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Abstract. This paper presents an efficient Multi-objective Crazy Chaotic Particle Swarm
Optimization (MCCPSO) evolutionary algorithm to solve the Multi-objective Optimal
Operation Management (MOOM) considering Fuel Cell Power Plants (FCPPs) in dis-
tribution network. The objective functions of the MOOM problem are to decrease the total
electrical energy losses, the total electrical energy cost and the total pollutant emission
produced by sources. For the multi-objective optimization problem, the use of weights to
form a composite objective function reduces a multiple problem to a single problem. How-
ever, it also obviously loses some information in the conversion and this strategy is not
expected to provide a robust solution or even help trace the efficient frontier of solutions.
Our main thrust is to facilitate a string of solutions of the problem without converting to
the original problem to a simpler case. This paper presents a new MCCPSO algorithm
for the MOOM problem. The proposed algorithm maintains a finite-sized repository of
non-dominated solutions, which gets iteratively updated in the presence of new solutions.
Since the objective functions are not the same, a fuzzy clustering technique is used to
control the size of the repository within the limits. The proposed algorithm is tested on
a distribution test feeder and the results demonstrate the capabilities of the proposed ap-
proach to generate true and well-distributed Pareto optimal non-dominated solutions of
the MOOM problem.
Keywords: Chaotic crazy particle swarm optimization (CCPSO), Optimal operation
management (OOM), Multi-objective optimization, Fuel cell power plant (FCPP)

1. Introduction. In recent years, with power system restructuring, public environmen-
tal policy, and expanding power demand, distributed generators have an important role
in order to satisfy on-site customer energy needs. Major improvements in the economic,
operational, and environmental performance of small, modular units have been achieved
through decades of intensive research. The fuel cell, one of important distributed gener-
ations, has the advantages such as operations on multiple fuels with low emissions, high
efficiency and high reliability [1,2].

Because of their low noise and high power quality, fuel cell systems are ideal for use in
hospitals or IT centers, or for mobile applications. Its structural modularity allows for
simple construction and operation with possible applications for distributed and portable
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power generation. Its fast response to the changing load condition while maintaining
high efficiency makes it perfectly suited to load following applications. Its high efficiency
represents less chemical, thermal and carbon dioxide emissions for the same amount of
energy conversion and power generation [1,2].
Studies carried out by researching centers show that FCPPs contribution in energy

production will become more than 25% in near future. Therefore, it is necessary to study
the impact of FCPPs on the power systems, especially on the distribution networks.
Several investigations on optimal operation of the distribution network at the topic of

reactive power and voltage control have been reported in the literature. For example, a
particle swarm optimization for reactive power and voltage control considering voltage
security assessment was proposed in [3]. A simulated annealing approach to fuzzy-based
reactive power and voltage control in a distribution system was proposed in [4]. An
approach for modeling local controllers and coordinating the local and centralized con-
trollers at the distribution system management was presented in [5]. The reactive power
and voltage control problem was solved by means of a quantum computing inspired ge-
netic algorithm in [6]. Optimal use of voltage support distributed generation to support
voltage in distribution feeders was presented in [7]. The optimal control of distribution
voltage with coordination of distribution installations was proposed in [8]. The methods
for the Volt/Var control in radial distribution networks considering Distributed Gener-
ations were presented in [9]. Optimal use of voltage support distributed generation to
support voltage in distribution feeders was presented in [10]. Voltage and reactive power
control in distribution systems and how the presence of synchronous machine-based dis-
tributed generation would affect the control were presented in [11]. An approach to daily
Volt/Var control in distribution systems with regard to distributed generators was pro-
posed in [12]. A practical algorithm for optimal operation management of distribution
network including fuel cell power plants was presented in [13].
At the above-mentioned studies, the MOOM problem is considered as a single-objective

one. In this paper, we solve the problem with multi-objective approach.
Based on the above discussion, the optimal operation management (OOM) is a multi-

objective optimization problem whose objectives are not the same and commensurable.
Therefore, it is difficult to solve the problem by conventional approaches that convert the
multiple objectives into a single objective by using a vector of the user-predetermined
weights [14,15]. These approaches have several drawbacks. For example, the values of the
weights have a major impact on the final solution, and some optimal solutions may not
be found if the objective functions are not convex, and they may not work successfully if
objective functions have a discontinuous-variable space [14,15].
Due to the simple concept, easy implementation and quick convergence, nowadays,

PSO has attracted much attention and wide applications in various kinds of nonlinear
optimization problems. However, the performance of traditional PSO greatly depends
on its parameters, and it often suffers the problem of being trapped in local optima. In
order to overcome local optima problems, we proposed chaotic local search and adjustable
parameters of PSO that greatly improve the performance of algorithm. Therefore, in this
paper, a novel Multi-objective Chaotic Crazy Particle Swarm Optimization (MCCPSO)
algorithm is proposed and implemented to solve the multi-objective optimal operation
management problem. In the proposed approach, the objective functions are the total
electrical energy losses, the total cost of electrical energy generated by FCPPs and sub-
station bus and the total emission of FCPPs and substation bus. The proposed algorithm
maintains a finite-sized repository of non-dominated solutions, which gets iteratively up-
dated in the presence of new solutions. An external memory has been used for the storage
of non-dominated solutions found along the search process. Since the objective functions
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are not similar, a fuzzy clustering algorithm is utilized to manage the size of the external
memory.

2. Optimal Operation Management of Distribution Networks with Regard to
FCPPs.

2.1. Objective functions. The purpose of MOOM problem is to minimize the following
objective functions.

i) Total electrical energy losses

min f1
(
X
)
=

Nd∑
t=1

P t
Loss =

Nd∑
t=1

Nb∑
i=1

Ri ×
∣∣I ti ∣∣2

X =
[
PG, Tap,QC

]
1×n

PG =
[
Pg1 , Pg2 , ..., PgNg

]
Pgi =

[
P 1
gi
, P 2

gi
, ..., PNd

gi

]
; i = 1, 2, 3, ..., Ng

Tap =
[
Tap1, Tap2, ..., TapNt

]
Tapi =

[
Tap1i , Tap

2
i , ..., Tap

Nd
i

]
; i = 1, 2, 3, ..., Nt

QC =
[
Qc1 , Qc2 , ..., QcNc

]
Qci = [Q1

ci
, Q2

ci
, ..., QNd

ci
]; i = 1, 2, 3, ..., Nc

n = Nd × (Ng +Nt +Nc)

(1)

where, X is state variables vector including active power of FCPPs, Ng is number of
FCPPs, Nt is number of transformers, Nc is number of capacitors, Nd is number of load
variation steps, Nb is number of branches, Ri is resistance of ith branch, Ii is current of
ith branch, PG is active power of all FCPPs during the day, Pgi is active power of the ith

FCPP during the day and Tap is tap vector representing tap position of all transformers
in the next day, Tapi is tap vector including tap position of the ith transformer in the
next day, Tapti is tap position of the ith transformer for the tth load level step and n is
number of state variables. QC is capacitors reactive power vector including reactive power
of all capacitors in the next day, Qci is capacitors reactive power vector including reactive
power of the ith capacitor in the next day, Qt

ci
is reactive power of the ith capacitor for

the tth load level step.
ii) Total cost of electrical energy

min f2
(
X
)
=

Nd∑
t=1

Costt =
Nd∑
t=1

(Ct
FC + Ct

substation)

Ct
FC = 0.04$/KWh ×

Ng∑
j=1

P t
gj

ηj

PLRt
j =

P t
gj

Pmaxj

For PLRj < 0.05 ⇒ ηj = 0.2716
For PLRj ≥ 0.05 ⇒ ηj = 0.9033PLR5

j − 2.9996PLR4
j + 3.6503PLR3

j

−2.0704PLR2
j + 0.3747

Ct
substation = pricet × P t

sub

(2)

where, ηj is electrical efficiency of jth FC, PLRt
j is part load ratio of jth FC, Psub is

power generated at substation bus of distribution feeders, CFC is cost of electrical energy
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generated by FCPPs, Csubstation is cost of power generated at substation bus and pricet is
energy price for the tth load level step.
iii) Total emission produced by sources

min f3
(
X
)
=

Nd∑
t=1

Emissiont =
Nd∑
t=1

(Et
FC + Et

Grid)

Et
FC = NOxt

FC + SO2tFC = (0.03 + 0.006)lb/MWh ×
Ng∑
j=1

P t
gj

Et
Grid = NOxt

Grid + SO2tGrid = (5.06 + 7.9)lb/MWh × P t
sub

(3)

where, Et
FC is emission of FCPP, Et

Grid is emission of large scale sources (substation bus
that connects to grid), NOxt

FC is nitrogen oxide pollutants of FCPP, SO2tFC is sulphur
oxide pollutants of FCPP, NOxt

Grid is nitrogen oxide pollutants of grid and SO2tGrid is
sulphur oxide pollutants of grid for the tth load level step.
iv) Voltage deviation index
Voltage deviation also is considered as the objective function. It determines the dif-

ference between the voltages in nodes with respect to the nominal voltage. The voltage
deviation is calculated as follows.

min f4
(
X
)
=

Nd∑
t=1

Nbus∑
i=1

∣∣∣V t
i −V ∗

i

V ∗
i

∣∣∣
Nd

(4)

where, V ∗
i is the desired voltage of network at the bus i, V t

i is the voltage magnitude of
the ith bus during time t and Nbus is the number of buses.

2.2. Constraints.

• Active power constraints of FCPPs:

P t
min,FC ≤ P t

gi ≤ P t
max,FC (5)

Pmin,FC is minimum active power of the ith FCPP and Pmax,FC is maximum active power
of the ith FCPP.

• Distribution line limits: ∣∣PLine
ij

∣∣t < PLine
ij,max (6)∣∣PLine

ij

∣∣t and PLine
ij,max are the absolute power flowing over distribution lines and maximum

transmission power between the nodes i and j, respectively.

• Tap of transformers:

Tapmin
i < Tapti < Tapmax

i (7)

Tapmax
i and Tapti are the minimum and maximum tap positions of the ith transformer,

respectively.

• Unbalanced three-phase power flow equations.
• Substation power factor

Pfmin ≤ Pf t ≤ Pfmax (8)

Pfmin, Pfmax and Pf t are the minimum, maximum and current power factor at the
substation bus during time t.

• Bus voltage magnitude
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Vmin ≤ V t
i ≤ Vmax (9)

V t
i , Vmax and Vmin are the voltage magnitudes of the ith bus during time t and the maximum

and minimum values of voltage magnitudes, respectively.

3. Multi-objective Optimization Framework. A general multi-objective optimiza-
tion problem consists of a number of objectives to be optimized simultaneously and is
associated with a number of equality and inequality constraints. It can be formulated as
follows [14,15].

Minimize F = [f1(X), f2(X), ..., fn(X)]T

Subject to:

{
gi(X) < 0 i = 1, 2, ..., Nueq

hi(X) = 0 i = 1, 2, ..., Neq

(10)

where, fi(X) is the ith objective function, gi(X) and hi(X) are the equality and inequality
constraints, respectively. X is the vector of the optimization variables. n is the number
of objective functions.

For a multi-objective optimization problem, any two solutions X1 and X2 can have one
of two possibilities: one dominates the other or none dominates the other. In a minimiza-
tion problem, without loss of generality, a solution X1 dominates X2 if the following two
conditions are satisfied:

∀j ∈ {1, 2, ..., n} , fj(X1) ≤ fj(X2)
∃k ∈ {1, 2, ..., n} , fk(X1) < fk(X2)

(11)

If any of the above condition is violated, the solution X1 does not dominate the solution
X2. If X1 dominates the solution X2, X1 is called the non-dominated solution. The
solutions that are non-dominated within the entire search space are denoted as Pareto-
optimal and constitute the Pareto-optimal set or Pareto-optimal front.

Since the objective functions are imprecise, a fuzzy-based clustering procedure has been
utilized to control the size of repository. In the procedure, a fuzzy membership function is
used to recognize the best compromise solution. In other words, decision making is done
when the repository gets filled. For any individual in the repository, the membership
function of each objective function is defined as follows:

µfi(X) =


1, fi(X) ≤ fmin

i

0, fi(X) ≥ fmax
i

fmax
i − fi(X)

fmax
i − fmin

i

, fmin
i ≤ fi(X) ≤ fmax

i

(12)

where, fmin
i and fmax

i are the lower and upper limits of each objective function, respec-
tively.

In the proposed algorithm, the values of fmin
i and fmax

i are evaluated using the results
achieved by optimizing each objective separately (single objective optimization).

For each individual in the repository, the normalized membership value is evaluated as
follows:

Nµ(j) =

n∑
k=1

ωk × µfk(Xj)

m∑
j=1

n∑
k=1

ωk × µfk(Xj)
(13)

where, m is the number of non-dominated solutions. ωk is the weight for the kth objective
function. This membership function shows a type of decision making criteria that is
adaptive and changes with the available decision options. In the fuzzy-based clustering,
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the normalized membership values are sorted and the best individuals are selected and
stored in the repository.

4. The Proposed Approach. The standard PSO algorithm is not suited to resolve
multi-objective optimization problems. Thus, to render the PSO algorithm capable of
dealing with multi-objective problems, some modifications become necessary. Some of
the methods are shown in literature [16-18]. In this paper, the standard PSO algorithm is
modified and improved in order to facilitate a multi-objective optimization approach, i.e.,
multi-objective chaotic crazy particle swarm optimization (MCCPSO), in which Pareto-
dominance [19] is employed to handle the problem. Through incorporating certain global
attraction mechanisms, the repository of previously found non-dominated solutions would
make the convergence toward globally non-dominated solutions possible.

4.1. Crazy PSO. The modified velocity and position of each particle for fitness evalua-
tion in the next iteration are calculated using the following equations:

V
(t+1)
i = ω × V

(t)
i + c1 × rand1(·)×

(
Pbesti −X

(t)
i

)
+c2 × rand2(·)×

(
Gbest −X

(t)
i

)
(14)

X
(t+1)
i = X

(t)
i + V

(t+1)
i (15)

where, t is the current iteration number, ω is the inertia weight, c1 and c2 are weighting
factors of the stochastic acceleration terms, which pull each particle towards the Pbesti

and Gbest positions (Usually, these parameters are selected in the range [0-4]), rand1(·)
and rand2(·) are two random functions in the range of [0, 1], Pbesti is the best previous
experience of ith particle that is recorded and Gbest is the best particle among the entire
population. A large inertia weight factor is used during initial exploration and its value
is gradually reduced as the search proceeds. The concept of time-varying inertial weight
is given by:

ω = (ωmax − ωmin)×
itermax − iter

itermax

+ ωmin

ωmax = 0.9; ωmin = 0.4
(16)

where itermax is the maximum number of iterations. To improve the convergence of PSO
algorithm, a constriction factor is introduced.

V
(t+1)
i = C ×

[
ω × V

(t)
i + c1 × rand1(·)×

(
Pbesti −X

(t)
i

)
+ c2 × rand2(·)×

(
Gbest −X

(t)
i

)] (17)

where,

C =
2∣∣∣2− φ−
√
φ2 − 4φ

∣∣∣ , 4.1 ≤ φ ≤ 4.2 (18)

As φ increases, the factor C decreases and convergence becomes slower because popu-
lation diversity is reduced. To handle the problem of premature convergence in PSO, the
concept of craziness was introduced. The idea was to randomize the velocities of some of
the particles, referred to as “crazy particles”, selected by applying a certain probability.
The probability of craziness ρcr is defined as a function of inertia weight,

ρcr = ωmin − exp
(
− ω(t)

ωmax

)
(19)
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Then velocities of particles are randomized as per the following logic:

V
(t)
i =

{
rand(0, Vmax) if ρcr ≥ rand(0, 1)

V
(t)
i otherwise

(20)

If the PSO algorithm tends to saturate in the beginning a high value of ρcr is used to
create crazy particles, and a relatively lower value is used at later stages of search.

4.2. Chaotic local search. A chaotic search can traverse every state in a certain space,
and every state is visited only once, which is helpful to avoid being trapped in local
optima. Therefore, to improve the search behavior, we propose a chaotic PSO method
that combines PSO with chaotic local search (CLS) [20].

There are two CLS procedures can be shown as follows:
The CLS which is based on the logistic method can be defined by the following equation:

Cxi =
[
cx1

i , cx
2
i , ..., cx

Ng

i

]
1×Ng

, i = 0, 1, 2, ..., Nchoas

cxj
i+1 = 4× cxj

i ×
(
1− cxj

i

)
, j = 1, 2, ..., Ng

cxj
i ∈ [0, 1], cxj

0 /∈ {0.25, 0.5, 0.75}
cxj

0 = rand(·)

(21)

where, cxj
i indicates the j

th chaotic variable, Nchoas is the number of individuals for CLS,
Ng is number of FCPPs and rand(·) is a random number between [0, 1].

At first, a particle randomly selected from the repository (Xg) is considered as an initial
population for CLS (X0

cls). X
0
cls is scaled into [0, 1] according the following equation:

X0
cls =

[
x1
cls,0, x

2
cls,0, ..., x

Ng

cls,0

]
1×Ng

Cx0 = [cx1
0, cx

2
0, ..., cx

Ng

0 ]

cxj
0 =

xj
cls,0 − P j

min,FC

P j
max,FC − P j

min,FC

, j = 1, 2, ..., Ng

(22)

Then, the chaos population for CLS is generated as follows:

X i
cls =

[
x1
cls,i, x

2
cls,i, ..., x

Ng

cls,i

]
1×Ng

, i = 1, 2, ..., Nchoas

xj
cls,i = cxj

i−1 ×
(
P j
max,FC − P j

min,FC

)
+ P j

min,FC , j = 1, 2, ..., Ng

(23)

The objective functions are evaluated for all individuals of CLS. Non-dominated solu-
tions should be finding and storing into a separate memory subsequently.

5. Application of the MCCPSO Algorithm on the MOOM Problem. To apply
the MCCPSO algorithm in the MOOM problem, the following steps should be taken and
repeated:

Step 1: Define the input data.
Step 2: Transfer the constraint MOOM problem to an unconstraint one.

The multi-objective MOOM problem should be transformed into an unconstrained one
by constructing an augmented objective function incorporating penalty factors for any
value violating the constraints as follows.
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F (X) =

 F1(X)
F2(X)
F3(X)


3×1

=



f1(X) + k1

(
Neq∑
j=1

(
hj(X)

)2)
+ k2

(
Nueq∑
j=1

(
Max[0,−gj(X)]

)2)

f2(X) + k1

(
Neq∑
j=1

(
hj(X)

)2)
+ k2

(
Nueq∑
j=1

(
Max[0,−gj(X)]

)2)

f3(X) + k1

(
Neq∑
j=1

(hj(X))2

)
+ k2

(
Nueq∑
j=1

(
Max[0,−gj(X)]

)2)


3×1

(24)

where, F (X) is the objective function values of the multi-objective OOM problem. F1(X),
F2(X) and F3(X) are the values of the augmented f1(X), f2(X) and f3(X), respectively.
Neq and Nueq are the number of equality and inequality constraints, respectively. hj(X)
and gj(X) are the equality and inequality constraints, respectively. k1 and k2 are the
penalty factors. Since the constraints should be met, the values of the parameters should
be high. In this paper, the values have been considered 10,000,000.

Step 3: Generate the initial population and initial velocity.

The initial population and initial velocity for each particle are randomly generated as
follows:

population =


X1

X2

...
XNswarm


X0 = [x1

0, x
2
0, ..., x

Ng

0 ]

xj
0 = rand(·)× (xmax

i − xmin
i ) + xmin

i , j = 1, 2, ..., Ng

X i = [xj
i ]1×n, i = 1, 2, 3, ..., Nswarm

xj
i = 4× xj

i−1

(
1− xj

i−1

)
n = Nd × (Ng +Nt +Nc)

(25)

velocity =


V1

V2

...
VN swarm


Vi = [vi]1×n , i = 1, 2, 3, ..., Nswarm

vi = rand(·)× (vmax
i − vmin

i ) + vmin
i

n = Nd × (Ng +Nt +Nc)

(26)

where, vi and xi are the velocity and position of the ith state variable, respectively and Ng

is number of FCPPs, Nd is number of load variation steps. rand(·) is a random function
generator between 0 and 1. n is the number of state variables.

Step 4: i = 1.

Step 5: Select the ith individual.

Step 6: If the individual is a non-dominated solution, it is stored into the repository and
the fuzzy clustering is used to control the size of repository.
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Step 7: Select local best solution.

Step 8: If all individuals are selected, go to Step 9, otherwise i = i+1 and return to Step
5.

Step 9: Select global best as follows:

To maintain the proposed algorithm diversity along the population fronts and allows to
develop a reasonable representation of the Pareto-optimal front, a form of sharing should
be carried out. This form of sharing put forward when there is no preference between
several candidates.

The sharing procedure is performed as follows for the ith candidate:

Step 9-0: i = 1

Step 9-1: Compute a normalized Euclidean distance measure with another individual j
in non-dominated solutions in the repository, as follows:

Edij =

√√√√ 2∑
k=1

(
M i

k −M j
k

Mu
k −M l

k

)2

(27)

where, k is the counter of problem objectives. The parameters Mu
k and M l

k are the upper
and lower values of the kth objective function Mk.

Step 9-2: This distance Edij is compared with a pre-specified niche radius rniche and the
following sharing function value is computed as:

sf(Edij) =

 1−
(
Edij
rniche

)2

if Edij ≤ rniche

0 otherwise

(28)

Step 9-3: Set j = j + 1, go to Step 9-1; else calculate niche count for the candidate ith as
follows:

Nci =

NR∑
j=1

sf(Edij) (29)

Step 9-4: Set i = i + 1, If i ≤ NR, go to Step 9-1; else arrange all the solutions in
descending order according to their niche count values.

Step 9-5: Choose the first solution resulting from Step 9-4 to global best solution.

Step 10: Update the velocity and position of the ith state variable.

Step 11: Check the termination criteria:

The values of the objective functions for each individual are evaluated by using the
results of the distribution load flow. If the individual is non-dominated, store it into the
repository and use the fuzzy clustering to control its size, else the termination criteria is
checked. If the termination criteria is satisfied, finish the algorithm, otherwise the initial
population is replaced with the new population of swarms and then goes back to Step 4.

6. Simulation Results. The proposed MCCPSO algorithm is tested on a distribution
test system. The tested system is a 11-kV radial distribution system as shown in Figure
1. The related information of this network is shown in [21].

It is assumed that 58 FCPPs are located in this network. There are one FCPP at buses
24, 35, 56, 61, 66, 69, 89, 117 and two FCPPs at buses 10, 29, 37, 112, 114 and three
FCPPs at buses 77, 116 and four FCPPs at buses 19, 33, 44, 52, 73, 100 and five FCPPs
at buses 83, 106 that each of these sources can generate 250 kW active power. Also 58
capacitors are placed in the network that one capacitor exists at buses 36, 60, 78, 90, 118
and two capacitors at buses 34, 38, 41, 45, 54, 67, 72, 85, 105 and three capacitors at



6404 B. B. FIROUZI, H. Z. MEYMAND, T. NIKNAM AND H. D. MOJARRAD

Figure 1. Single line diagram of 119-bus test system

buses 11, 51, 81, 107, 116 and four capacitors at buses 21, 30, 75, 102, 111 that reactive
power of each capacitor is 200 kVar. Also, it is assumed that there is a transformer in
substation bus. It has 21 tap positions ([−10,−9, . . ., 0, 1, 2, . . ., 10]) and its MADOT in
a day is 30. It can change voltage from –10% to +10%.
In the daily MOOM problem, it is assumed that daily load variations and daily energy

price variations are changed as shown in Figure 2.

Figure 2. Daily energy price and load variations
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At first, the total cost of electrical energy, the total emission, the total electrical energy
losses and voltage deviation objectives are separately optimized to find the extreme points
of the trade-off front. The best results obtained by optimizing the objectives separately
are shown in Tables 1-4 respectively. These tables present a comparison among the results
of GA (Genetic Algorithm) [13], ACO (Ant Colony Optimization) [12], PSO, Crazy PSO,
Chaotic PSO, CCPSO (Chaotic Crazy PSO) algorithms for 20 random tails for three
objective functions.

Table 1. Comparison of average and standard deviation for 20 trails (cost
objective function)

Method Average ($)
Standard Worst Best CPU

deviation ($) solution ($) solution ($) Time (Sec)
CCPSO 26084.15551 0.00000 26084.15551 26084.15551 123.43

Crazy PSO 30322.82309 1415.54446 31294.23819 28084.15327 132.89
Chaotic PSO 34129.95156 2150.81425 37285.70021 30227.74607 143.04

PSO 41469.84746 3571.17238 44730.92712 32440.91378 153.51
ACO [12] 37322.86271 3214.05514 40257.83441 29196.82240 138.16
GA [13] 43543.33983 3749.73100 46967.47348 34062.95947 161.19

Table 2. Comparison of average and standard deviation for 20 trails (emis-
sion objective function)

Method Average (lb)
Standard Worst Best CPU

deviation (lb) solution (lb) solution (lb) Time (Sec)

CCPSO
2.105777644

0
2.105777644 2.105777644

134.22
3814E+09 3814E+09 3814E+09

Crazy PSO
2.1357805E 2.3597200E 2.20584906E 2.105863421

142.23
+09 +07 +09 2345E+09

Chaotic PSO
2.146006593 6.055609996 2.275822430 2.105978064

160.14
9782E+09 8924E+07 0235E+09 1932E+09

PSO
3.974351259 3.697791372 4.394345062 3.056683262

194.83
2634E+09 4514E+08 1029E+09 7996E+09

ACO [12]
3.576916133 3.328012235 3.954910555 2.751014936

175.35
3371E+09 2063E+08 8926E+09 5196E+09

GA [13]
4.173068822 3.882680941 4.614062315 3.209517425

204.57
2266E+09 0740E+08 2081E+09 9396E+09

As shown in the tables, the algorithm is capable of finding the global solutions for each
objective function. Some of the works which introduced in literature are a little difference
with our research and in other words, we have in new idea that does not exist in previous
work to compare with them. Nonetheless, we do a comparison between our work and
some more similar literature [12,13] in Tables 1-4. It can be seen that best value of the
objective functions which found with the proposed method (CCPSO) is much better than
the solutions of the methods used in literature.

The proposed approach has been implemented to optimize the objectives simultane-
ously. The three-dimensional Pareto front for the objectives with CCPSO algorithm is
shown in Figures 3-6. In this problem with four objective functions, four three-dimensional
Pareto front would be obtained with the objectives Emission, Cost, PLoss and Voltage devi-
ation. It is worth mentioning that the Pareto optimal set has 200 non-dominated solutions
generated by a single run.
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Table 3. Comparison of average and standard deviation for 20 trails (PLoss

objective function)

Method
Average Standard Worst Best CPU
(kWh) deviation solution solution Time

(kWh) (kWh) (kWh) (Sec)
CCPSO 2268.81230 0.00000 2268.81230 2268.81230 120.76

Crazy PSO 2863.89416 763.18618 4983.19449 2437.54331 129.74
Chaotic PSO 3067.50490 972.21210 5540.63453 2577.34524 137.18

PSO 10936.85164 2149.20080 13601.22311 5288.95650 281.51
ACO [12] 9843.16648 1934.28072 12241.10080 4760.06085 253.36
GA [13] 11483.69422 2256.66084 14281.28427 5553.40433 295.59

Table 4. Comparison of average and standard deviation for 20 trails (volt-
age deviation objective function)

Method
Average Standard Worst Best CPU
(p.u) deviation (p.u) solution (p.u) solution (p.u) Time (Sec)

CCPSO 0.76901 0.00000 0.76901 0.76901 125.46
Crazy PSO 1.24291 0.29610 1.88796 0.98554 160.79
Chaotic PSO 1.51366 0.31298 2.09729 1.14127 186.19

PSO 2.11038 0.32758 2.50445 1.33544 217.87
ACO [12] 1.89934 0.29482 2.25401 1.20190 196.08
GA [13] 2.21590 0.34396 2.62967 1.40221 228.76

Figure 3. Three-dimentional Pareto front of CCPSO algorithm (Emission,
Cost, PLoss)

The non-dominated solutions that represent the best solutions of objective functions
(given in Tables 1-4) are shown in Figures 3-6 with cursor. These solutions are quite
close to those of individual optimization in terms of objective function values. The best
solutions for objectives Emission, Cost, PLoss and Voltage deviation are closely 2.106E+09
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Figure 4. Three-dimentional Pareto front of CCPSO algorithm (PLoss,
Voltage deviation, Cost)

Figure 5. Three-dimentional Pareto front of CCPSO algorithm (Emission,
Voltage deviation, Cost)

(lb), 2.608E+04 ($), 2269 (kWh) and 0.769 (p.u) respectively, which shown in Figures 3-6
with cursor.

It can be seen that the proposed technique preserves the diversity of the non-dominated
solutions over the Pareto-optimal front and solve the problem effectively.
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Figure 6. Three-dimentional Pareto front of CCPSO algorithm (Emission,
Voltage deviation, PLoss)

The close agreement of the results shows clearly the capability of the proposed technique
to handle multi-objective optimization problems as the best solution of each objective
along with a manageable set of non-dominated solutions can be obtained in one single
run.

7. Conclusion. Multi-objective daily Optimal Operation Management (MOOM) prob-
lem is proposed in this study, which is then handled by a novel multi-objective CCPSO
optimization technique for searching out a set of Pareto-optimal solutions. One of the
most important advantages of the multi-objective formulation is that it obtains several
non-dominated solutions allowing the system operator to use his personal preference in
selecting any one of those solutions for implementation. In order to control the size of the
repository, a fuzzy-based clustering has been used. The results show that the proposed ap-
proach is efficient for solving multi-objective optimization where multiple Pareto-optimal
solutions can be found in one simulation run. In addition, the non-dominated solutions
in the obtained Pareto-optimal set are well distributed and have acceptable diversity
characteristics.
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