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Abstract. We develop a new decision-making model using the Dempster-Shafer (D-S)
belief structure when available information is uncertain and can be assessed with inter-
val numbers. We use a wide range of aggregation operators involving interval numbers
such as the uncertain weighted average (UWA), the uncertain ordered weighted aver-
age (UOWA), the uncertain generalized weighted average (UGWA) and the uncertain
generalized ordered weighted average (UGOWA). We present a new approach to using
interval weights in these uncertain aggregation operators. By using these aggregation op-
erators within a D-S framework, we obtain various belief structures (BS), including the
UWA (BS-UWA), the BS-UOWA, the BS-UGWA and the BS-UGOWA. We also use
more complete formulations by using induced, hybrid and quasi-arithmetic aggregation
operators. We end the paper by applying these operators to a decision-making problem
regarding strategic management.
Keywords: Decision-making, OWA operator, Dempster-Shafer theory of evidence, In-
terval numbers

1. Introduction. The Dempster-Shafer (D-S) theory of evidence [1,2] provides a uni-
fying framework for representing uncertainty because it includes situations of risk and
ignorance (also known as uncertainty) as special cases. Since its appearance, D-S theory
has been studied in a wide range of contexts [3-10].

Usually, when using D-S theory, it is assumed that the available information is clearly
known and can be assessed with exact numbers [3-5,7-10]. However, this may not be
the real-life situation found in the decision-making problems [11-23] because often times
available information is vague or imprecise, or it is not possible to analyze the situation
with exact numbers. In this case, a better approach may be the use of interval numbers
because this approach considers the best and worst possible scenarios as well as the most
likely results that will occur. When using interval numbers, we follow the ideas presented
in [24].

To aggregate information in a decision-making process, we must use an aggregation
operator such as the weighted average (WA), the ordered weighted average (OWA) and
the hybrid average (HA). Note that the OWA operator [25] is an aggregation operator
that provides a parameterized family of aggregation operators between the maximum and
the minimum values. For further research on the OWA operator, see [26-42]. The HA
operator [43] is an aggregation operator that uses the WA and the OWA in the same
formulation. Since its appearance, it has been studied by various authors [44-46].

In the context of uncertain environments, these aggregation operators become the un-
certain WA (UWA), the uncertain OWA (UOWA) operator [37] and the uncertain HA
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(UHA) operator [17]. Furthermore, it is possible to provide a more general formulation
of the previous aggregation operators by using generalized and quasi-arithmetic means.
Thus, we obtain the uncertain generalized WA (UGWA), the uncertain weighted quasi-
arithmetic mean (Quasi-UWA) [33], the uncertain generalized OWA (UGOWA), the un-
certain quasi-arithmetic OWA (Quasi-UOWA) operator [33], the uncertain generalized
HA (UGHA) and the uncertain quasi-arithmetic HA (Quasi-UHA) operator [17].
The aim of this paper is to present a new decision-making model using the D-S belief

structure that addresses uncertain environments with interval numbers. To do so, we use
a wide range of uncertain aggregation operators such as those discussed above, obtaining
various belief structures, including the UWA belief structure (BS-UWA), the UOWA
belief structure (BS-UOWA) and the BS-UHA aggregation. We study some of the main
properties of these structures as well as particular cases such as the uncertain average belief
structure (BS-UA), the BS-step-UOWA, the BS-olympic-UOWA and the BS-centered-
UOWA operator. The main advantage of this approach against the classical models is
that we can assess complex environments where the information is very uncertain and
cannot be treated with the usual exact numbers but it is possible to use interval numbers,
By using interval numbers, we can consider the maximum and the minimum result that
may occur. Thus, we can represent the uncertain information knowing at least the best
and the worst situation that could happen. Sometimes, the interval numbers also provide
the most possible results. That is, accepting that the information is uncertain, the exact
result that we think is going to happen.
We also present a new approach to using interval weights. Our method is focused on

the normalization process of the initial weighting vector so that final results are consistent
with the usual aggregations. That is, the sum of the weighting vector must be equal to
one. We also discuss some other potential improvements to this approach.
We further generalize this approach by using uncertain generalized aggregation opera-

tors, obtaining the BS-UGWA, the BS-UGOWA, the BS-UGHA, the BS-Quasi-UWA, the
BS-Quasi-UOWA and the BS-Quasi-UHA operators. Furthermore, we use uncertain in-
duced generalized aggregation operators, such as the uncertain induced generalized OWA
(UIGOWA) operator [33], the uncertain induced quasi-arithmetic OWA (Quasi-UIOWA)
operator [33], the uncertain induced generalized HA (UIGHA) [17] and the Quasi-UIHA
operator [17]. Thus, we obtain the BS-UIGOWA, the BS-Quasi-UIOWA, the BS-UIGHA
and the BS-Quasi-UIHA operators. The main advantage of these generalizations is that
they include a wide range of particular cases such as the BS-UIOWA, the BS-UIOWQA,
the BS-UIOWGA and the BS-UIOWHA operators. Thus, we can consider a wide range
of scenarios and select the one that is in closest accordance with our interests.
We also apply the proposed decision-making approach to a problem in strategic man-

agement. We consider an enterprise that is looking for an optimal strategy and must
develop a decision-making process to select a strategy. We see that depending on the
particular type of aggregation operator used, the results and decisions may be different.
Note that it is possible to develop a lot of other applications in problems where we use
the probability or the weighted average.
This paper is organized as follows. In Section 2, we briefly describe some basic concepts

regarding uncertain aggregation operators. Section 3 presents a new method for using
interval weights. Section 4 presents the proposed decision-making approach with D-S
theory. In Sections 5 and 6, we present further generalizations of the suggested approach
by using hybrid and generalized aggregations. Finally, in Section 7, we apply the proposed
model to a decision-making problem, and in Section 8, we summarize the main conclusions
of the paper.
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2. Preliminary Concepts. In this section, we briefly review some basic concepts that
will be used throughout the paper. We discuss interval numbers, the UWA, the UOWA
operator, the UHA operator, the UGWA, the UGOWA operator and the UGHA operator.

2.1. Interval numbers. Interval numbers [24] provide a very useful and simple technique
for representing uncertainty. They have been used in an astonishingly wide range of
applications and can be defined as follows.

Definition 2.1. Let a = [a1, a2] = {x|a1 ≤ x ≤ a2}, then, a is called an interval number.
Note that a is a real number if a1 = a2.

The interval numbers can be expressed in different forms. For example, assume a 4-tuple
[a1, a2, a3, a4], that is to say, a quadruplet, and let a1 and a4 represent the minimum and
the maximum of the interval number, respectively, and a2 and a3 represent the interval
with the highest probability or possibility, depending on how we plan to use the interval
numbers. Note that a1 ≤ a2 ≤ a3 ≤ a4. If a1 = a2 = a3 = a4, then the interval number is
an exact number. If a2 = a3, it is a 3-tuple known as triplet, and if a1 = a2 and a3 = a4,
it is a simple 2-tuple interval number.

In the following section, we review some basic interval number operations. Let A and
B be two triplets, where A = [a1, a2, a3] and B = [b1, b2, b3]. Then:

1. A+B = [a1 + b1, a2 + b2, a3 + b3].
2. A−B = [a1 − b3, a2 − b2, a3 − b1].
3. A× k = [k × a1, k × a2, k × a3], for k > 0.
4. A×B = [a1 × b1, a2 × b2, a3 × b3], for R

+.
5. A×B = [min(a1×b1, a1×b3, a3×b1, a3×b3), a2×b2,max(a1×b1, a1×b3, a3×b1, a3×b3)],

for R.
6. A÷B = [a1 ÷ b3, a2 ÷ b2, a3 ÷ b1], for R

+.
7. A÷B = [min(a1÷b1, a1÷b3, a3÷b1, a3÷b3), a2÷b2,max(a1÷b1, a1÷b3, a3÷b1, a3÷b3)],

for R.

Note that the ranking of the arguments is difficult because we are using interval num-
bers. In some cases, it is not clear which interval number is higher, so we must establish
an additional criterion for ranking the interval numbers. For simplicity, we recommend
the following criteria. For 2-tuples, calculate the arithmetic mean of the interval, with
(a1 + a2)/2. For 3-tuples and above, calculate a weighted average that yields more im-
portance to the central values. That is, for 3-tuples, (a1 + 2a2 + a3)/4. For 4-tuples, we
calculate: (a1 + 2a2 + 2a3 + a4)/6, and so on. In the case of a tie between the intervals,
we select the interval with the lowest difference, i.e., (a2 − a1). For 3-tuples and above
odd-tuples, we select the interval with the highest central value. Note that for 4-tuples
and above even-tuples, we must calculate the average of the central values following the
initial criteria.

The main advantage of this method is that we can reduce the interval number into a
representative and exact number of the interval. In this manner, we can always establish a
ranking of the interval numbers. To understand the usefulness of this method, we present
a simple example.

Example 2.1. Assume we want to rank the following interval numbers: A = (20, 40, 50),
B = (25, 35, 45) and C = (32, 37, 43). Initially, it is not clear which is higher. Obviously,
we can use a wide range of methods depending on the importance we want to give to each
part of the interval. As explained before, we assume in this paper a ranking based on
(a1 + 2a2 + a3)/4. Thus, we assume that the central value is more important than the
extreme values. This seems reasonable because the central value has the highest degree of
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occurrence. We convert the triplet to exact numbers using the method discussed above.
Thus:

A = (20 + 2× 40 + 50)/4 = 37.5.
B = (25 + 2× 35 + 45)/4 = 35.
C = (32 + 2× 37 + 43)/4 = 37.25.

With these results, we can reorder the interval numbers such that A > C > B.

Note that other operations and ranking methods could be studied [24] but in this paper,
we focus on those discussed above.

2.2. The uncertain weighted average. The uncertain weighted average (UWA) is an
extension of the weighted average for situations in which the available information is
uncertain and can be assessed using interval numbers. Its main advantage is that it
represents information in a more complete way because it considers the maximum and
minimum results that may occur in an uncertain environment. The UWA can be defined
as follows.

Definition 2.2. Let Ω be the set of interval numbers. An UWA operator of dimension n
is a mapping UWA: Ωn → Ω that has an associated weighting vector W of dimension n

with w̃i ∈ [0, 1] and
n∑

i=1

w̃i = 1 such that:

UWA(ã1, ã2, · · ·, ãn) =
n∑

i=1

w̃iãi, (1)

where ãi is an interval number.

Note that in Section 3, we explain how to address uncertain weights w̃i in order that
the sum of these weights is equal to 1. The same condition applies for the UOWA, UHA,
UGWA, UGOWA, UGHA and UIGOWA operators explained in the following subsections.
Note also that if wi = 1/n, for all i, then, the UWA operator becomes the uncertain
average (UA).

2.3. The uncertain ordered weighted averaging operator. The UOWA operator
was introduced by Xu and Da [37] and it represents an extension of the OWA operator.
The main difference is that it uses interval numbers in the arguments that will be aggre-
gated. The reason for using this aggregation operator is that sometimes, an environment
is very uncertain, and information is not clear. In this case, a better approach may be
to use interval numbers. The UOWA operator provides a parameterized family of aggre-
gation operators that include the uncertain maximum, the uncertain minimum and the
UA, among others. It can be defined as follows.

Definition 2.3. Let Ω be the set of interval numbers. An UOWA operator of dimension
n is a mapping UOWA: Ωn → Ω that has an associated weighting vector W of dimension
n with the following properties:

1)
n∑

j=1

w̃j = 1

2) w̃j ∈ [0, 1]
and such that:

UOWA(ã1, ã2, · · ·, ãn) =
n∑

j=1

w̃j b̃j, (2)

where b̃j is the jth largest of the ãi, and each ãi is an interval number.
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Observe that we denote the usual function f as UOWA to distinguish it from other types
of OWA operators that are analyzed throughout this paper. Additionally, the function f
for other types of OWA operators is also studied using a similar notation.

2.4. The uncertain hybrid averaging operator. The uncertain hybrid averaging
(UHA) operator is an extension of the HA operator [43] that uses uncertain informa-
tion represented in the form of interval numbers. It involves the same formulation as
the uncertain weighted average (UWA) and the UOWA operator. With this operator, we
can represent subjective probability and attitudinal character of a decision maker in the
same problem. The main advantage of the operator is that it can represent uncertain
situations that cannot be assessed with exact numbers or singletons, as it is possible to
use interval numbers. The decision maker can thus obtain a more complete view of the
decision problem.

Definition 2.4. Let Ω be the set of interval numbers. An UHA operator of dimension n
is a mapping UHA: Ωn → Ω that has an associated weighting vector W of dimension n

with w̃j ∈ [0, 1] and
n∑

j=1

w̃j = 1 such that:

UHA(ã1, ã2, · · ·, ãn) =
n∑

j=1

w̃j b̃j, (3)

where b̃j is the jth largest of the âi, where âi = nω̃iãi, i = 1, 2, · · ·, n, ω̃ = (ω̃1, ω̃2, · · ·, ω̃n)
is the weighting vector of the ãi, where ω̃i ∈ [0, 1] and the sum of the weights is 1, and
each ãi is an interval number.

Note that it is possible to distinguish between the descending UHA (DUHA) and the
ascending UHA (AUHA) operators. The UHA operator is monotonic. It is not bounded
by the maximum and the minimum because there may be situations in which aggregation
yields higher and lower results than the maximum and the minimum, respectively. There-
fore, neither it is idempotent. We can prove that hybrid aggregations are not idempotent
nor bounded by the minimum and maximum using the following example. We consider a
simple example with exact numbers.

Example 2.2. Assume w1 = 1, w2 = 0, ω1 = 1, ω2 = 0 and a1 = a2 = 20. If
this example fulfils the idempotency property, we should obtain a final result of 20. But
instead, we obtain the following:

HA = 1× (1× 2× 20) + 0× (0× 2× 20) = 40.

Thus, it is clear that in general, hybrid aggregations are not idempotent and bounded by
the minimum and the maximum.

Different families of UHA operators use different manifestations of the weighting vector,
including the UA, the UWA, the UOWA, the step-UHA, the olympic-UHA, the median-
UHA, the centered-UHA and so on. For more information, see [17,33,38].

2.5. The uncertain generalized weighted average. The uncertain generalized weighted
average (UGWA) is an aggregation operator that generalizes the UWA operator by using
generalized means. Thus, it includes a wide range of particular cases, such as the UWA,
the uncertain weighted geometric average (UWGA), the uncertain weighted quadratic
average (UWQA) and the uncertain weighted harmonic average (UWHA).
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Definition 2.5. Let Ω be the set of interval numbers. An UGWA operator of dimension
n is a mapping UGWA: Ωn → Ω that has an associated weighting vector W of dimension

n with
n∑

i=1

w̃i = 1 and w̃i ∈ [0, 1] such that:

UGWA(ã1, ã2, · · ·, ãn) =

(
n∑

i=1

w̃iã
λ
i

)1/λ

, (4)

where each ãi is an interval number, and λ is a parameter such that λ ∈ (−∞,∞).

If λ ≤ 0, we can only use positive numbers in R+; otherwise, we cannot obtain consistent
results. Furthermore, it is also possible to use interval numbers for λ in an UGWA
operator.
Moreover, we can also develop a further generalization of the UGWA operator by using

quasi-arithmetic means. The result is the Quasi-UWA operator, and it is defined as
follows.

Definition 2.6. Let Ω be the set of interval numbers. A Quasi-UWA operator of di-
mension n is a mapping QUWA: Ωn → Ω that has an associated weighting vector W of

dimension n with
n∑

i=1

w̃i = 1 and w̃i ∈ [0, 1] such that:

QUWA(ã1, ã2, · · ·, ãn) = g−1

(
n∑

i=1

w̃ig(ãi)

)
, (5)

where each ãi is an interval number, and g(ã) is a strictly continuous monotone function
such that g: I → R.

Note that the function g can also be studied by using interval numbers (Ω), fuzzy
numbers (Ψ), linguistic variables (S) and more complex structures. For simplicity, we
focus on the usual notation explained in Definition 2.6.

2.6. The uncertain generalized OWA operator. The uncertain generalized OWA
(UGOWA) operator [17,33] is an extension of the GOWA operator that uses uncertain
information in aggregation in the form of interval numbers. By using interval numbers, we
obtain a more complete aggregation operator that considers the maximum and minimum
values that could occur in a problem. Moreover, by using the UGOWA, we obtain a
generalization that includes a wide range of aggregation operators, such as the uncertain
maximum, the uncertain minimum, the UA and so on. It can be defined as follows.

Definition 2.7. Let Ω be the set of interval numbers. An UGOWA operator of dimension
n is a mapping UGOWA: Ωn → Ω that has an associated weighting vector W of dimension

n with
n∑

j=1

w̃j = 1 and w̃j ∈ [0, 1] and such that:

UGOWA(ã1, ã2, · · ·, ãn) =

(
n∑

j=1

w̃j b̃
λ
j

)1/λ

, (6)

where b̃j is the jth largest of the ãi, each ãi is an interval number, and λ is a parameter
such that λ ∈ (−∞,∞).

If λ ≤ 0, we can only use positive numbers in R+ to obtain consistent results, and it
is possible to distinguish between the descending UGOWA and the ascending UGOWA
operators.
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The UGOWA can be further generalized by using quasi-arithmetic means, thereby
obtaining the Quasi-UOWA operator [17,33]. It can be defined as follows.

Definition 2.8. Let Ω be the set of interval numbers. A Quasi-UOWA operator of di-
mension n is a mapping QUOWA: Ωn → Ω that has an associated weighting vector W of

dimension n with
n∑

j=1

w̃j = 1 and w̃j ∈ [0, 1] and such that:

QUOWA(ã1, ã2, · · ·, ãn) = g−1

(
n∑

j=1

w̃jg(b̃j)

)
, (7)

where b̃j is the jth largest of the ãi, each ãi is an interval number and g(b) is a strictly
continuous monotone function such that g: I → R.

2.7. The uncertain generalized hybrid averaging operator. The uncertain gener-
alized hybrid averaging (UGHA) operator [17] is an extension of the GHA operator [47]
that uses uncertain information represented in terms of interval numbers. It uses the same
formulation as the UGWA and UGOWA operators. With this operator, we can represent
subjective probability and attitudinal character of a decision maker in the same problem.
The main advantage is that it can represent uncertain situations that cannot be assessed
with exact numbers or singletons, as it is possible to use interval numbers. Thus, the
decision maker obtains a more complete view of the decision problem.

Definition 2.9. Let Ω be the set of interval numbers. An UGHA operator of dimension
n is a mapping UGHA: Ωn → Ω that has an associated weighting vector W of dimension

n with w̃j ∈ [0, 1] and
n∑

j=1

w̃j = 1 such that:

UGHA(ã1, ã2, · · ·, ãn) =

(
n∑

j=1

w̃j b̃
λ
j

)1/λ

, (8)

where b̃j is the jth largest of the âi, where âi = nω̃iãi, i = 1, 2, · · ·, n, ω̃ = (ω̃1, ω̃2, · · ·, ω̃n)
is the weighting vector of the ãi, with ω̃i ∈ [0, 1], the sum of the weights is 1, each ãi is
an interval number, and λ is a parameter such that λ ∈ (−∞,∞).

Note that it is possible to distinguish between the descending UGHA (DUGHA) and
the ascending UGHA (AUGHA) operators.

The UGHA operator can be further generalized by using quasi-arithmetic means. The
result is the Quasi-UHA operator. It can be defined as follows.

Definition 2.10. Let Ω be the set of interval numbers. A Quasi-UHA operator of di-
mension n is a mapping QUHA: Ωn → Ω that has an associated weighting vector W of

dimension n with w̃j ∈ [0, 1] and
n∑

j=1

w̃j = 1 such that:

QUHA(ã1, ã2, · · ·, ãn) = g−1

(
n∑

j=1

w̃jg(b̃j)

)
, (9)

where b̃j is the jth largest of the âi, with âi = nω̃iãi, i = 1, 2, · · ·, n, ω̃ = (ω̃1, ω̃2, · · ·, ω̃n)
is the weighting vector of the âi, with ω̃i ∈ [0, 1], the sum of the weights is 1, each âi is an
interval number, and g(b) is a strictly continuous monotone function such that g: I → R.
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2.8. Uncertain induced generalized aggregation operators. The uncertain induced
generalized OWA (UIGOWA) operator [33] is an extension of the IGOWA operator [35]
that uses uncertain information in aggregation in the form of interval numbers. The reason
for using this operator is that sometimes, the uncertain factors that affect decisions are
not clearly known. To assess the problem at hand, we must use interval numbers. This
operator uses a reordering process based on order-inducing variables to assess complex
reordering processes. It can be defined as follows.

Definition 2.11. Let Ω be the set of interval numbers. An UIGOWA operator of dimen-
sion n is a mapping UIGOWA: Ωn → Ω that has an associated weighting vector W of

dimension n with w̃j ∈ [0, 1] and
n∑

j=1

w̃j = 1 such that:

UIGOWA(⟨u1, ã1⟩, ⟨u2, ã2⟩, · · ·, ⟨un, ãn⟩) =

(
n∑

j=1

w̃j b̃
λ
j

)1/λ

, (10)

where b̃j equals ãi in the UIGOWA pair ⟨ui, ãi⟩ having the jth largest ui, ui is the order-
inducing variable, ãi is the argument variable represented terms of interval numbers, and
λ is a parameter such that λ ∈ (−∞,∞).

The UIGOWA can be further generalized by using quasi-arithmetic means. The result
is the Quasi-UIOWA operator [33]. It can be defined as follows.

Definition 2.12. Let Ω be the set of interval numbers. A Quasi-UIOWA operator of
dimension n is a mapping QUIOWA: Ωn → Ω that has an associated weighting vector W

of dimension n with w̃j ∈ [0, 1] and
n∑

j=1

w̃j = 1 such that:

QUIOWA(⟨u1, ã1⟩, ⟨u2, ã2⟩, · · ·, ⟨un, ãn⟩) = g−1

(
n∑

j=1

w̃jg(b̃j)

)
, (11)

where b̃j equals ãi in the Quasi-UIOWA pair ⟨ui, ãi⟩ with the jth largest ui, ui is the order-
inducing variable, ãi is the argument variable represented in terms of interval numbers,
and g(b) is a strictly continuous monotone function such that g: I → R.

When g(b) = bλ, we obtain the UIGOWA operator. Moreover, both the UIGOWA and
the Quasi-UIOWA operators include a wide range of particular cases such as the UIOWA
operator, the uncertain induced ordered weighted geometric averaging (UIOWGA) oper-
ator, the uncertain induced ordered weighted quadratic averaging (UIOWQA) operator
and the uncertain induced ordered weighted harmonic averaging (UIOWHA) operator.
Furthermore, it is also possible to consider a hybrid version of the UIGOWA and Quasi-

UIOWA operators. The result is the UIGHA and Quasi-UIHA operators introduced in
[17].

3. A Method for Addressing Uncertain Weights in Uncertain Aggregation
Operators. In this section, we introduce a new method for addressing uncertain weights
in aggregation problems in which information is uncertain. Note that this approach is
just a method. Therefore, it is useful in some specific situations when the assumptions
given below are accomplished. However, other methods could be considered but in this
paper we simply want to introduce a method that is useful when we make some specific
assumptions. This method is a particular case of a more general approach in which we
assume a neutral attitude towards uncertainty. Note that in a more general framework,
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we could consider methods that give more importance to the higher values or to the lower
ones. The main characteristics addressed here are as follows:

• The weighting vector must be normal; that is, it must sum to 1. If not, we must
normalize it to be consistent with usual aggregation methods that sum to 1. However,
in other methods it is possible to relax this condition, but then we do not have usual
aggregation but rather heavy aggregation [32] in which the sum of the weighting
vector is not 1.

• In order to assess the weighting vector, we must have a method for converting the
interval numbers into exact numbers. Note that we employ the method discussed
in Section 2.1. although it is possible to use other approaches. If we do not use a
conversion method, we are not able to prove that the final result obtained for the
weighting vector sums to 1.

• We always address interval weights (and interval arguments) to provide the most
complete information during the aggregation process. We only reduce the interval
weights into exact numbers to normalize the information and to obtain the final
result, if necessary.
– Note that another possibility that we could consider is to use the method ex-
plained in Section 2.1. to convert interval numbers into exact numbers at the
beginning of the aggregation process so that only exact numbers are used during
the aggregation process. However, if we choose to do so, then we are not pro-
viding the most complete information in the aggregation process because exact
numbers are less informative.

• We assume that the initial interval weights are an initial representation. However,
during the normalization process, it is possible to be less than or greater than the
bounds because the weights were not normalized in the beginning due to uncertainty.
– The other alternative is to assume that interval weights were already strictly
analyzed to ensure that they will not be below or above their bounds. This
approach will be studied in future research.

The procedure that we suggest in this paper for interval weights in uncertain aggregation
operators can be summarized as follows.

Step 1: Calculate the sum of all weights.
Step 2: Convert the result into a representative exact number. In this paper, we use

a = (a1+2a2+ a3)/4. The result obtained will be the coefficient used for normalizing the
initial weighting vector.

Step 3: If a is 1, the initial weights are already normalized. If not, divide all initial

weights w̃i (for the UWA) or w̃j (for the UOWA) by a, that is,
w̃i

a
or

w̃j

a
.

Step 4: Use the weight
w̃i

a
or

w̃j

a
in the uncertain aggregation process. For example,

apply them to Definitions 2.2-2.12.
Step 5: The result obtained in the aggregation process is the final uncertain aggregated

result presented in the form of an interval number.
Additionally, it is possible to convert this final result into a representative exact number

by setting a = (a1+2a2+ a3)/4 or another approach for converting interval numbers into
exact numbers. A general way to do this that includes the previous method is by using a

weighted average a =
n∑

i=1

wiai, where ai is the ith value of the interval number, and wi is

the weight given to each value of the interval. Note that in the previous method, we have
a = 0.25 × a1 + 0.5 × a2 + 0.25 × a3. Note also that this weighted average is a general
expression that can be used in Step 2.
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Example 3.1. Assume the following interval weights for use in an aggregation process:
W = (w1 = (0.1, 0.2, 0.3), w2 = (0.3, 0.4, 0.5), w3 = (0.4, 0.5, 0.6)).
Step 1: We calculate the sum of the weighting vector W .

W = (0.1, 0.2, 0.3) + (0.3, 0.4, 0.5) + (0.4, 0.5, 0.6) = (0.8, 1.1, 1.4).

Step 2: We convert the interval weighting vector into a representative exact number.

W =
0.8 + 2× 1.1 + 1.4

4
= 1.1.

Step 3: As the sum is not 1, we normalize all initial weights by dividing them by 1.1.

w1 =
(0.1, 0.2, 0.3)

1.1
= (0.0909, 0.1818, 0.2727).

w2 =
(0.3, 0.4, 0.5)

1.1
= (0.2727, 0.3636, 0.4545).

w3 =
(0.4, 0.5, 0.6)

1.1
= (0.3636, 0.4545, 0.5454).

Step 4: Now we use these weights in the uncertain aggregation process.

To prove that these weights are consistent with usual aggregation, we prove that the
sum of the new weighting vector is equal to 1. Thus, we calculate the sum of the new
weighting vector.

W ∗ = (0.0909, 0.1818, 0.2727) + (0.2727, 0.3636, 0.4545) + (0.3636, 0.4545, 0.5454)
= (0.7272, 1, 1.2727).

Now we convert the interval obtained into a representative exact number, with (0.7272+
2× 1+ 1.2727)/4 = 1. As we can see, the sum of the weighting vector is equal to 1 in the
particular case that we use a representative exact number.
Moreover, it is worth noting that there are many other methods that could be considered

depending on the assumptions we make in this analysis. Especially when the results
obtained in the previous approach do not sum to 1 in the central value, we may prefer to
consider another approach.
For example, we could use a method that normalizes the weighting vector by considering

the value(s) with the highest degree of possibility for an interval distinct from the upper
and lower bounds. Thus, the normalization process consists in normalizing the weights

w2h using
w2h

m∑
h=1

w2h

, where w2h is the hth central value of the weighting vector, and the

w1h and w3h using
w1h

m∑
h=1

(
w1h + w3h

2

) and
w3h

m∑
h=1

(
w1h + w3h

2

) . Note that according to this

method, we always assume that the sum of the central values of the weighting vector is
equal to 1.
These and other methods will be considered in more detail in future research. Note

that it is straightforward to implement these methods when using interval probabilities
because the probability can be treated as a weighted average.

4. Uncertain Decision-Making with Dempster-Shafer Theory. In this section, we
present a new decision-making model. First, we briefly describe the main concepts behind
the D-S theory. Second, we develop the decision-making process. Third, we study the use
of uncertain aggregation operators in a D-S framework. Finally, we study some particular
cases for use in analysis.
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4.1. The Dempster-Shafer theory of evidence. D-S theory provides a unifying frame-
work for representing uncertainty, as it can address situations of risk and ignorance as
special cases. Note that the case of certainty is also included, as it can be seen as a
particular case of risk and ignorance.

Definition 4.1. D-S belief structure defined on a space X consists of a collection of n
nonnull subsets of X, Bj for j = 1, · · ·, n, called focal elements, and a mapping m, called
the basic probability assignment, defined as m: 2X → [0, 1] such that:

1) m(Bj) ∈ [0, 1].
2)
∑n

j=1m(Bj) = 1.
3) m(A) = 0, ∀A ̸= Bj.

(12)

As discussed above, risk and ignorance are included as special cases of belief structure
in the D-S framework. For risk, a belief structure is called a Bayesian belief structure
if it consists of n focal elements such that Bj = {xj}, where each focal element is a
singleton. We note that we are in a situation of decision-making under risk environment
if m(Bj) = Pj = Prob{xj}.

The case of ignorance occurs when the belief structure consists of only one focal element
B, where m(B) comprises all possible states of nature. Thus, m(B) = 1. Other special
cases of belief structures, such as a consonant belief structure or a simple support function,
are studied in [2].

Note that we can use interval numbers in m(Bj). In order to deal with these situations,
we recommend the methodology explained in Section 3 for addressing interval weights.

Note also that two important evidential functions associated with these belief struc-
tures are the measures for plausibility and belief [2]. We provide definitions of these two
measures as developed by Shafer.

Definition 4.2. The plausibility measure Pl is defined as Pl: 2X → [0, 1] such that:

Pl(A) =
∑

A∩Bj ̸=∅

m(Bj). (13)

Definition 4.3. The belief measure Bel is defined as Bel: 2X → [0, 1] such that:

Bel(A) =
∑
Bj⊆A

m(Bj). (14)

Bel(A) represents the exact support to A, and Pl(A) represents the possible support to
A. With these two measures, we can form the interval of support to A as [Bel(A), Pl(A)].
This interval can be seen as the lower and upper bounds of the probability that A is
supported such that Bel(A) ≤ Prob(A) ≤ Pl(A). From this, we note that Pl(A) ≥Bel(A)
for all A. Another interesting feature of these two measures is that they are related insofar
as either Bel(A) = 1 – Pl(Ā) or Pl(A) = 1 – Bel(Ā), where Ā is the complement of A.

4.2. A decision-making approach. A new method for decision-making using D-S the-
ory is possible by employing interval numbers (or uncertain aggregation operators) in
a given problem. The main advantage of this approach is that we can represent in a
more complete way the decision problem because the use of interval numbers allows us to
consider the maximum and the minimum values that may occur in the uncertain environ-
ment. Note that in the classical approach [3,5,9], we can only consider an exact number,
which is usually not enough to represent the environment. Moreover, by using triplets,
quadruplets and more complex structures, we can also consider internal results of the
interval that represents most probable results in the particular problem under analysis.
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The decision process can be summarized as follows. Note that we assume the use of either
the UWA or UOWA operator.
Assume we have a decision problem in which we have a collection of alternatives

{A1, · · ·, Ap} with states of nature {S1, · · ·, Sn}. ãih is the uncertain payoff, known in
the form of interval numbers to the decision maker if he/she selects alternative Ai under
state of nature Sh. The knowledge regarding the state of nature is captured in terms of
a belief structure m with focal elements B1, · · ·, Br. Associated with each of these focal
elements is a weight m(Bk). The objective of the problem is to select the alternative that
yields the best result to the decision maker. To do so, we observe the following steps:
Step 1: Express (or calculate) the results of the payoff matrix using interval numbers.

In this paper, we assume that these results are given. However, note that to formulate
these results, we must analyze each alternative with each state of nature and analyze the
result obtained by taking into account all the variables that affect the results under the
given alternative.
Step 2: Calculate the belief function m for the states of nature to obtain probabilistic

information regarding the problem.
Step 3: Calculate the attitudinal character (or degree of orness) of the decision maker

α(W ) [25].
Step 4: Calculate the collection of weights w to be used in UWA or UOWA aggregation

for each different cardinality of focal elements. Note that it is possible to use different
methods depending on the preferences of the decision maker [5,35,38]. Note that for
UWA aggregation, we must calculate the weights according to a degree of importance
(or subjective probability) of each state of nature. This can be carried out by using the
opinion of a group of experts that has some information about the probability that each
state of nature will occur. Moreover, note that the weights may be represented in the
form of interval numbers. To address these uncertain weights, we recommend using the
method explained in Section 3.
Step 5: Determine the uncertain results of the collection Mik if we select alternative Ai

and focal element Bk occurs for all values of i and k. Hence, Mik = {ãih|Sh ∈ Bk}.
Step 6: Calculate the uncertain aggregated results Vik = UWA(Mik) using Equation (1),

and Vik = UOWA(Mik) using Equation (2) for all values of i and k. Note that the UWA
operator (or the UOWA operator) aggregates all elements of the set Mik = {ãih|Sh ∈ Bk}.
Step 7: For each alternative, calculate the generalized expected value Ci by using the

belief function m and the uncertain aggregated results Vik, where:

Ci =
r∑

k=1

Vikm(Bk). (15)

Step 8: Select the alternative with the largest Ci as optimal. Note that in a minimization
problem, the optimal choice is the lowest result. Moreover, sometimes the ranking is not
clear because we are comparing interval numbers. When ranking interval numbers, we
recommend the method explained in Section 2.1 for simplicity.
In terms of the generalized reordering step, it is possible to distinguish between ascend-

ing and descending orders in UOWA aggregation.
The procedure under the AUOWA operator during aggregation is the same as the

procedure used for the UOWA or DUOWA operator with the following differences.
In Step 3, when calculating the degree of optimism (or degree of orness) of the decision

maker, the reordering of the arguments is carried out in an ascending way.
In Step 4, when calculating the collection of weights, the reordering will be different such

that we may be able to associate each weight correctly with its corresponding position.
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In Step 6, when calculating the aggregated payoff, we let Vik = AUOWA(Mik) for all
the values of i and k.

4.3. Belief structures with uncertain aggregation operators. By analyzing aggre-
gation in Steps 6 and 7 presented in the previous subsection, it is possible to formulate
the entire aggregation process in one sentence. We will call this process the belief struc-
ture BS-UWA for the UWA operator and the belief structure BS-UOWA for the UOWA
operator. They can be defined as follows.

Definition 4.4. A BS-UWA operator is defined by

f(ã11, · · ·, ãq1, · · ·, ãqr) =
r∑

k=1

q∑
h=1

m(Bk)w̃khãkh, (16)

where w̃kh is the weight of the hth state of nature of the kth focal element such that
1

r

q∑
h=1

w̃kh = 1 and w̃kh ∈ [0, 1], each ãkh is an argument of the hth state of nature of the

kth focal element and represented in terms of interval numbers, and m(Bk) is the basic
probability assignment.

Definition 4.5. A BS-UOWA operator is defined by

f(ã11, · · ·, ãq1, · · ·, ãqr) =
r∑

k=1

q∑
j=1

m(Bk)w̃kj b̃kj, (17)

where b̃kj is the kjth largest of the ãkh, each ãkh is an argument of the hth state of nature
of the kth focal element and represented in terms of interval numbers, w̃kj is the weight of

the jth largest argument of the kth focal element such that
1

r

q∑
j=1

w̃kj = 1 and w̃kj ∈ [0, 1],

and m(Bk) is the basic probability assignment.

Note that qk refers to the cardinality of each focal element, and r is the total number
of focal elements.

The BS-UOWA operator is monotonic, commutative, bounded and idempotent. We
can prove these properties with the following theorems.

Theorem 4.1 (Commutativity). Assume f is the BS-UOWA operator. Then,

f(ã11, · · ·, ãq1, · · ·, ãqr) = f(ã∗11, · · ·, ã∗q1, · · ·, ã∗qr), (18)

where (ã∗11, · · ·, ã∗q1, · · ·, ã∗qr) is any permutation of (ã11, · · ·, ãq1, · · ·, ãqr) for each focal ele-
ment k.

Proof: Let

f(ã11, · · ·, ãq1, · · ·, ãqr) =
r∑

k=1

qk∑
j=1

m(Bk)w̃jkb̃jk, (19)

f(ã∗11, · · ·, ã∗q1, · · ·, ã∗qr) =
r∑

k=1

qk∑
j=1

m(Bk)w̃jkb̃
∗
jk. (20)

Since (ã∗11, · · ·, ã∗qr) is a permutation of (ã11, · · ·, ãqr) for each focal element k, we have

b̃jk = b̃∗jk, and then

f(ã11, · · ·, ãqr) = f(ã∗11, · · ·, ã∗qr)
.
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Theorem 4.2 (Monotonicity). Assume f is the BS-UOWA operator. If ãkh ≥ ã∗kh, then

f(ã11, · · ·, ãq1, · · ·, ãqr) ≥ f(ã∗11, · · ·, ã∗q1, · · ·, ã∗qr). (21)

Proof: Let

f(ã11, · · ·, ãq1, · · ·, ãqr) =
r∑

k=1

qk∑
j=1

m(Bk)w̃jkb̃jk, (22)

f(ã∗11, · · ·, ã∗q1, · · ·, ã∗qr) =
r∑

k=1

qk∑
j=1

m(Bk)w̃jkb̃
∗
jk. (23)

Since ãik ≥ ã∗ik, ∀i, it follows that bjk ≥ b̃∗jk, and then

f(ã11, · · ·, ãq1, · · ·, ãqr) ≥ f(ã∗11, · · ·, ã∗q1, · · ·, ã∗qr).

Theorem 4.3 (Boundedness). Assume f is the BS-UOWA operator. Then,

min{ãi} ≤ f(ã11, · · ·, ãq1, · · ·, ãqr) ≤ max{ãi}. (24)

Proof: Let max {ãi} = b and min {ãi} = a, then

f(ã11, · · ·, ãqr) =
r∑

k=1

qk∑
j=1

m(Bk)w̃jkb̃jk ≤
r∑

k=1

qk∑
j=1

m(Bk)w̃jkb̃ = b̃

r∑
k=1

qk∑
j=1

m(Bk)w̃jk, (25)

f(ã11, · · ·, ãqr) =
r∑

k=1

qk∑
j=1

m(Bk)w̃jkb̃jk ≥
r∑

k=1

qk∑
j=1

m(Bk)w̃jkã = ã
r∑

k=1

qk∑
j=1

m(Bk)w̃jk. (26)

Since
∑qk

j=1 w̃jk = 1 for each focal element and
∑r

k=1m(Bk) = 1, we get

f(ã11, · · ·, ãqr) = b, (27)

f(ã11, · · ·, ãqr) = a. (28)

Therefore,

min{ãi} ≤ f(ã11, · · ·, ãq1, · · ·, ãqr) ≤ max{ãi}.

Theorem 4.4 (Idempotency). Assume f is the BS-UOWA operator. If ãkh = ã for all
i ∈ N , then

f(ã11, · · ·, ãq1, · · ·, ãqr) = ã. (29)

Proof: Since ãi = ã,∀i ∈ N , we have

f(ã11, · · ·, ãqr) =
r∑

k=1

qk∑
j=1

m(Bk)w̃jkb̃jk =
r∑

k=1

qk∑
j=1

m(Bk)w̃jkã = ã

r∑
k=1

qk∑
j=1

m(Bk)w̃jk. (30)

Since
∑qk

j=1 w̃jk = 1 for each focal element and
∑r

k=1m(Bk) = 1, we get

f(ã11, · · ·, ãqr) = ã.

Based on the generalized reordering step, it is possible to distinguish between descending
and ascending orders by using wj = w∗

n−j+1, where wj is the jth weight of the DUOWA
and w∗

n−j+1 is the jth weight of the AUOWA operator. Thus, we obtain the BS-DUOWA
and BS-AUOWA operators.
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4.4. Families of BS-UOWA operators. By choosing a different manifestation of the
weighting vector of the UOWA operator, we can develop different families of UOWA and
BS-UOWA operators. As it can be seen in Definition 4.5, each focal element uses a
different weighting vector in the aggregation step under the UOWA operator. Therefore,
these different vectors must be analyzed separately.

Remark 4.1. For example, it is possible to obtain the uncertain maximum, the uncertain
minimum and the UA operator.

• The uncertain maximum is obtained if wp = 1 and wj = 0 for all j ̸= p and up =
max {ãi}.

• The uncertain minimum is obtained if wp = 1 and wj = 0 for all j ̸= p and up =
min {ãi}.

• The UA is found when wj = 1/n for all ãi.

Other families of UOWA operators can be used in the BS-UOWA operator such as
the step-UOWA, the olympic-UOWA and the centered-UOWA operator, among others.
In the literature, we find a wide range of methods for determining OWA weights that
could be applied to the UOWA. However, in this subsection, we simply provide a general
overview of some basic cases that are applicable to the UOWA operator. Note that these
families provide a more complete picture of the aggregation process and each of them
is useful in some particular situations depending on the interests of the specific problem
considered. For more information on these families, see [5,35,38].

Remark 4.2. The step-UOWA operator is obtained when wk = 1 and wj = 0, for all
j ̸= k. Note that the median-UOWA can be understood as a particular case of the step-
UOWA operator that occurs when the number of arguments is odd.

Remark 4.3. The olympic-UOWA operator is obtained if w1 = wn = 0 and wj = 1/(n−
2) for all others weights. A general form of the olympic-UOWA can be employed by
considering that wj = 0 for j = 1, 2, · · ·, k, n, n − 1, · · ·, n − k + 1 and wj∗ = 1/(n − 2k)
for all others weights, where k < n/2. Note that if k = 1, then this general form becomes
the usual olympic aggregation.

Remark 4.4. Another interesting family is the S-UOWA operator. In this case, we can
distinguish between three types, namely, the “orlike”, the “andlike” and the “generalized”
S-UOWA operator. The generalized S-UOWA operator is obtained when w1 = (1/n)(1−
(α + β)) + α, wn = (1/n)(1 − (α + β)) + β and wj = (1/n)(1 − (α + β)) for all j = 2
to n − 1, where α, β ∈ [0, 1] and α + β ≤ 1. Note that if α = 0, we obtain the andlike
S-UOWA operator, and if β = 0, we obtain the orlike S-UOWA operator. Also, note that
if α + β = 1, we obtain the uncertain Hurwicz criteria.

Remark 4.5. The centered-UOWA operator is obtained if the aggregation is symmetric,
strongly decaying and inclusive. It is symmetric if wj = wj+n−1. It is strongly decaying
when i < j ≤ (n+ 1)/2, wi < wj and i > j ≥ (n+ 1)/2 so that wi < wj. It is inclusive if
wj > 0. Note that it is possible to consider different particular cases of this operator by
softening the second condition to wi ≤ wj instead of wi < wj and by removing the third
condition.

Remark 4.6. Finally, if we assume that all focal elements use the same weighting vector
(which is a very special case), we can refer to families such as the BS-uncertain maximum,
the BS-uncertain minimum, the BS-UA, the BS-UWA, the BS-S-UOWA, the BS-olympic-
UOWA and the BS-centered-UOWA.
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5. Uncertain Hybrid Aggregation Operators in D-S Theory. In some situations,
the decision maker may prefer to use another type of uncertain aggregation operator
such as the UHA operator. The main advantage of this operator is that it uses the
characteristics of the UWA and UOWA operators in the same aggregation. Thus, if we
introduce this operator in decision-making with D-S theory, we are able to develop a
unifying framework that includes characteristics of the UWA and UOWA operators in the
same formulation and probabilities.
To use this type of aggregation in a D-S framework, in Step 3, we use two weighting

vectors when calculating the collection of weights for the aggregation because we are
mixing in the same problem the UWA and UOWA operators to address the same problem.
In Step 5, we employ the UHA operator instead of the UOWA operator by using

Equation (3) when calculating the uncertain aggregated results.
Note that it is also possible to formulate in one equation the whole aggregation process.

We call this the BS-UHA operator.

Definition 5.1. A BS-UHA operator is defined by

f(ã11, · · ·, ãq1, · · ·, ãqr) =
r∑

k=1

q∑
j=1

m(Bk)w̃kj b̃kj, (31)

where b̃kj is the kjth largest of the âkh, where âi = nω̃iãi, i = (1, 2, · · ·, n), ω̃ = (ω̃1, ω̃2, · · ·,
ω̃n) is the weighting vector of the âkh, with ω̃i ∈ [0, 1], the sum of the weights is 1, ãkh
is an argument of the hth state of nature of the kth focal element represented in terms of
interval numbers, w̃kj is the weight of the jth largest argument of the kth focal element

such that
1

r

q∑
j=1

w̃kj = 1 and w̃kj ∈ [0, 1], and m(Bk) is the basic probability assignment.

As we can see, the focal weights aggregate the results obtained by using the UHA
operator. Note that if ωi = 1/n for all i, then Equation (22) is transformed into Equation
(17), and if wj = 1/n for all j, then Equation (22) becomes Equation (16).
In this case, we could also study different properties and particular cases of the BS-

UHA operator, such as the distinction between descending (BS-DUHA) and ascending
(BS-AUHA) orders.
When aggregating the collection of uncertain results for each focal element, it is also

possible to consider a wide range of UHA operator families. For example, we could analyze
the uncertain hybrid maximum, the uncertain hybrid minimum, the UA, the UWA and the
UOWA operator. These operators are obtained in a similar way as the method discussed
in Section 4.4 with the exception of the UWA and UOWA operators. Note that the UWA
operator is obtained when wj = 1/n for all j, and the UOWA operator is obtained when
ωi = 1/n, for all i, respectively.
Finally, if we use the same family of UHA operators for all focal elements, then we

can aggregate according to operators such as the BS-uncertain hybrid maximum, the BS-
uncertain hybrid minimum, the BS-uncertain hybrid Hurwicz criteria, the BS-step-UHA,
the BS-olympic-UHA, the BS-S-UHA and the BS-centered-UHA.

6. Uncertain Generalized Aggregation Operators Using D-S Theory. In this
section, we analyze the use of uncertain generalized aggregation operators under D-S
theory. First, we consider the use of uncertain generalized weighted aggregation operators.
Second, the use of the uncertain generalized OWA is discussed. Third, the use of uncertain
generalized hybrid aggregations is analyzed, and fourth, we consider the use of uncertain
induced generalized aggregation operators.
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6.1. Uncertain generalized weighted aggregation operators using D-S theory.
A more general formulation can be formulated by using uncertain generalized aggregation
operators. For example, we could use the uncertain generalized weighted average (UGWA)
and the uncertain quasi-arithmetic weighted average (Quasi-UWA). The main advantage
of this approach is that we can consider a wide range of UWA aggregations in the analysis
such as quadratic and geometric ones. By using these procedures, we must make the
following changes to the previous decision-making processes discussed in Sections 4.2 and
5.

In Step 3, when calculating the collection of weights for the aggregation, we must adapt
the problem because we are using uncertain weighted averages.

In Step 5, when calculating the uncertain results, we must employ the UGWA and
Quasi-UWA operators by using Equation (4) and Equation (5), respectively.

Note that it is also possible to formulate the entire aggregation process in one equation
for each operator. We call these equations the BS-UGWA operator and the BS-Quasi-
UWA operator.

Definition 6.1. A BS-UGWA operator is defined by

f(ã11, · · ·, ãq1, · · ·, ãqr) =
r∑

k=1

m(Bk)

(
q∑

h=1

w̃khã
λ
kh

)1/λ

, (32)

where w̃kh is the weight of the hth state of nature of the kth focal element such that
1

r

q∑
h=1

w̃kh = 1 and w̃kh ∈ [0, 1], ãkh is an argument of the hth state of nature of the

kth focal element represented in terms of interval numbers, m(Bk) is the basic probability
assignment, and λ is a parameter such that λ ∈ (−∞,∞).

Definition 6.2. A BS-Quasi-UWA operator is defined by

f(ã11, · · ·, ãq1, · · ·, ãqr) =
r∑

k=1

m(Bk)g
−1

(
q∑

h=1

w̃khg(ãkh)

)
, (33)

where w̃kh is the weight of the hth state of nature of the kth focal element such that
1

r

q∑
h=1

w̃kh = 1 and w̃kh ∈ [0, 1], ãkh is an argument of the hth state of nature of the

kth focal element represented in terms of interval numbers, m(Bk) is the basic probability
assignment, and g(ã) is a strictly continuous monotonic function such that g: I → R.

6.2. Uncertain generalized OWA operator using D-S theory. If we prefer to aggre-
gate by considering the attitudinal character (or degree of orness) of the decision maker,
we could use the uncertain generalized OWA operator and the Quasi-UOWA operator.
The main advantage of this approach is that we can consider a parameterized family of
aggregation operators between the uncertain minimum and maximum and a wide range
of particular cases such as the uncertain geometric OWA operator and the uncertain
quadratic OWA operator. In these cases, we make the following changes.

In Step 3, we use weights that are in accordance with the decision maker’s preferences
when calculating the collection of weights for the aggregation. This is obtained by using
one of the methods to derive OWA weights, as discussed in previous literature.

In Step 5, when calculating the uncertain results, we use the UGOWA and the Quasi-
UOWA operators by employing Equation (6) and Equation (7), respectively. Note that
it is also possible to formulate the entire aggregation process in one equation for each
operator. We call these equations the BS-UGOWA operator and the BS-Quasi-UOWA
operator.
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Definition 6.3. A BS-UGOWA operator is defined by

f(ã11, · · ·, ãq1, · · ·, ãqr) =
r∑

k=1

m(Bk)

(
q∑

j=1

w̃kj b̃
λ
kj

)1/λ

, (34)

where b̃kj is the kjth largest of the ãkh, ãkh is an argument of the hth state of nature of
the kth focal element represented in terms of interval numbers, w̃kj is the weight of the jth

largest argument of the kth focal element such that
1

r

q∑
j=1

w̃kj = 1 and w̃kj ∈ [0, 1], m(Bk)

is the basic probability assignment, and λ is a parameter such that λ ∈ (−∞,∞).

Definition 6.4. A BS-Quasi-UOWA operator is defined by

f(ã11, · · ·, ãq1, · · ·, ãqr) =
r∑

k=1

m(Bk)g
−1

(
q∑

j=1

w̃kjg(b̃kj)

)
, (35)

where b̃kj is the kjth largest of the ãkh, ãkh is an argument of the hth state of nature of
the kth focal element represented in terms of interval numbers, w̃kj is the weight of the jth

largest argument of the kth focal element such that
1

r

q∑
j=1

w̃kj = 1 and w̃kj ∈ [0, 1], m(Bk)

is the basic probability assignment, and g(b̃) is a strictly continuous monotonic function
such that g: I → R.

6.3. Uncertain generalized hybrid aggregation operators using D-S theory. An-
other formulation that can be introduced into the model involves the use of hybrid ag-
gregations. The main advantage of hybrid aggregations is that we can consider the UWA
and UOWA operators in the same formulation under a general framework that is assessed
with generalized aggregation operators. In these cases, we should also revise Steps 3 and
5 by using both the UGHA and Quasi-UHA operators. If we want to formulate the en-
tire aggregation process in one equation for each operator, we obtain the BS-UGHA and
BS-Quasi-UHA operators.

Definition 6.5. A BS-UGHA operator is defined by

f(ã11, · · ·, ãq1, · · ·, ãqr) =
r∑

k=1

m(Bk)

(
q∑

j=1

w̃kj b̃
λ
kj

)1/λ

, (36)

where b̃kj is the kjth largest of the âkh, with âi = nω̃iãi, i = (1, 2, · · ·, n), ω̃ = (ω̃1, ω̃2, · · ·,
ω̃n) is the weighting vector of the ãkh, with ω̃i ∈ [0, 1], the sum of the weights is 1, ãkh
is an argument of the hth state of nature of the kth focal element represented in terms of
interval numbers, w̃kj is the weight of the jth largest argument of the kth focal element

such that
1

r

q∑
j=1

w̃kj = 1 and w̃kj ∈ [0, 1], m(Bk) is the basic probability assignment, and λ

is a parameter such that λ ∈ (−∞,∞).

Definition 6.6. A BS-Quasi-UHA operator is defined by

f(ã11, · · ·, ãq1, · · ·, ãqr) =
r∑

k=1

m(Bk)g
−1

(
q∑

j=1

w̃kjg(b̃kj)

)
, (37)

where b̃kj is the kjth largest of the âkh, with âi = nω̃iãi, i = (1, 2, · · ·, n), ω̃ = (ω̃1, ω̃2, · · ·,
ω̃n) is the weighting vector of the ãkh, with ω̃i ∈ [0, 1], the sum of the weights is 1, âkh
is an argument of the hth state of nature of the kth focal element represented in terms of
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interval numbers, w̃kj is the weight of the jth largest argument of the kth focal element

such that
1

r

q∑
j=1

w̃kj = 1 and w̃kj ∈ [0, 1], m(Bk) is the basic probability assignment, and

g(b̃) is a strictly continuous monotonic function such that g: I → R.

6.4. Uncertain induced generalized aggregation operators using D-S theory. A
more general formulation of the previous methods can be developed by using uncertain
induced generalized aggregation operators [17,33]. This means that we would employ the
UIGOWA, the Quasi-UIOWA, UIHA and Quasi-UIHA operators. Thus, we can deal with
complex reordering processes in the aggregation phase that represent complex attitudinal
characters (or degree of orness) by considering psychological or personal factors in the
analysis. If we introduce these uncertain induced generalized aggregation operators in
the decision-making process under a D-S belief structure, we make the following changes.

To calculate the collection of weights for the aggregation in Step 3, we adapt the problem
of calculating the OWA weights based on the particular type of aggregation operator that
we are using.

When calculating the uncertain aggregated payoff in Step 5, we employ the UIGOWA,
Quasi-UIOWA, UIGHA and Quasi-UIHA operators by using Equation (10) and Equation
(11), respectively. Note that it is also possible to formulate the entire aggregation process
in one equation for each operator. We call these equations the BS-UIGOWA and BS-
Quasi-UIOWA operators.

Definition 6.7. A BS-UIGOWA operator is defined by

f(ã11, · · ·, ãq1, · · ·, ãqr) =
r∑

k=1

m(Bk)

(
q∑

j=1

w̃kj b̃
λ
kj

)1/λ

, (38)

where b̃kj equals âkh from the UIGOWA pair ⟨ukh, ãkh⟩ having the kjth largest ukh, ukh

is the order-inducing variable, ãkh is an argument of the hth state of nature of the kth
focal element represented in terms of interval numbers, w̃kj is the weight of the jth largest

argument of the kth focal element such that
1

r

q∑
j=1

w̃kj = 1 and w̃kj ∈ [0, 1], m(Bk) is the

basic probability assignment, and λ is a parameter such that λ ∈ (−∞,∞).

Definition 6.8. A BS-Quasi-UIOWA operator is defined by

f(ã11, · · ·, ãq1, · · ·, ãqr) =
r∑

k=1

m(Bk)g
−1

(
q∑

j=1

w̃kjg(b̃kj)

)
, (39)

where b̃kj equals ãkh from the Quasi-UIOWA pair ⟨ukh, ãkh⟩ having the kjth largest ukh,
ukh is the order-inducing variable, ãkh is an argument of the hth state of nature of the
kth focal element represented in terms of interval numbers, w̃kj is the weight of the jth

largest argument of the kth focal element such that
1

r

q∑
j=1

w̃kj = 1 and w̃kj ∈ [0, 1], m(Bk)

is the basic probability assignment, and g(b̃) is a strictly continuous monotonic function
such that g: I → R.

Note that the BS-Quasi-UIGHA operator and the BS-Quasi-UIHA operator have the
same definition with the only difference being that now we use the formulation of the
hybrid aggregations with order-inducing variables.

Note that for these operators, we could study a wide range of particular cases of the
UIGOWA, Quasi-UIOWA, UIGHA and Quasi-UIHA operators. In particular, it is worth
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noting the uncertain induced ordered weighted geometric averaging belief structure (BS-
UIOWGA), the uncertain induced ordered weighted quadratic averaging belief structure
(BS-UIOWQA) and the uncertain induced hybrid quadratic averaging belief structure
(BS-UIHQA) operators.

7. Illustrative Example. This approach can be applied in a wide range of fields. It is
very useful in decision making problems because we can assess complex environments in a
more complete way [3,5,6,8]. For example, we can use it in portfolio management, human
resource selection, financial decision making and political management. We can also use it
in a wide range of problems in statistics such as linear regression and descriptive statistics.
In general, all the previous studies that use the probability and the weighted average can
be revised and extended with this new approach because we can always reduce it to the
classical model.
In the following section, we develop an application of the proposed approach to a

decision-making problem. We analyze a problem regarding the selection of strategies in
which an enterprise searches for an optimal strategy for the coming year. We develop our
analysis by considering a wide range of particular cases of uncertain aggregation operators,
such as the UA, UWA, UOWA, UHA and UIOWA operators. Note that in the literature,
there are a wide range of decision making methods [48-54].
Assume an enterprise that operates in Europe and North America is planning its strat-

egy for the next year by considering five possible strategies as follows.

• A1 = Expand to the Asian market.
• A2 = Expand to the South American market.
• A3 = Expand to the African market.
• A4 = Expand to all three continents.
• A5 = Do not expand.

To evaluate these strategies, a group of experts from the enterprise evaluates the eco-
nomic situation of the company for the coming year. After careful analysis, the experts
develop five possible situations that could occur in the future.

• S1 = Very bad economic situation.
• S2 = Bad economic situation.
• S3 = Regular economic situation.
• S4 = Good economic situation.
• S5 = Very good economic situation.

Using these uncertain situations the experts establish the payoff matrix. As the future
states of nature are very imprecise, the experts cannot determine exact numbers in the
payoff matrix. Instead, they use interval numbers to calculate the future benefits of the
enterprise depending on the state of nature that may occur in the future and the strategy
selected. The results are shown in Table 1.

Table 1. Payoff matrix

S1 S2 S3 S4 S5

A1 (20,30,40) (50,60,70) (30,40,50) (60,70,80) (60,70,80)
A2 (60,70,80) (40,50,60) (30,40,50) (70,80,90) (30,40,50)
A3 (50,60,70) (50,60,70) (40,50,60) (30,40,50) (40,50,60)
A4 (60,70,80) (20,30,40) (30,40,50) (30,40,50) (60,70,80)
A5 (50,60,70) (70,80,90) (30,40,50) (20,30,40) (40,50,60)
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After careful analysis of available information, the experts derive some probabilistic
information about which state of nature will most likely occur in the future. This infor-
mation is represented by the following belief structure about the states of nature.

Focal element

m(B1) = {S1, S2, S3} = 0.3.

m(B2) = {S2, S3, S4} = 0.3.

m(B3) = {S3, S4, S5} = 0.4.

The attitudinal character of the enterprise is very complex because it involves the
opinion of different members of the board of directors. After careful evaluation, the
experts establish the following weighting vectors for both the UWA and UOWA operators.
For simplicity, we assume that the weights are represented with exact numbers. Note also
that for the induced aggregation operators, we use the order-inducing variables U =
(10, 22, 24, 34, 17).

Weighting vector

W3 = ω3 = (0.3, 0.3, 0.4).

W4 = ω4 = (0.2, 0.2, 0.3, 0.3).

W5 = ω5 = (0.1, 0.2, 0.2, 0.2, 0.3).

With this information, we can generate the uncertain aggregated results. They are
shown in Table 2.

Table 2. Aggregated results

UA UWA UOWA UHA UIOWA
V11 (33.3,43.3,53.3) (33,43,53) (32,42,52) (28,36,44) (32,42,52)
V12 (46.6,56.6,66.6) (48,58,68) (45,55,65) (45,55,65) (47,57,67)
V13 (50,60,70) (51,61,71) (48,58,68) (57,68.5,80) (51,61,71)
V21 (43.3,53.3,63.3) (42,52,62) (42,52,62) (33,41,49) (45,55,65)
V22 (46.6,56.6,66.6) (49,59,69) (45,55,65) (45,55,65) (46,56,66)
V23 (43.3,53.3,63.3) (42,52,62) (42,52,62) (46.5,58,69.5) (42,52,62)
V31 (46.6,56.6,66.6) (46,56,66) (46,56,66) (37,45,53) (47,57,67)
V32 (40,50,60) (39,49,59) (39,49,59) (39,49,59) (41,51,61)
V33 (36.6,46.6,56.6) (37,47,57) (36,46,56) (46.5,58,69.5) (37,47,57)
V41 (36.6,46.6,56.6) (36,46,56) (35,45,55) (26,36,46) (39,49,59)
V42 (26.6,36.6,46.6) (27,37,47) (26,36,46) (26,36,46) (26,36,46)
V43 (40,50,60) (42,52,62) (39,49,59) (48,58,68) (42,52,62)
V51 (50,60,70) (48,58,68) (48,58,68) (40,50,60) (50,60,70)
V52 (40,50,60) (38,48,58) (38,48,58) (38,48,58) (43,53,63)
V53 (30,40,50) (31,41,51) (29,39,49) (35,45,55) (31,41,51)

Once we have generated the aggregated results, we can calculate the uncertain gener-
alized expected value. The results are shown in Table 3.

As we can see, depending on the uncertain aggregation operator used, the results and
decisions may differ. Note that in this example, our optimal choice is the same for all
aggregation operators, but in other situations, we may find that different decisions are
derived from different aggregation operators.
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Table 3. Uncertain generalized expected value

UA UWA UOWA UHA UIOWA
A1 (44,54,64) (40.7,50.7,60.7) (42.3,52.3,62.3) (44.7,54.7,64.7) (44.1,54.1,64.1)
A2 (44.3,54.3,64.3) (44.1,54.1,64.1) (42.9,52.9,62.9) (42,52,62) (44.1,54.1,64.1)
A3 (40.6,50.6,60.6) (40.3,50.3,60.3) (39.9,49.9,59.9) (41.4,51.4,61.4) (41.2,51.2,61.2)
A4 (35,45,55) (35.7,45.7,55.7) (33.9,43.9,53.9) (34.6,44.6,54.6) (36.3,46.3,56.3)
A5 (39,49,59) (38.2,48.2,58.2) (37.4,47.4,57.4) (37.4,47.4,57.4) (40.3,50.3,60.3)

Another interesting issue involves ordering the strategies. The ordering is very useful
when a decision maker wants to consider more than one alternative. The results are shown
in Table 4.

Table 4. Ordering of the strategies

Ordering Ordering
UA A2 ≻ A1 ≻ A3 ≻ A5 ≻ A4 UHA A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4

UWA A2 ≻ A1 ≻ A3 ≻ A5 ≻ A4 UIOWA A1 = A2 ≻ A3 ≻ A5 ≻ A4

UOWA A2 ≻ A1 ≻ A3 ≻ A5 ≻ A4

As we can see, depending on the aggregation operator used, the ordering of the strategies
may be different. Note that in this example, the optimal choice is A2 for the UA, UWA
and UOWA operators, but the optimal choice is A1 for the UHA operator. For the UIOWA
operator, both A1 and A2 are optimal.

8. Conclusions. We have studied the use of Dempster-Shafer belief structures in decision-
making under uncertain environments assessed with interval numbers. By using interval
numbers, we can analyze information in a more complete way because we can consider
the maximum and minimum values that may occur as well as the most possible results
in certain cases. We developed this approach by using a wide range of uncertain aggre-
gation operators, such as the UWA, the UOWA, the UHA, the UGWA, the Quasi-UWA,
the UGOWA, the Quasi-UOWA, the UGHA, the Quasi-UHA, the UIGOWA and the
Quasi-UIOWA operators. We also considered many particular cases of these aggregation
operators. Finally, we also presented a new method for addressing interval weights.
By using these aggregations into a D-S framework, we obtained a wide range of new ag-

gregation operators, such as the BS-UWA, the BS-UOWA, the BS-UHA, the BS-UGWA,
the BS-Quasi-UWA, the BS-UGOWA, the BS-Quasi-UOWA, the BS-UGHA, the BS-
Quasi-UHA, the BS-UIGOWA and the BS-Quasi-UIOWA operators. Thus, we can rep-
resent in a more complete way the D-S approach because we can consider uncertain
information that can be assessed with interval numbers.
We also developed an application of the new approach to a decision-making problem

regarding strategy selection, thereby, demonstrating, usefulness of using probabilistic in-
formation, the WA operator and the OWA operator in the same formulation. Moreover,
we showed that depending on the particular type of aggregation operator used, the re-
sults may indicate different decisions. Note that this approach can be implemented in a
wide range of decision making problems including political decision making and financial
decision making.
In future research, we expect to further develop this approach by using other sources of

information such as fuzzy numbers that will permit us to assess environments where we
have more knowledge to represent the information and including more complex formula-
tions to fully integrate the OWA operator, the WA operator and probabilistic information
in the same formulation.
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