in the same approach.
Subsequently, the sum of the score for each class can be accumulated by the score of all
matched PTSs and M-PTSs. The classification result is the class with the highest score.
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Figure 3. The algorithm of classification with PTCR classifier

4. Experimental Evaluation.

4.1. Experimental design.

4.1.1. Synthetic dataset. To evaluate performance of our proposed method, we designed
a multivariate temporal dataset simulator to generate datasets with different attributes.
As we define in problem definition, each multivariate temporal data instance does keep
significant information about its class. Our simulator is designed under this hypothesis.
Name, definition and default value of all parameters in the simulator are list in Table 1.
The parameter class number represents the number of classes in a simulated dataset. Pa-
rameters variable number, transaction count, transaction len are three basic parameters
of a general simulated multivariate temporal dataset. The class information is decided
by seven parameters, which are pattern len, pattern type num, relations var num, rela-
tions type num, relations num in one instance, relations len, useful var num. The last
parameter mutation rate is relative to the number of noise in the simulated dataset.

4.1.2. Compared method. K-nearest neighbor (kNN) algorithm is popular for classification
studies. It is a very accurate classification policy and it performs classification without
any training. 1-NN is the simplest case of kNN and the instance can be classified as the
class of the most similar historical data without any doubt for data classification. Xi
et al. [25] applied this concept on time series classification using dynamic time warping
(DTW) as similarity measurement and got very good accuracy results. However, based
on its assumption, kNN must keep a huge historical dataset and users must suffer longer
execution time to wait responses. Many studies emphasized how to speed up DTW and
how to modify the similarity measurement on the datasets with different data formats.
Since kNN-base method is proven the best policy for classification, we define an algorithm
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Table 1. Parameters for the data simulator

parameter default value
class number 3
variable number 3
transaction count 10000
transaction len 20
pattern len 10
pattern type num 20
relations var num 3
relations type num 20
relations num in one instance 2
relation len 10
useful var num 3
mutation rate 0.1

Sum-1NN as a kNN-based method and attempt to make it suitable for multivariate tem-
poral series datasets in following experiments. The detail algorithm of Sum-1NN is shown
in Figure 4.
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Figure 4. The algorithm of Sum-1NN

4.1.3. Evaluation metrics. We want to prove that the rule-based PTCR-Miner can pro-
vide the same or higher accuracy than kNN based methods. In all experiments, we
randomly select 70% data as training part and 30% as testing part. The training part is
prepared for training of our method and for historical dataset of Sum-1NN. Subsequently,
performance of both methods is evaluated with the data of testing part. After all kNN-
based method is difficult to process the data with categorical values in temporal datasets;
we only generate numeric data in following experiments with our data simulator. In all
experiments, we compare our methods PTCR-Miner and Sum-1NN on the accuracy and
execution time of multivariate temporal data classification. Each experimental value is
the average value from 10 times repeated experiments. For each repeated experiment, a
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multivariate temporal dataset is re-simulated according to parameter settings. In accu-
racy evaluations, we regard the percentage of data which are classified correctly in testing
part as a criterion. Thus, we define the criterion “accuracy” as following formula:

Accuracy(%) =
the number of the instances which are classified correctly in testing part

the number of instances in testing part

In execution time evaluations, we compare the processing time of building a classifier
with the training part of data and evaluating the classifier with the rest testing part
of data. kNN based classifier does not need training so we set the training data as its
reference data to evaluate the testing data. That is, the whole execution time of Sum-1NN
is spent on evaluation.

4.2. Experimental results.

4.2.1. Effects of varying support and confidence on accuracy. In following two experi-
ments, we evaluate accuracy and execution time of our method with varying setting of
minimum support and minimum confidence. We set minimum support = 0.05 and min-
imum confidence = 0.2 as default values. Figure 5(a) shows the accuracy results with
varying support setting. The method Sum-1NN does not need parameter setting so we
compare with its average accuracy. The accuracy of our method grows up with the de-
creasing of minimum support. That means that lower threshold makes our classifier more
accurate. Under smaller value of minimum support cause more possible sequences are
considered and more useful rule are discovered. Therefore, we can know the relationship
between accuracy of classification results and minimum support value is reverse. Figure
5(b) shows the execution time of both methods. Thus, the execution time of Sum-1NN
is almost a constant value for comparison with our method in Figure 5(b). Execution
time of our method is increasing slightly with decreasing of minimum support but all its
values are smaller than ones of Sum-1NN. Figure 6 shows accuracy results with varying

0

50

100

150

200

250

300

350

0.04 0.05 0.06 0.07 0.08 0.09 0.1

minimum support

ex
ec

u
ti

o
n

 t
im

e(
s)

PTCR-Miner
Sum-1NN

60

65

70

75

80

85

90

95

100

0.04 0.05 0.06 0.07 0.08 0.09 0.1

minimum support

ac
cu

ra
cy

(%
)

PTCR-Miner
Sum-1NN

(a)                         (b)

Figure 5. (a) Minimum support vs. accuracy results and (b) minimum
support vs. execution time

minimum confidence setting of our method. As last experiment, the accuracy results and
execution time of Sum-1NN are reference data to evaluate the results of our method. In
Figure 6(a), our method reaches highest accuracy result at minimum confidence = 0.2.
Basically, the lower confidence setting makes higher accuracy of our classification result
but accuracy goes down when minimum confidence is set too small. For execution time
of our method, its value grows up with reduction of minimum confidence. However, all
execution time of our method are less than that of Sum-1NN.



PTCR-MINER: AN EFFECTIVE RULE-BASED CLASSIFIER 5935

(a)                         (b)

60

65

70

75

80

85

90

95

0.1 0.2 0.3 0.4 0.5

minimum confidence

ac
cu

ra
cy

(%
)

PTCR-Miner
Sum-1NN

0

50

100

150

200

250

300

350

0.1 0.2 0.3 0.4 0.5

minimum confidence

ex
ec

u
ti

o
n

 t
im

e(
s)

PTCR-Miner

Sum-1NN

Figure 6. (a) Minimum confidence vs. accuracy results and (b) minimum
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4.2.2. The number of relation types vs. accuracy. Figure 7 shows accuracy results with
varying relation type num setting of data simulator. The parameter relation type num
represents the quantity of relation types and the relation is the classification information
between different temporal variables. In our definition, a relation is an M-PTS. In Fig-
ure 7(a), the accuracy trends of both methods are almost the same. The accuracy of
PTCR-Miner is always higher than the accuracy of Sum-1NN. The accuracy results of
both methods go down with increasing relation type num. For a simulated dataset, that
more relation types increase the number of M-PTSs. However, the unchanged number
of PTSs lets all generated M-PTSs too easy to keep similar PTSs. Thus, the dataset
becomes not conducive to be classified. In Figure 7(b), the frequency of each relation
type becomes lower with the increasing of relation types. It causes that PTCR-Miner
discovers fewer rules under the same mining threshold setting and costs less time on rule
mining. Nevertheless, the kNN-based method is not affected for any information hidden
in data on execution time.
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Figure 7. (a) Parameter relation type num vs. accuracy and (b) param-
eter relation type num vs. execution time

4.2.3. The number of pattern types vs. accuracy. Figure 8 shows accuracy results with
varying pattern type num setting of data simulator. The parameter pattern type num
controls the number of pattern types of each temporal variable. A pattern is a PTS in
our definition. The accuracy of both methods goes down with increasing pattern type num
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in a simulated dataset. The more types of class information obviously make lower accuracy
results of both classifiers. With the increasing pattern type num, the quantity of pattern
types of each temporal variable increases. That shrinks the support of each pattern and
it indirectly reduces the characteristic of classes of the simulated dataset. That is the
major reason to result in decreasing accuracy trends of both methods. In execution time
shown in Figure 8(b), the Sum-1NN almost has no change with varying pattern type num.
However, our method performs using less time with larger pattern type num setting. There
are fewer rules can be discovered in our method, because the frequency of each pattern
goes down. Simultaneously, the execution time of PTCR-Miner is also diminished for
this situation.
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Figure 8. (a) Parameter pattern type num vs. accuracy and (b) parame-
ter pattern type num vs. execution time

4.2.4. The number of useful temporal variables vs. accuracy. Figure 9(a) shows the accu-
racy results of both methods with varying useful var num. The parameter useful var num
represents the number of the temporal variables related to class label in the simulated
dataset. That is the number of the temporal variables which keep useful information for
classification. In general cases, the class related information would be partially related to
temporal variables. We changed useful var num from 3 to 6 and set variable number as 6.
It would be easier to observe the effect of useful var num in this experiment. According
the results of Figure 9(a), PTCR-Miner outperformed Sum-1NN in all partial related
conditions and the highest accuracy results of both methods are at the fully related con-
dition. The accuracy trends of both methods go down with the value of useful var num.
The trend of Sum-1NN almost decreases linearly. PTCR-Miner is not so sensitive to these
changes, and its trend has a lower result at useful var num=2. The reason is that the
general kNN-based methods assume all temporal variables are related to class. However,
PTCR-Miner is designed to discover class related information so it would be affected very
slightly by the redundant temporal variable. Figure 9(b) shows the execution time results
of both methods. The execution time trends of both methods grow down with decreas-
ing the redundant temporal variables. That means that redundant information causes
more execution time. In whole results, PTCR-Miner still outperforms than Sum-1NN on
execution time.

5. Conclusions. In this paper, we proposed progressive temporal class rule miner algo-
rithm, which is a rule-based multivariate temporal data classification method and named
PTCR-Miner. Meanwhile, we defined a purification concept to enhance class related
information mining. According to the concept, PTCR-Miner discovers all class related
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Figure 9. (a) Parameter useful var num vs. accuracy and (b) parameter
usefule var num vs. execution time

features and the relations between the features as a classifiable rule set. A classification
mechanism is established with the discovered rule set. Through experimental evaluation,
PTCR-Miner always performed well and stably under different parameter setting of the
data simulator. Rule-based design makes our classifier not only classify multivariate tem-
poral data accurately, but also provide users the traceable reasons of data classification.

Actually, there are few deficiencies in our classification mechanism, which mainly con-
tain parameter setting of our method and the quality of discovered rules. In the future,
we will enhance it on several directions, which include free parameter setting and rule
enhancement. Parameter setting of PTCR-Miner is intuitive for users. However, all pa-
rameter setting is always a challenge for users; we will remove parameter setting to make
the setting of our method friendlier. Additionally, more class relative factors will be con-
sidered under the purification concept and rule intuition constraints. We will take the
opposite rules into consideration, which keeps inverse relations between sequences and
class. Those rules can apply to many condition preventions and also can enhance the
classification ability of our method.
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