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Abstract. The function approximation problem is to find the appropriate relationship
between a dependent and independent variable(s). Function approximation algorithms
generally require sufficient samples to approximate a function. Insufficient samples may
cause any function approximation algorithm to result in unsatisfactory predictions. To
solve this problem, a function approximation algorithm called Weighted Kernel Regression
(WKR), which is based on Nadaraya-Watson kernel regression (NWKR), is proposed.
In the proposed framework, the original NWKR algorithm is enhanced by expressing the
observed samples in a square kernel matrix. The WKR is trained to estimate the weight
for the testing phase. The weight is estimated iteratively and governed by the error
function to find a good approximation model. Four experiments are conducted to show
the capability of the WKR. The results show that the proposed WKR model is effective in
cases where the target function is non-linear and the given training sample is small. The
performance of the WKR is also compared with other existing function approximation
algorithms, such as artificial neural networks (ANN).
Keywords: Weighted kernel regression, Small samples, Non-linear function, Artificial
neural network

1. Introduction. The need for function approximation arises in many fields of applied
mathematics. There are numerous function-approximation techniques available in the
machine learning community. The modelling of function approximations using ANN has
received significant attention from a number of researchers [1-3]. For example, the hybrid
model of ANN with PSO has been proposed by [4,5] for function approximation. Genetic
programming [6,7], evolutionary algorithms [8] and fuzzy systems [9,10] are other well-
known techniques that can be found in the literature. However, most existing function
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approximation algorithms perform well given sufficiently large samples. The performance
of those function approximation algorithms degrades as the size of samples decreases.
Kernel regression, which is based on non-parametric statistics, explicitly utilises the

available samples for function estimation. To find a non-linear relationship between in-
put(s) X and output Y , kernel regression has been employed in many applications, such
as pattern recognition, handwriting recognition, finance [11] and robotics [12].
Typical methods for solving the small sample function approximation problems rely

on artificial sample approaches. Assuming that the artificial samples are relevant, with
enough samples, the hypothesis will be a sufficiently close approximation to the actual
value. Generating artificial samples is one way to incorporate prior information in ma-
chine learning [13]. Different methods of generating artificial samples have been proposed
by Tsai and Li [14] and Huang and Moraga [15]. Tsai and Li proposed an algorithm to im-
prove learning accuracy by combining the segmentation technique with an artificial sample
generation method. In each segment, a simple linear regression line is calculated, and the
boundary points (extremal points) are defined. The artificial samples are generated in
each segment based on the estimated regression coefficients. The original samples and
the artificial samples are used to train ANN with back propagation algorithm (ANNBP).
In a different approach, Huang and Moraga proposed a Diffusion Neural Network (DNN)
where the artificial samples are generated based on the principle of information diffu-
sion. The original samples, artificial samples, and the corresponding probability values
are used to train the ANNBP. However, these existing techniques were demonstrated only
for two-dimensional problems.
The application of learning from small samples has gained increasing attention in many

fields, such as semiconductor manufacturing for the assembly process, sparse prediction
modelling [16], engine control simulation [17] and in the paper industry [18]. This study
shows that the original NWKR is unable to approximate a function with small sample sets
accurately. Hence, the modified kernel regression for function approximation is proposed
to enhance and improve the original NWKR. Whereas the existing techniques to solve
small samples rely on the ANNBP, a non-deterministic prediction model [19] that tends
to produce inconsistent predictions, the proposed model produces consistent predictions
due to the convexity of the weight estimation during training. The proposed model
also does not require an artificial sample generation method to be incorporated in the
model development. Finally, the ease of tuning the hyper-parameter model resembles the
capability of the proposed technique when dealing with small samples.
The remainder of this paper is organised as follows: a brief review of existing function

approximation algorithms is given in Section 2; the proposed approach is presented in
Section 3; Section 4 includes a discussion of the experimental results; finally, the conclusion
of this paper appears in Section 5.

2. Function Approximation Algorithms.

2.1. Artificial neural network. The most popular ANN algorithm to approximate a
function is the ANNBP [20,21]. The traditional ANNBP consists of an input layer, an
output layer, and a set of one or more hidden layers. The numbers of nodes in the input
and output layers correspond to the numbers of independent and dependent variable(s),
respectively. However, there are no rules of thumb to determine the number of hidden
layers and the numbers of nodes in the hidden layers. Traditional ANNBP suffers from
instability and inaccuracy when the number of training samples is small. However, these
problems can be overcome by the generalised regression neural network (GRNN) [22].
Thus, GRNN is often used for function approximation [23,24].
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In general, the architecture of GRNN consists of 4 layers, as shown in Figure 1. The
numbers of nodes in the input and output layers correspond to the numbers of independent
and dependent variable(s), respectively. In the pattern layer, the number of nodes is
defined based on the number of training samples. The summation layer consists of two
types of neurons, S-summation neurons and a single D-summation neuron. As in ANN,
the accuracy of the prediction is degraded if the number of samples is insufficient [15].

 

Input Layer Pattern Layer Summation 

Layer 
Output Layer 

Figure 1. The architecture of generalized regression neural network (GRNN)

2.2. Diffusion neural network. DNN [15] is a modified ANNBP, which is based on the
principle of information diffusion [25]. The principle is to create more samples artificially
to fill some of the information gaps between the original training samples. DNN was
derived to solve the small-sample problem by applying fuzzy set theory. Two artificial
samples were artificially created for each of the original training samples. The original
samples and the artificial samples were assigned associated possibility values for the input
and the output values. The possibility value of ‘one’ was assigned to the original samples,
and the possibility value for each of the artificial sample was based on the correlation
coefficient of the given training samples. All samples with the associated possibility values
were then used for the training step of the ANNBP. The architecture of DNN for function
approximation of one independent variable and one dependent variable is shown in Figure
2. As DNN relies on ANNBP, its predictions still suffer from the same inaccuracy.

2.3. Kernel regression. Kernel regression, particularly the NWKR [12,26], is a non-
parametric statistical technique to estimate the conditional expectation of a random vari-
able. A research work has been carried out by [27] to approximate a non-linear function
from small samples using NWKR. The kernel regression represents this estimate using
a weighted combination of dependent variable samples, with weights determined by the
proximity of the query input to the set of given input samples. This allows accurate in-
terpolation and approximation in the vicinity of training samples. Kernels assign weights
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possinput 

output 
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input 

Figure 2. The architechture of DNN to approximate 2 dimensional non
linear equation, 2-K-2 ANNBP network

to arbitrary samples based on their distance from the given samples, which is calculated
using Equation (1) for the Gaussian kernel:

Kσ (x, xi) =
1√
2π

exp

(
− (x− xi)

2

σs

)
(1)

where σs denotes the smoothing parameter, and Kσ is a Gaussian kernel that is used to
assign a weight, based on the Euclidean distance, to any arbitrary sample. The closer the
arbitrary sample is to any given sample, the higher the weight that will be assigned on it.
Several other types of kernel functions are commonly used, such as the uniform, triangle,
epanechnikov, quartic (biweight), tricube (triweight) and cosine functions. Here, xi is a
list of observed independent variables, and x is an arbitrary point to be estimated.
The dependent variable y corresponding to any arbitrary x values can be estimated by

using Equation (2).

ŷi (x, xi) =

n∑
i=1

yiKσ (x, xi)

n∑
i=1

Kσ (x, xi)
, i = 1, 2, . . . , n (2)

where n is the number of observed samples. For a higher d-dimensional estimate, the ith
observation for each of the d independent variables is given in the vector Xi in Equation
(3).

Xi =


X1

i
...

Xp
i
...

Xd
i

 , i = 1, 2, . . . , n (3)

The estimated value of ŷ can be calculated using Equation (4).
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3. Weighted Kernel Regression. An overview of the proposed technique is given in
Figure 3. The proposed technique requires a series of steps to develop the prediction
model. The details of each of the two phases will be explained in the following sub-
sections.

 
Train Sample 

Estimating Smoothing 

Parameter 

Find Kernel Matrix 

Weight Estimation 

Prediction Model Test Sample 

Training Phase 

Testing Phase 

Figure 3. Overview of the proposed technique, WKR

3.1. Training phase. With an insufficient number of samples, popular model selection
methods such as cross validation cannot be used [28,29]. As for NWKR, it is important to
compromise between smoothness and fitness in selecting the smoothing parameter σs [30].
The proposed technique, based on NWKR theory, provides an easy method of tuning the
hyper-parameters of the proposed model when dealing with small samples. The smoothing
parameter for the proposed technique can be estimated using Equation (5).

σs = max
(
∥Xk+1∥2 − ∥Xk∥2

)
, where 1 < k < n− 1 and ∥Xk+1∥2 > ∥Xk∥2 (5)

Initially, all the inputs of the available samples are arranged in ascending order of L2-
norm values. This setting is used in all of our experiments to estimate the smoothing
parameter.

The kernel matrix A = [aij], where i = j = 1, . . . , n, with the generalised kernel matrix
notation based on the Gaussian kernel, is given in Equation (6). The matrix A transforms
the linear observed samples to non-linear problems by mapping the data into a higher
dimensional feature space.
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aij =



d∏
p=1

K
(
Xp

i , X
p
j

)
n∑

l=1

[
d∏

p=1

K
(
Xp

i∨j, X
p
l

)] , if i ̸= j

1
n∑

l=1

[
d∏

p=1

K
(
Xp

i∨j, X
p
l

)] , if i = j

(6)

Once the kernel matrix is found, it is necessary to introduce the estimated weight.
The estimated weight is determined based on the kernel matrix. The weight is updated
iteratively by comparing the estimated values ŷi to the actual value yi. As the difference
converges to a minimum value, after reaching the predefined iteration value, the training
to estimate the weight will be stopped. Initially, arbitrary values are assigned to the
weights. The weight is defined in the column vector, as shown in Equation (7).

W =
[
w1 w2 · · · wn

]T
(7)

The estimated ŷi, the error equation and the estimated weight equation are given by
Equations (8)-(10), respectively.

ŷi =
n∑

i=1

wjaij (8)

E (W ) =
1

2

n∑
i=1

(yi − ŷi) (9)

Ŵ (X) = argmin
W

E (W ) (10)

3.2. Testing phase. Once the optimum weight is obtained, the model is ready to predict
any unseen samples (test samples). The test samples can be predicted by using Equation
(11).

ŷ
(
X, Ŵ

)
=

n∑
i=1

Ŵi

(
d∏

p=1

Kσ (X
p, Xp

i )

)
n∑

i=1

(
d∏

p=1

Kσ (Xp, Xp
i )

) (11)

4. Experimental Results and Discussions.

4.1. Experiment I. The first experiment is conducted to demonstrate the advantage of
WKR over the DNN model and the other techniques for small sample problems. The
following test functions from [15] are used:

y = x2, x ∈ [0, 1] (12)

y = 0.01x+ 0.02x2 + 0.9x3, x ∈ [0, 1] (13)

y = 1− exp
(
−2x4

)
, x ∈ [0, 1] (14)

Initially, all the parameter settings for each function approximation algorithms are
predefined. The parameter settings are summarised in Table 1.
Test samples, were also generated with step t = 0.01 in the domain [0, 1] to approximate

all test functions.
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4.1.1. Approximating y = x2. In this experiment setting, the same training samples em-
ployed by Huang and Moraga are used for model validation, with x are equally spaced
as shown in Table 2. The main purpose of this experiment setting is to highlight the
capability of the proposed technique as compared to DNN; therefore, we only report the
result from DNN for this experiment. Hence, for the rest of the experiment settings, we
do not report the performance result using DNN technique due to the non-deterministic
nature of ANN [19]. However, this result shows that the proposed technique possesses a
better generalisation error than the error value of DNN from the literature [15]. A further
validation will be carried out to approximate y = x2 with randomly generated samples.

Table 1. Parameter settings for each function approximation algorithm

Table 2. The small training samples as taken from Huang and Moraga

 S1 S2 S3 S4 S5 

x 0 0.25 0.5 0.75 1 

y 0 0.0625 0.25 0.5625 1 

 

The Mean Square Error (MSE), given in Equation (15), is used as the performance
criterion to measure the error between the actual value and the predicted value.

MSE =
1

n

n∑
i=1

(yactual − ŷpredict)
2 (15)

The performance of each of the techniques with x equally spaced are summarised in
Table 3. The WKR is found to be the best technique, with the smallest measured MSE.
It is interesting to note that the WKR has improved on the prediction performance of
DNN for equally spaced samples by 99.96%.

For a further evaluation of the proposed technique, the experiment is repeated 10 times,
and the average of MSE in Equation (15) is measured as the performance indicator. In
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Table 3. Comparison of the performance of all function approximation
algorithms with x equally spaced

each run of the experiment, only five randomly generated samples are used for training.
The same test samples are used to validate the performance of each algorithm. The
computational results are summarised in Table 4. WKR obviously outperforms the other
techniques, as shown by the smallest average MSE, which is 0.000597. Figure 4 shows
the approximation function of y = x2 with the minimum MSE from each technique. Note
that the proposed WKR approximation overlaps the real function, in which it shows the
highest accuracy.

Table 4. Results of 10 experiments to approximate y = x2, with each data
set consisting of 5 randomly generated samples

Figure 5 shows the graph of the average MSE as a function of the number of training
samples. Based on the experimental result, the average MSE gradually decreases as
the number of training samples increases. Obviously, the performance of the ANNBP
is far behind that of the other techniques when the samples are small. WKR requires
the least number of samples to approximate the non-linear function with high accuracy.
Meanwhile, ANNBP requires at least 30 samples to achieve the accuracy of the WKR.
However, when the training samples are not well distributed within the predefined domain,
or in other words, when the training samples are close together, the performance of the
WKR degrades and causes a large MSE.

Table 5. Results of 10 experiments to approximate y = 0.01x+ 0.02x2 +
0.9x3, with each data set consisting of 5 randomly generated samples
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Figure 4. Comparison of the 4 minimum MSE of each of the function
approximation algorithm with only 5 random samples and the real function;
the WKR approximation overlaps the real function

Figure 5. The improved approximation performance, average MSE, with
increasing numbers of samples for each technique

4.1.2. Approximating y = 0.01x+ 0.02x2 + 0.9x3. We use the same experimental setting
from the previous section. Table 5 shows the result of the simulation experiment with 5
randomly generated samples. For this experiment, WKR produces the highest accuracy
and improves on the prediction performance of DNN by 80.89%.
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Table 6. Results of 10 experiments to approximate y = 1 − exp(−2x4),
with each data set consisting of 5 randomly generated

4.1.3. Approximating y = 1 − exp(−2x4). We use the same experimental setting from
the previous section. Table 6 shows the result of the simulation experiment with 5 ran-
domly generated samples. For this experiment, WKR produces the highest accuracy and
improves on the prediction performance of DNN by 51.56%.

Figure 6. The real surface of the function y = x2
1 + x2

4.2. Experiment II. This experiment is conducted to evaluate the performance of WKR
in approximating a non-linear surface, given in Equation (16). This equation consists of
two independent variables and one dependent variable, so its graph is a surface in R2×R.
Figure 6 shows the real surface of y = x2

1 + x2.

y = x2
1 + x2 (16)

In order to demonstrate the surface approximation problem with an insufficient number
of samples, the sparse and small training samples were randomly generated within the
predefined range in every experiment. As in the first experiment, the experiment was
repeated 10 times with 5 randomly generated samples. Again, the average MSE was
chosen as the performance measure. The range of x1 is set between 0 and 1 and the range
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Table 7. Parameter settings for each of the function approximation algorithms

of x2 is set between 0 and 2. The predefined range is set particularly to emphasise the
sparseness of the training samples.

Initially, all the parameter settings for each of the function approximation algorithms
were predefined. Those parameter settings are summarised in Table 7. To evaluate the
learning accuracy quantitatively, all techniques were tested with all possible combinations

of the following generated test samples,
[
T x1
sj
, T x2

sj

]
• T x1

s =
{
T x1
sj

|j = 1, 2, · · · , 11
}
= {0, 0.1, · · · , 1}

• T x2
s =

{
T x2
sj

|j = 1, 2, · · · , 11
}
= {0, 0.1, · · · , 2}

The results of the experiments are summarised in Table 8. In addition, Figure 7 shows
the approximated surfaces with the minimum MSE, which is calculated after 10 runs of
each technique. Figure 7 shows that the WKR successfully approximates the surfaces
with the highest accuracy.

Figure 8 shows that the performance of all techniques depends on the number of training
samples. Generally, the approximation improves with the number of available training
samples. As the number of samples increases, the average MSE decreases. The proposed
WKR requires the least number of samples before the average MSE become constant
when the number of samples is 30. ANNBP struggles to improve the performance of the
approximation with the limited number of samples. Again, when the training samples are
not well-distributed within the predefined domain, or, in other words, when the training
samples are close together, the performance of the WKR is degraded and causes a large
MSE.

5. Conclusions. In general, given a limited number of samples, non-linear function and
surface approximation are extremely difficult. Hence, an enhanced kernel regression called
weighted kernel regression (WKR) is proposed to approximate non-linear functions and
surfaces with small samples. By introducing iteratively computed weights to the kernel
regression, the proposed WKR has successfully improved the performance of function
and surface approximations. Four experiments are conducted to show the effectiveness
and practicability of the WKR in solving small sample problems. It is shown that the
proposed approach is superior to KR, ANNBP, GRNN and also DNN. However, if the
training samples are not well distributed in the domain range, the performance of the
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Figure 7. Surface approximation with the minimum MSE from every
technique with only 5 random samples: WKR (top left), KR (top right),
ANNBP (bottom left) and GRNN (bottom right)

Table 8. Results of 10 experiments with each data set consisting of 5
randomly generated samples

proposed technique is degraded and causes a large MSE. In the future, the proposed
technique will be further improved by introducing artificial samples and an alternative
approach to estimate the weight of the WKR.
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[7] K. Rodŕıguez-Vázquez and C. Oliver-Morales, Multi-branches genetic programming as a tool for
function approximation, Lecture Notes in Computer Science, vol.3103, pp.719-721, 2004.

[8] A. Hamzeh and A. Rahmani, Approximating the environmental reinforcement signal with non-
linear polynomials using learning classifier systems, International Journal of Innovative Computing,
Information and Control, vol.4, no.7, pp.1797-1809, 2008.

[9] B. Kosko, Fuzzy systems as universal approximators, IEEE Transactions on Computers, vol.43,
pp.1329-1333, 1994.

[10] L. Wang, Fuzzy systems are universal approximators, International Conference Fuzzy Systems, San
Diego, CA, pp.1163-1170, 1992.

[11] B. Xu and B. Wu, On nonparametric estimation for the growth of total factor productivity: A
study on china and its four eastern provinces, International Journal of Innovative Computing,
Information and Control, vol.3, no.1, pp.141-150, 2007.

[12] G. Watson, Smooth regression analysis, Sankhy: The Indian Journal of Statistics, Series A, vol.26,
pp.359-372, 1964.

[13] P. Niyogi et al., Incorporating prior information in machine learning by creating virtual examples,
Proc. of the IEEE, vol.86, 1998.

[14] T. Tsai and D. Li, Approximate modeling for high order non-linear functions using small sample
sets, Expert Systems with Applications, vol.34, pp.564-569, 2008.



5960 M. I. SHAPIAI, Z. IBRAHIM, M. KHALID, L. W. JAU, V. PAVLOVIC AND J. WATADA

[15] C. Huang and C. Moraga, A diffusion-neural-network for learning from small samples, International
Journal of Approximate Reasoning, vol.35, pp.137-161, 2004.

[16] W. Lee and S. Ong, Learning from small data sets to improve assembly semiconductor manufac-
turing processes, The 2nd ICCAE 2010, Singapore, pp.50-54, 2010.

[17] G. Bloch et al., Support vector regression from simulation data and few experimental samples,
Information Sciences, vol.178, pp.3813-3827, 2008.

[18] R. Lanouette et al., Process modeling with neural networks using small experimental datasets,
Computers & Chemical Engineering, vol.23, pp.1167-1176, 1999.

[19] M. Graczyk et al., Nonparametric statistical analysis of machine learning algorithms for regres-
sion problems, Knowledge-Based and Intelligent Information and Engineering Systems, pp.111-120,
2010.

[20] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences,
Ph.D. Thesis, Harvard University, Cambridge, MA, 1974.

[21] D. E. Rumelhart et al., Learning representations by back-propagating errors, Nature, vol.323,
pp.553-536, 1986.

[22] X. J. Guo et al., An empirical research for forecasting model based on the generalization regression
neural network, International Conference on Automation and Logistics, Qungdao, China, 2008.

[23] D. Patterson, Artificial Neural Networks, Prentice Hall, Singapore, 1996.
[24] C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, USA, 1995.
[25] C. Huang and Y. Shi, Towards Efficient Fuzzy Information Processing: Using the Principle of

Information Diffusion, Physica Verlag, Heidelberg, Germany, 2002.
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