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ABSTRACT. Tuning of PID controller parameters for an optimized control performance
is a multi-objective optimization problem. The problem becomes particularly difficult
if the plant to be controlled is an unstable, nonlinear and under actuated plant. This
paper proposes a modified genetic algorithm for the multi-objective optimization of PID
controller parameters, called the Global Ranking Genetic Algorithm (GRGA). It combines
two types of fitness assignment methods in the algorithm — the ‘global ranking fitness
assignment’ method proposed in this paper and the dominance rank from the classical
pareto fitness assignment method. The former is employed in the selection of parents and
the latter is used in the elitism mechanism. In order to investigate the performance of
the proposed algorithm, it is compared with the state of the art, Non-dominated Sorting
Genetic Algorithm 2 (NSGA-II) using five ZDT series test functions. From the test
problems analysis, the GRGA is observed to have better convergence property than the
NSGA-II although it tends to lose its diversity of solutions in the earlier part of generation
before recovering back when approaching the true pareto front. Then, the GRGA is
applied to a highly difficult PID controller tuning problem, balancing a rotary inverted
pendulum system. Results show that the GRGA has the capability to optimally tune the
PID controllers based on the nonlinear model of the pendulum.

Keywords: PID controllers, Controller auto-tuning, Genetic algorithm, Evolutionary
algorithm, Multi-objective optimization, Inverted pendulum

1. Introduction. Proportional-Integral-Derivative (PID) controller is one of the most
popular controllers applied in industries. Simple in structure, reliable in operation and
robust in performance, result in its popularity among control engineers [1]. However, a
research reported that 80% of the PID-type controllers in industries are poorer or less
optimally tuned, that 30% of the PID loops operate in manual mode and that 25% of the
PID loops actually under default factory setting [2]. Over the years, many methods have
been proposed for the tuning of the PID controllers, both in the deterministic or stochastic
frameworks [2,3]. Tuning of the PID controllers is not a straightforward problem especially
when the plants to be controlled are nonlinear and unstable. A rotary inverted pendulum,
for example, has an unstable, nonlinear and chaotic motion of its arm and pendulum, and
a PID controller can be very difficult to tune using the conventional deterministic PID
tuning methods.

Tuning the PID controller coefficients can be considered as a parameter optimization
process to achieve a good system response. In time domain specification, a good system
response is a response that has a minimum rise time, settling time, overshoot and steady
state error. Therefore, the tuning process of the controller has multiple objectives to be

269



270 M. R. RANI, H. SELAMAT, H. ZAMZURI AND Z. IBRAHIM

achieved, which, in most cases, are conflicting with each other. The tradeoff between sev-
eral objectives makes multi-objective optimization have not only a single optimal solution,
but rather a set of optimal solutions known as the ‘pareto optimal front’.

Generally, in the manual tuning of a PID controller, the optimization process is not
performed simultaneously with the tuning process. In order to get the optimally tuned
parameters, the parameters are slightly changed based on designer’s intuition or trial
and error method after the main tuning process is done [2]. One of the most popular
methods to tune the PID controllers is the Ziegler and Nichols method [2]. This is an
empirical method that tries to find the ultimate gain and period in order to obtain the
PID gain values. Ziegler and Nichols approach is a practical method for a single output
and stable plants, but the tuning process will be extremely complicated when dealing with
multiple output and unstable plants. More systematic ways to optimize the PID control
parameters have been proposed in, for instance, [4,5] using the deterministic optimization
methods based on the integrated absolute error (IAE) criterion. The main drawback of
these methods is that the tuned parameters are only optimum in certain operational zones
and have an unsatisfactory design robustness property.

Moreover, the above tuning methods are limited to linear or linearized plant mod-
els and single-input single-output (SISO) systems as well as not directly incorporated
with time specifications in their tuning optimization. Thus, stochastic optimization ap-
proaches may be needed in dealing with the more complicated multiple-input multiple
output (MIMO) and open loop unstable plants. Genetic Algorithm (GA), for instance,
is a powerful search algorithm used by researchers to optimize PID controllers but most
available methods focus on a single-objective optimization while the PID tuning problem
is clearly a multi-objective optimization problem. In the single-objective tuning opti-
mization, IAE is usually used as an objective function with the hope of getting a good
time specifications in system responses. On the other hand, in the multi-objective op-
timization, the time specifications can be directly formulated as objective functions in
the optimization process. Hence, the tuning objectives and parameter variations can be
directly incorporated to find the optimum PID controller parameter values.

Recently, the number of multi-objective evolutionary algorithms (MOEA) increases
drastically due to their popularity and capability of successfully solving multi-objective op-
timization problems. During the World Congress of Computational Intelligence (WCCTI)
in Vancouver 2006, MOEA has been evaluated as one of the three fastest growing fields
of research and application among all computational intelligence topics [6].

This paper proposes a new and systematic PID tuning algorithm based on the MOEA
approach. A rotary inverted pendulum will be used as the plant to be controlled using
the PID controller to test the capability of the proposed approach in dealing with highly
complex plants. The nonlinear dynamical model of the rotary inverted pendulum is
derived from its equations of motion and implemented in Simulink and Matlab.

In the remainder of the paper, we briefly mention the basic of MOEA and state a number
of famous MOEASs in Section 2. Thereafter, in Section 3, we describe the proposed GRGA
algorithm in detail. Section 4 presents the comparison of simulation results between
GRGA and NSGA-II in ZDT test problems. In Section 5, we present the application of
GRGA in PID controller optimization. Finally, we present the conclusions of this paper.

2. Multi-objective Evolutionary Algorithms (MOEAs). Almost all MOEAs are
constructed based on a single objective evolutionary algorithm (EA) before they are ex-
tended to handle multi-objective problems. Similarly, the approach presented in this
paper begins with a single objective genetic algorithm (GA) as the basis of the algorithm.
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GA consists of five main stages: initialization, fitness evaluation, selection, genetic opera-
tion such as mutation and generation of new population. The algorithm is initialized with
a randomly generated population of individuals, which are then directed towards conver-
gence at the global optimum using the selection and genetic operators. In each generation,
the fitness of every individual in the population is evaluated. Then, multiple individu-
als are stochastically selected from the current population (based on their fitness), and
modified (recombined and possibly randomly mutated) to form a new population. The
new population is then used in the next iteration of the algorithm. Normally, the algo-
rithm terminates when either a maximum number of generations has been produced, or
a satisfactory fitness level has been reached for the population. The search power of GA
lies on its population of solutions, which enhance the search capability in many points
simultaneously. In this paper, the term ‘solution’ and ‘individual’ are interchangingly
used and represent one or more decision variable values that cascaded to form a vector.

Generally, the critical part in MOEAs that make one algorithm different from the
other lies on the selection mechanism on how the individuals that are non-dominated are
preferred to be selected over those that are dominated. There are three main classifications
among MOEA techniques in order to achieve such selection mechanism: aggregating
function, population based function and pareto based function [7].

The aggregation function is the simplest method for handling multi-objective optimiza-
tion problem. It aggregates all the objective functions into one single objective function
[8]. Each objective has its assigned weight and the total of all the weights must equal to
one. The aggregating function is defined as follows:

> wifr(z) (1)
and ;4
Zwk == (2)

where M is the number of objectives, wy is the weight for kth objective and fj is the
fitness value for kth objective.

These aggregating approaches have been largely underestimated by MOEA researcher
due to its high possibility of converging at the local optimum and the knowledge for
every objective is required in order to assign the appropriate weight for each objective.
However, due to its simplicity, this weighted-sum aggregation approach appears to still
be in widespread use.

In contrary, the population-based function aims to diversify the search algorithm based
on the fitness information in each objective of the individuals. The most popular algorithm
in this class of MOEAs is the Vector Evaluated Genetic Algorithm (VEGA), proposed
in [9]. VEGA is actually a simple genetic algorithm (GA) with a modified selection
mechanism. VEGA uses a switching objectives mechanism to generate a population of
offspring by having N/M of offspring for each objective, where N is the population size
and M is the number of objectives. The weakness of this approach is that the concept of
pareto dominance is not incorporated directly in the selection process.

According to [7], the pareto-based approach is perhaps the most successful approach
to guide the search space to the true pareto front. Goldberg in [10] suggested that every
MOEA algorithm should have a tendency to select the individuals that are non-dominated
with respect to the current population. Goldberg also suggested ‘fitness sharing’, the
crowding information of an individual and ‘niche parameter’, the distance of an indi-
vidual to its neighbor to preserve the diversity in solutions. Fosenca and Fleming [11]
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proposed a fitness assignment strategy in Multi-objective Genetic Algorithm (MOGA),
slightly different from Goldberg’s suggestion that takes into account how many other indi-
viduals dominate the respective individual as fitness values. Thus, all the non-dominated
individuals will have the same fitness values and have the same probability to be selected.

Srinivas and Deb realized Goldberg’s suggestion most directly in the Non-dominated
Sorting Genetic Algorithm (NSGA) [12] where every non-dominated front in the current
population is evaluated and the individuals in the same fronts will have the same fitness
value. To maintain the diversity in the pareto solutions, NSGA introduced ‘niche count’,
a measure of individual’s density respect to other individuals in the objective space. The
offshoot of this approach, known as NSGA-II [13] uses the same fitness assignment strat-
egy but has elitism mechanism and crowded comparison operator, a normalized distance
between the two neighbors to preserve the diversity. NSGA-IT has always been considered
as the state-of-the-art algorithm by MOEA researchers [7]. However, the non-dominated
sorting in NSGA is computationally expensive although Deb et al. [13] suggested the fast
version of non-dominated sorting in NSGA-II. This paper investigates the performance

of a new fitness assignment that has a lower computational complexity compared with
NSGA-II. The proposed algorithm is known as the global ranking GA (GRGA).

3. Global Ranking Genetic Algorithm (GRGA). In this section, the main com-
ponents in GRGA, which are the proposed fitness assignment, the dominance rank [11]
and the crowding distance [13] procedures, are described before the complete algorithm
is presented.

3.1. Fitness assignment. The proposed fitness assignment method, called the ‘global
fitness assignment’ in this paper, uses the rank of individuals in each objective to pro-
mote the ‘global’ rank values. The rank of a solution X, is given by the vector R(X;) =
[ r(X) (X)) - (X)) ]T, where 7,,(X;) is the sub-rank of X; for the mth objec-
tive. Once the vector R(X;) has been calculated for each solution Xj, its global rank, G;,

is found using:
M

m=1
where M is the total number of objectives and G is the global rank for X;.

Table 1 shows an example of the global ranking fitness assignment of 5 individuals,
(X7 — X5) with the objective values for three objectives (f; — f3) respectively, where the
minimization of all objectives is assumed. In the example, say for the first objective, fi,
X5 have the smallest objective value, followed, in ascending order, by X3, X,, X; and
X5. Therefore, X, is sub-ranked ‘1’ in X5, giving r1(X,) = 1, followed by r1(X3) = 2,
r(Xy) = 3, r(X1) = 4 and r(X5) = 5. Similarly, the sub-ranks are assigned in the
same manner to all the solutions, for r, and r3. Finally, the global rank value, GG, for each
solution is calculated by summing all its sub-rank values.

TABLE 1. An example of the proposed fitness assignment

Solution Objective Sub-rank
Individuzil 5T T o e Tra v, | Global rank, G
X 1.1566 | 0.56 [0.20 | 4 | 5| 1 10
X5 0.9656 | 0.50 | 0.56 | 1 |3 | 5 9
X3 0.982310.48 08| 2 | 1| 3 6
Xy 1.1456 | 0.51 [ 0.75| 3 | 4 | 2 9
X5 1.2566 {04908 | 5|2 | 4 11
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3.2. Dominance rank. In this algorithm, the dominance rank fitness assignment as
introduce in [11] is used where the fitness value of an individual is the number of other
individuals that dominate it. The fitness for the individual X;, f(X;); is given by Equation
(4)-

f(X;)i =1+ no. of superior individuals (4)

Figure 1 shows an example of dominance rank fitness assignment where 10 individuals
are visualized in their 2-objective space, f; and f,. With the assumption of maximization
of both functions, the vertical and horizontal lines from X; to the z- and y-axis respectively
form the boundaries of the dominance area of an individual. The value in the bracket
placed near each individual is the fitness value obtained from dominance rank method.

O X: (‘1Y)

O X (1)

T T O %(1)
.'-'{IE')
X (1)
1 XsI‘i') T
- f1

FIGURE 1. Dominance rank for 10 examples of solutions

Taking two individuals, X4 and X5, in Figure 1 as examples, it can be observed that Xy
and X5 have the fitness values of 1 and 5 respectively. For Xy, since it is not dominated
by any other individual, the fitness value is equal to ‘1’. On the other hand, Xj lies in the
domination region of 4 other individuals (superiors), hence its fitness value is 1 + 4 = 5.

The dominance rank fitness assignment is employed in elitism mechanism, where the
current population and offspring produced from the genetic operation of the parents are
combined to form a combined population, C'P, with size of 2N, where N is the population
size. In order to select N individuals from C'P to form a new generation, all the individuals
in C'P will be ranked based on the dominance rank method and the best N individuals
are chosen. However, at some points, the number of individuals with the fitness of ‘1’
(non-dominated individuals) may exceed N. Thus, a second sorting procedure is required
and this time the sorting procedure will be based on the crowdedness among the non-
dominated individuals. This is also known as the diversity preservation technique.

3.3. Crowding distance. The crowding distance operator has been introduced in [13],
which is a simple yet effective method to estimate the crowdedness density. Crowding
distance calculation requires the sorting of the population according to ascending order
of each objective. The smallest and largest values (boundaries) will be assigned as an
infinite distance value. For other intermediate individuals, the distance of each objective,
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d;, is calculated based on Equation (5).

M
fa+v,, — fi-),,
di=) =5 (5)
m=1 maXm 7fminm

where M is the number of objective, fiax and fmin are the values of maximum and
minimum objective values respectively. The larger the value of the crowding distance, the
smaller (better) its crowdedness property.

3.4. The main loop of GRGA. Firstly, a random population of N size is created.
After evaluating the objective values for all the individuals in the population, the fitness
values are calculated based on the proposed global fitness assignment. By using the binary
tournament of selection, the parents are selected to fill the mating pool based on the global
rank values where, in our case, the size of the mating pool is chosen to be a half of the
population size.

The parents in the mating pool will be going through recombination (crossover) and
mutation [15] operation to generate another N-size population. This new population,
along with the previous population, will be combined and sorted according to the domi-
nance rank and the crowding distance in elitism. Note that the crowding distance sorting
procedure will only be triggered if the number of non-dominated solutions, whose fitness
is ‘1’ in the dominance rank, exceeds /N. Using these two sorting procedure, a population
of size N is extracted as a new generation. With this new population replacing the initial
population, the above procedures will be repeated until the stopping criterion is met.
Figure 2 shows the complete flow chart for the GRGA.

The uniqueness of the GRGA lies in the combination of two different types of fitness
assignment, which are the proposed global ranking (population-based function) and the
dominance rank (pareto-based function). Typically, most MOEAs only employ the same
fitness assignment in selection and elitism mechanism. Here, we aim to show that it
is not necessary for MOEA to use the pareto-based fitness assignment in the selection
mechanism in order to produce optimum solutions in the final results.

4. Test Problems and Performance Measures. In this section, GRGA is compared
with one of the famous MOEAs, the Non-dominated Sorting Genetic Algorithm IT (NSGA-
IT) using the ZDT series test functions [14]. The ZDT test functions are described in Table
2. This test series consists of various properties of problems, such as convex, non-convex,
disconnected and non-uniformly spaced problems. All the objective functions in the test
problems in Table 2 are subjected to be minimization.

In order to analytically evaluate the performances of the GRGA and NSGA-II, two
performance metrics are employed, namely, the convergence metric, v [13] and the diver-
sity metric, A [16]. The first metric, v, is used to measure the convergence of the final
obtained solutions with respect to the true pareto front. Firstly, 500 of uniformly spaced
solutions are placed in the pareto optimal front in the objective space as the reference.
Then, for each final obtained solutions, the nearest Fuclidian distance from one of the
reference solutions is measured. The average of these distances for all the final solutions
is calculated as v value. The smaller the metric, the better convergence of the solutions
towards the true pareto front.

Although the convergence metric itself can provide information on the diversity in
solutions, this paper uses a different metric to measure the diversity in the solutions. The
diversity metric, A measures the diversity among the obtained non-dominated solutions
(P*) with respect to a reference set (RS). For the test problems in this paper, the values
of f; will be the reference set, which discretized in a number of grids with the range of
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FIGURE 2. The complete flow chart of GRGA

TABLE 2. Test problems used to evaluate the performance of GRGA and
NSGA-II

Test Variable . . Optimal
Problem bounds Objective function solutions Comments
fl =T - 1 € [0’1]
ZDT1 (30 [0,1] fo=g(z) [1 - g(w)] 2 =0 Convex
g(;p):l+9% 222,---,’!1
;1 (x);;l[l TLo . T1gin(10mx )] mept Convex
9 = — —1_ 1 R )
ZDT3 |30 [0,1] o 9@~ 9@ zi =0 disconnected
g(z) = 1 4 gri=zli TSR
Ji(z) ==
( ) 2 xr1 € [0,1]
ZDT2 |30 [0,1] f2 = g(2) {1 - (ﬁ) } z; =0 Non-convex
n i=2,-.,m
g(e) = 1 4 9{Ziz2 )
z1 €0,1] fi=z1 z1 € [0,1]
ZDT4 |[10| z; € [-5,5] f2 = g(x) [1 — gm(;)] z; =0 Non-convex
=200 | o) =1410(n — 1) + 37, [¢2 — 10cos(dra;)] | 1=2 10
f1 =1 —exp(—dz1)sin®(67x;)
o e x1 € [0,1] Non-convex,
ZDT6 |10 [0,1] f2=g@) |1 (g(m)) } z; =0 Non-uniformly,
0.25 A
_ (Xiami) 1=2,-:-,n spaced
g<x>—1+9[ e

*n = number of decision variables
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0.01. The more grids that contain a point of RS and also contain a point of P*, the higher
the metric value. This metric defines two arrays, H (i) and h(i) which are computed as in
Equations (6) and (7).
. 1, the grid has a representative point in RS
H(i) = .
0, otherwise

(6)
(7)

Then, the array, m(h(i)) is calculated based on the neighboring scheme as in Table 3.

h(i) = 1, if H(i) =1 and the grid has a representative point in P*
v= 0, otherwise

TABLE 3. Neighboring scheme for m(h(7))

h(i—1) h(s) h(i+1)]m(h(i)
0 0 0 0
0 0 1 0.5
1 0 0 0.5
0 1 1 0.67
1 1 0 0.67
1 0 1 0.75
0 1 0 0.75
1 1 1 1

Finally, the diversity metric, A is computed using
Zi|h(i);£0 m(h(i)) (8)
i miyzo M(H (7))

For diversity metric, with the assumption that the final non-dominated solutions ob-
tained approach the global pareto front, the higher the metric becomes, the better the
diversity properties in solutions.

In order to ensure consistency in the results, each algorithm will be run 10 times for

each test problem. The parameters used in both the GRGA and NSGA-II in all the test
functions are summarized in Table 4.

TABLE 4. GRGA and NSGA-II parameters used in the tests

A —

Parameters setting Values
Number of generation 250
Population Size 100
Probability of Crossover 0.8
Probability of Mutation /v
Distribution index in SBX 20
Distribution index in polynomial mutation| 20

*V = number of decision variables

Table 5 shows the mean and the variance of the convergence and the diversity metrics
for the GRGA and NSGA-II in every ZDT test problems.

It can be seen from Table 5 that GRGA has better convergence performance for all the
test problems compared with NSGA-II. The critical ranking procedure in global ranking
fitness assignment has improved the convergence properties in approximating the true
pareto front. For the diversity metric, NSGA-II has better diversity in ZDT1, ZDT3 and
ZDT6 while GRGA has better diversity in ZDT2 and ZDT4. This is because, the same
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TABLE 5. Performance metric

Test Algorithm Convergence Diversity
Problem Mean Variance Mean Variance
7DT1 GRGA 0.001101 1.5638 x 1078 | 0.764401 | 6.9623 x 10~*
NSGA-II 0.001119 1.2551 x 1078 | 0.766419 | 4.0807 x 10~*
7DT? GRGA 7.7960 x 10~% [ 1.8840 x 107° | 0.786110 | 8.0106 x 10~*
NSGA-II 7.8993 x 107* | 1.5270 x 107? | 0.769790 | 7.6968x x 10~*
7DT3 GRGA 0.004002 4.9444 x 10~ | 0.564398 | 7.6650 x 10~*
NSGA-II 0.004201 1.3778 x 1077 | 0.576890 | 6.0154 x 10~*
7DTA4 GRGA 0.008501 1.1825 x 10°° | 0.722523 0.003501
NSGA-II 0.010118 1.2867 x 107° | 0.693457 0.005209
7DT6 GRGA 0.003001 3.3778 x 10~® | 0.684756 | 3.1095 x 10~*
NSGA-II 0.003012 2.6222 x 1078 | 0.686165 | 1.9182 x 10~*

diversity preservation method has been used in both the GRGA and NSGA-IT and so the
difference between the diversity metric of the two algorithms are not very significant.

In order to further investigate the convergence and diversity properties, we took a closer
look at the non-convex and challenging ZDT4 test function. ZDT4 problem has 21° local
pareto fronts and this property causes difficulties for both algorithms to converge globally.
Here, the performances of GRGA and NSGA-II from the initial population until the 250th
generation were observed. The investigation started with the same initial population, and
used the same parameters as shown in Table 4. Figures in Table 6 show the transitions
of the solutions at 1, 50, 100, 150, 200 and 250 of generation for GRGA and NSGA-II.
The figures visualize the distribution of the solution in two objective space, fi; and fs.

From Table 6, the continuous lines in all the plots represent the true pareto front
in ZDT4. At the 50th generation, it can be observed that GRGA has shown a better
convergence property with the solutions scattered in range of f; = [1 — 3.5] compared
with NSGA-II, whose solutions in the region given by f; = [3 — 5.5]. However, the
solutions of NSGA-II have better distribution whereas the solutions in GRGA are slightly
crowded in a few places. At the 100th generation, the solutions in GRGA started to form
the pareto front, but the solutions in NSGA-IT were still struggling to form the pareto
front as well as maintain their diversity. At the 150th generation, the solutions from
GRGA almost covered all the points in the pareto front, but for NSGA-II, there are still
some dominated solutions which are quite far from the pareto front. Then, at the 200th
generation, almost all the solutions in GRGA become non-dominated solutions as they
cover almost all the pareto front compared with those of NSGA-II. Finally, at the 250th
generation, both algorithms converge and cover approximately all the points in the pareto
front. It is interesting to note that the convergence of GRGA not only surpasses NSGA-
IT when approaching the true pareto as in the results of convergence metrics in Table
5, but this property actually has started at the earlier generations. However, at some
point, GRGA tends to lose its diversity in the earlier stage of the generation (as shown
by K = 50 in Table 6) before recovering back when approaching the pareto front. This
inconsistency of diversity may be improved by implementing a more complex diversity
preservation technique as the second ranking procedure in elitism mechanism such as
clustering technique [17] or hyper-volume measure [18] to replace the crowding distance.

5. PID Controller Tuning with GRGA. In this section, the GRGA has been applied
to the PID controller tuning problem of balancing a rotary inverted pendulum (RIP). A
rotary inverted pendulum shown in Figure 3 was used as the plant of controlled by the
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TABLE 6. The transition of solution at Kth generation for GRGA and
NSGA-IT in ZDT4 problem

GRGA | NSGA-TI
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PID controller whose parameters are optimized using GRGA. RIP consists of a driven
arm which rotates in the horizontal plane and a pendulum that is attached to the arm
that are free to rotate in vertical plane. The plant also consists of a DC servo motor that
acts as an actuator to provide a torque to the pendulum arm. The interesting aspect
about the RIP is its under-actuated property, where the number of degree of freedom is
more than the number of actuators. This property causes the PID tuning mechanism to
be rather challenging.
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FiGURE 3. Rotary inverted pendulum
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With the under-actuated system, two PID controllers are used: one for controlling 6,
(PID 1) and the other one for controlling #; (PID 2). Figure 4 shows the block diagram
of the rotary inverted pendulum control system.

- + amm putput
response, By
1 Inverted pendulum
1 PID 1 + SErvo Moty
reference (plant} | —
+ pendulum
output
Yespansc,
PID I - 8;

FiGURE 4. PID control strategy and plant

The optimization process was carried out to determine the optimal controller gains,
K,, K, and K, for both PID controllers. Assuming that the initial angular position for
the arm, 0y, is zero and the angular position between the pendulum and a vertical line,
5, is 0.087 radian, the control objectives were to turn the arm, #; and the pendulum,
0y to zero radian with the gains provided by GRGA. From the simulation response, the
three objectives were evaluated — the settling time, overshoot percentage and mean square
steady-state error (MSE). Both the nonlinear and linear models were used in the opti-
mization process. The objective values were evaluated from the nonlinear model while the
closed-loop stability is derived from the linearized model. From the equations of motion,
the nonlinear models for the rotary inverted pendulum are given by Equations (9) and
(10).

0, = % (Pge — P:6, — %Pf,ege'l sin?(202) + Py’ sin 6 — %Pﬁ;o; sin(292)>
9
_ W <P6 sin Ay — %mgcﬁlZ cos(292)> ?
b, = w (Pge — P, — %Pf)egél $in?(260,) + P36, sin 0,
10
_%PQQIQQ sin(292)> + bt stin2 02 <P6 sin 0y — %mgcﬁlZ cos(292)> o
where A = P,P, + P,Pysin? 6, — 1332 cos® By, Py = Jy +mol?, Py = mycl, Py = mylycy,
Py = Jy+myck, Ps = myl, P = ]];—(T’n, Ps = maycag, Py = Il%f—:;

The meanings and values of other symbols used in Equations (9) and (10) are given in
the Appendix.

Linearizing the pendulum model about 6, = 0, the linearized state space equation is
given by Equation (11).

1 0 0 1 0] 6 0

6| o o 0o 1|6 0

6 | =0 —44256 —0.0390 0| |4 | T| 21334 |© (11)
6, 0 42.6498 0.0334 0| | 4, ~1.8286
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The optimization goal was to minimize all the control objectives subject to the stability
constraints. Every combination of gains in the PID controllers should have all the closed-
loop poles on the left-hand side of the s-plane. Stability violations were calculated when
the solutions were not closed-loop stable [19,20]. The violation value is the summation of
the total closed-loop poles on the right-hand side of s-plane. These violation values will be
used in the binary tournament of selection [13]. A solution a is said to constraint-dominate
a solution b, if any of the following conditions is true,

1) Solution a is valid and solution b violates the constraint.
2) Solutions a and b both violate the constraint, but solution a has less violation value.
3) Solution a and b both valid and solution a has better fitness value.

The parameter settings for GRGA are shown in Table 7.

TABLE 7. Parameters of the PID controller optimization

Parameters Values
No. of generations 250
Population Size 100
Probability of Crossover 0.8

Probability of Mutation 0.1666
Distribution index in SBX 10
Distribution in polynomial mutation 20

K [0, 100]

PID 1 K; [0, 50]

Variable bounds gjg [%?’5500&]

PID 2 K; [0, 100]

Ky [0, 100]

Arm response bor Pamsto Fronter in GRGA
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FIGURE 5. Arm responses for pareto solutions from GRGA

Unlike any conventional /manual methods of tuning the PID controller, GRGA provides
a large number of solutions (pareto frontier) to the control designers, giving them more
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Fendulum Responess of Famto Fronter in GRGA
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FIGURE 6. Pendulum responses for pareto solutions from GRGA

flexibility and options by considering the various design trade-off. Figures 5 and 6 show
the 98 of final solutions (pareto frontier) which then are extracted to gives the arm and
pendulum responses respectively.

Interestingly, all the final pareto front solutions in this experiment are closed-loop stable
which gives another credit to GRGA compared with the manual tuning approach. This
guarantee of stability will add reliability to the designers when choosing GRGA as the
medium of tuning controller. The effect of diversity preservation can be seen in Figures 5
and 6 where the various response characteristics of the arm and pendulum are obtained.
For instance, response with lower settling time has larger overshoot or vice versa.

Figures 7 and 8 show an example where the solution that give smallest settling time
for both are chosen.

A Response tor The Minimum Settling Time Solution
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FIGURE 7. Arm response for the most minimum settling time solution
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Penduluf Aespores tor the Most Minifum Sstling Time
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FiGURE 8. Pendulum response for the most minimum settling time solution

Analytically from this solution, the settling time is at 0.6760 s, the overshoot is 0.3849%
and the TAE is 0.0479.

6. Conclusions. A MOEA based on the combination of population and pareto based
fitness assignments method with the good convergence property has been proposed in
this paper. Based on the five ZDT test problems, the proposed GRGA was able to
converge faster than NSGA-II. However, in the early generation, GRGA tends to lose its
solution’s diversity. Hence, the diversity preservation technique in GRGA should further
be improved in order to overcome such a problem.

In the application of GRGA in PID controller tuning of RIP, tuning mechanism with
GRGA has shown several advantages compared with the manual tuning methods. Due to
the reliability, the capability in dealing with complex problems and the better convergence
property, GRGA should gain increased attention and application in the near future.
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Appendix 1.
my = mass of arm (0.056 kg).
my = mass of pendulum (0.022 kg).
[y = length of arm (0.16 m).
lo = length of pendulum (0.16 m).
c1 = distance to the center of mass of arm (0.08 m).
co = distance to the center of mass of pendulum (0.08 m).
Ji = inertia of arm (0.00215058 kg - m?).
Jo = inertia of pendulum (0.00018773 kg - m?).
0, = angular displacement of arm.
7 = angular velocity of arm.
0, = angular displacement of pendulum.
¢!, = angular velocity of pendulum.
71 = applied torque.
g = gravitational acceleration (9.81 m -s2).
ki, = back-emf constant (0.01826 V - s/rad).
ki = torque constant (0.01826 N - m/A).
R,, = armature resistance (2.5604 ).
e = input voltage.



