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Abstract. This paper presents a new design method for repetitive-control systems based
on two-dimensional (2D) system theory and optimal control. First, a 2D model is estab-
lished that describes the control action within a repetition period and the learning process
between periods. Next, the problem of designing a repetitive controller is formulated as an
optimization problem for the 2D model. Then, one-dimensional optimal control theory is
used to find an optimal controller. Unlike other methods, this one allows the control and
learning actions to be preferentially adjusted. Finally, a numerical example demonstrates
the validity of this approach.
Keywords: Repetitive control, Optimal control, Linear quadratic regulator (LQR),
Two-dimensional model

1. Introduction. Periodic signals are very common in engineering. They are associated
with engines, electrical motors and generators, converters, machines that perform a cyclic
task and many other things. To handle them, repetitive control was originated by Inoue
et al. [1] and subsequently developed by many researchers, such as Hara et al. [2] and
Tomizuka et al. [3]. It has proven to be a very practical and effective way for a system to
track a periodic reference and reject periodic disturbances.

Over the last few decades, a great deal of research has been devoted to the theory and
application of repetitive control, and various structures and algorithms have been devised
[4-6]. Although repetitive control is closely related to a repetitive process (RP) [7] and to
iterative learning control (ILC) [8,9], it differs from them in a fundamental way, namely,
the boundary condition. For an RP and ILC, the initial state of each pass is set to the
same value. In contrast, for repetitive control the initial state of a period is the final state
of the previous period. This difference gives rise to a difference regarding stability. For
an RP and ILC, it is relatively easy to guarantee stability; but for repetitive control, it is
very difficult. Research on repetitive control has focused mainly on this issue.

A close examination of repetitive control shows that it actually involves two indepen-
dent types of actions: control and learning. Their characteristics are completely different:
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control is a continuous process within one repetition period, while learning is discrete be-
havior between periods. Information propagation occurs in both continuous and discrete
domains. Since there is no mathematical model that rigorously describes these two types
of actions, all the analysis and design methods for repetitive control that have so far been
developed ignore the difference between them. Moreover, they deal with the two different
actions equally in the time domain. As a result, they are based only on the overall effect
of the control and learning actions, and cannot produce a repetitive controller with a
sophisticated design that handles the two types of actions independently.
Previous studies on repetitive control have generally employed a feedback controller

to improve the closed-loop stability. They consider the problem of designing a feed-
back controller separately from that of designing a repetitive controller. This may result
in stability conditions that are complex and conservative. The new configuration for a
repetitive-control system in this paper solves the problem. It contains a dynamic compen-
sator and a state-feedback controller. The design method employs two-dimensional (2D)
system theory [7,10-12] and a linear-quadratic regulator [13-15]. The parameters of both
the feedback controller and dynamic compensator are designed simultaneously. First, a
2D model is derived that describes a repetitive-control system, and the design of the sys-
tem is formulated as the problem of stabilizing a 2D system. Next, an optimal controller
for the 2D system is obtained by solving a one-dimensional optimal control problem. The
optimal repetitive-control law features the preferential adjustment of control and learning.
Finally, a numerical example demonstrates the validity of this approach.
Throughout this paper, Rn denotes n-dimensional Euclidean space, and Rn×m is the

set of all n×m real matrices.

2. Problem Formulation and 2D Model of Repetitive-Control System. In the
basic configuration of a repetitive-control system (Figure 1), G(s) is the compensated
plant, r(t) is a periodic reference input with a period of L, Ke is a static compensator,
and

CR(s) =
1

1− e−sL
(1)

is a repetitive controller. Since

CR(jωk) =
1

1− e−jωkL
= ∞, ωk =

2kπ

L
, k = 0, 1, · · · ,

the gain of the controller is infinite at the angular frequencies of the fundamental and
harmonic waves of a periodic signal, and CR(s) is an internal model of a periodic signal.
So, inserting CR(s) into the control system guarantees that the output of the system,
y(t), tracks the periodic reference signal, r(t), without steady-state tracking error when
the closed-loop system is stable.

C  (s)
R

e−sL

G(s)

−

r (t) v (t) y (t) e  (t)

Ke

Figure 1. Basic configuration of repetitive-control system
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Figure 2. Repetitive-control system

When the repetitive-control system in Figure 1 has a pure-delay element and unit
positive feedback, it is called a neutral-type delay system [2]1. Since it contains an infinite
number of poles on the imaginary axis, it is very difficult to stabilize. The system in Figure
1 is stabilizable only when G(s) has a direct path from the input to the output; that is,
the relative degree of the plant must be zero. If that is not the case, then a low-pass filter
must be inserted into the delay path to facilitate stabilization. This structure is called a
modified repetitive-control system. The problem with it is that the low-pass filter prevents
the internal model principle from holding, which leads to steady-state tracking error. In
other words, stability is guaranteed at the cost of tracking precision [2]. Note that we
employ a dynamic compensator in this study. It is possible to use a static compensator,
Ke; but that gives rise to a trade-off between transient tracking performance and stability.
A dynamic compensator solves the problem.

As a preliminary step, we first consider the repetitive control of a plant with a relative
degree of zero. For the configuration in Figure 2, we consider the problem of designing
the dynamic compensator

ξ̇(t) = Acξ(t) +Bcv(t), ξ(t) ∈ Rnc (2)

and the control law

u(t) = Kpx(t) +Kev(t) +Kcξ(t). (3)

We take the hybrid nature of repetitive control into account by introducing two domains:
a continuous domain, τ , for the control process within one repetition period; and a discrete
domain, k, for the learning behavior between periods. The relationship between τ , k, and
time, t, is

t = kL+ τ, τ ∈ [0, L], k ∈ {0, 1, · · · }. (4)

Any variable, χ(t), in the time domain can be written as

χ(t) = χ(kL+ τ) := χ(k, τ) (5)

in the 2D domain. Also, we assume that χ(t) = 0 for t < 0 and denote

∆χ(t) := χ(t)− χ(t− L).

With the above preparation, let us construct a 2D model for repetitive control.

1A neutral-type delay system has the form ẋ(t)− Γẋ(t− L1) = Ax(t) +Bx(t− L2), where Γ ̸= 0 and
L1 ̸= 0.
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Consider the following controllable and observable plant{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(6)

where D ̸= 0; x(t) ∈ Rn is the state of the plant; and u(t) ∈ Rm and y(t) ∈ Rm are the
control input and output, respectively. For simplicity, this paper considers only the single-
input single-output case (m = 1). We also make the standard assumption in servo-system
design that the plant (6) has no zeros on the imaginary axis.
For a given periodic reference input, r(t), the tracking error is

e(t) = r(t)− y(t). (7)

(6) and (7) yield
∆ẋ(k, τ) = A∆x(k, τ) +B∆u(k, τ) (8)

and
e(k, τ) = e(k − 1, τ)− C∆x(k, τ)−D∆u(k, τ). (9)

(8) and (9) constitute a 2D model of the repetitive-control system. While the conventional
model (6) only describes the overall effect of control and learning, (8) describes the control
process during the k-th period, and (9) describes the learning behavior between the k-th
and (k−1)-th periods. Since (8) does not contain the term x(k−1, τ), control actions are
independent of learning behavior. On the other hand, (9) shows that learning behavior
is strongly affected by control results. This is because the amount of learning required
decreases as the speed of convergence for control increases.
Combining (8) and (9) yields[

∆ẋ(k, τ)
e(k, τ)

]
=

[
A 0
−C 1

] [
∆x(k, τ)
e(k − 1, τ)

]
+

[
B
−D

]
∆u(k, τ). (10)

Note that
e(k, τ) = ∆v(k, τ). (11)

The 2D representation of the dynamic compensator (2) is

∆ξ̇(k, τ) = Ac∆ξ(k, τ) +Bce(k, τ), (12)

and the control law (3) becomes

∆u(k, τ) = Kp∆x(k, τ) +Kee(k, τ) +Kc∆ξ(k, τ). (13)

Now, the design problem can be stated as a 2D regulation problem: Find a dynamic
compensator (12) and a stabilizing control law (13) for (10) that adjust the control and
learning actions.

3. Design of Optimal Repetitive Controller. The problem of designing a repetitive
controller can formulated as the problem of stabilizing the 2D system (10). Note that
∆x(t) = 0, e(t) = 0 and ∆u(t) = 0 in the steady state. Here, we employ the linear
quadratic regulator (LQR) method [13-15].
The quadratic performance index is chosen to be

J =
1

2

∞∑
k=0

∫ (k+1)L

kL

[
∆xT (k, τ)Qx∆x(k, τ) +Qee

2(k, τ) +R∆u2(k, τ)
]
dτ. (14)

The semi-positive-definite matrix Qx ∈ Rn×n, the nonnegative real number Qe ∈ R, and
the positive real number R ∈ R are given weights that adjust control, learning, and the
control input, respectively. The problem is to find (12) and (13) for the 2D system (10)
that minimize (14).
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Remark 3.1. For learning, the quadratic performance index should be

J =
1

2

∞∑
k=0

∫ (k+1)L

kL

[
∆xT (k, τ)Qx∆x(k, τ) +Qee

2(k − 1, τ) +R∆u2(k, τ)
]
dτ.

However, since optimization with this index produces the same results as using (14), we
use (14) for simplicity.

Remark 3.2. Note that the LQR method is widely used for tracking control in ILC [8,16].
Since ∆e(t) = −C∆x(t) − D∆u(t), the terms Qee

2(t) and ∆xT (t)Qx∆x(t) are mingled
in the performance index. As a result, (14) just assesses either the state or the tracking
error together with the control input. However, the 2D model allows ∆e(t) and ∆x(t) to
be assessed separately so that, not only can the overall control performance be adjusted,
but the control and learning actions can each be tuned.

On the other hand, if we rewrite the performance index (14) in the time domain, we
obtain

J =
1

2

∫ ∞

0

[
∆xT (t)Qx∆x(t) +Qee

2(t) +R∆u2(t)
]
dt. (15)

This is an LQR problem that is easy to solve using standard optimization theory [13] in
the time domain, as explained below.

Theorem 3.1. For the plant (6), the optimal control law that yields min J for the system
in Figure 2 is

∆u∗(k, τ) = [Kp Ke Kc]

 ∆x(k, τ)
e(k, τ)
∆ξ(k, τ)

 , (16)

Kp = −R−1BTP, (17)

Ke =
1

2
R−1DQe, (18)

Kc = −R−1BT , (19)

where the matrices P in (17), and Ac and Bc in (2) are

0 = ATP + PA− PBR−1BTP +Qx, (20)

Ac = −(A+BKp)
T , (21)

Bc =

(
1

2
CT +KT

p D

)
Qe. (22)

Furthermore, the optimal performance index is

Jmin =
1

2

[
xT (0)Qxx(0) +Qee

2(0)
]
. (23)

Note that, since the repetitive-control system employs a dynamic compensator, the
input matrix of the compensator, Bc, contains the weight Qe in (15), and the Riccati
Equation (20) contains the weights Qx and R in (15).

Introducing the following Hamiltonian makes the proof easy:

H =
1

2
∆x(t)TQx∆x(t) +

1

2
Qee

2(t) +
1

2
R∆u2(t)

+λT [A∆x(t) +B∆u(t)] +
1

2
∆xT (T )Sx∆x(T ) +

1

2
See

2(T ), (24)

where λ is a function of ∆x(t) and e(t), and thus is omitted.
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Clearly, (16) is equivalent to

u∗(t) = [Kp Ke Kc]

 x(t)
v(t)
ξ(t)

 . (25)

The optimal repetitive-control law, (25), contains three variables: the state of the plant,
x(t); the output of the internal model, v(t); and the state of the dynamic compensator,
ξ(t). They serve different purposes: The state feedback part, Kpx(t), improves the control
performance during one repetition period; and the state of the dynamic compensator,
Kev(t), and the state feedback part of the dynamic compensator, Kcξ(t), improve the
learning performance between repetition periods. For a given R, adjusting Qx changes
the gain matrix Kp, as can be seen in (17) and (20). So, the control action during one
period is regulated very simply by Qx. On the other hand, the learning action between
periods is related to Ke and Kc. It is clear from (18) that changing Qe directly affects Ke,
and thus the learning process. However, when D is very small, Ke cannot directly adjust
the learning process very much. In this case, it is regulated indirectly by the state ξ(t).
(10)-(13) yield a closed-loop repetitive-control system in 2D form: ∆ẋ(k, τ)

∆ξ̇(k, τ)
e(k, τ)

 = Acl

 ∆x(k, τ)
∆ξ(k, τ)
e(k − 1, τ)

 , (26)

Acl =


A1

BKeC

E

BKe

E

A2 A3
Bc

E

A4 −DKeC

E

1

E

 ,

A1 = A+
B(Kp −KeC)

E
,

A2 = −Bc

[
C +

D(Kp −KeC)

E

]
,

A3 = Ac −
BcDKeC

E
,

A4 = −C +D(Kp −KeC)

E
,

E = 1 +DKe.

The eigenvalues of the dynamic compensator are determined by the control part, A3.
However, (22) shows that Bc contains Qe. So in this case, Qe adjusts the learning action
through the state ξ(t).

Remark 3.3. Unlike other design methods, it is easy to obtain the parameters of the
dynamic compensator and the feedback controller (3) by selecting suitable values for R,
Qx and Qe. Furthermore, control and learning can be preferentially adjusted by tuning
the weights Qx and Qe, respectively, in the performance index (14).

4. Numerical Example. This section presents a numerical example that demonstrates
the validity of the design method.
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Figure 3. Simulation results for different weighting matrices
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Figure 4. Simulation results for design parameters in (30)

Consider the plant (6) with

A =

[
−2 3
0 −5

]
, B =

[
1
2

]
, C = [1 0], D = 1.

Let the periodic reference input be

r(t) = sin
2π

10
t+ 0.5 sin

4π

10
t+ 0.5 sin

6π

10
t, (27)

and let R in (14) be

R = 1.

If we choose

Qx = 100I2, Qe = 1 (28)

to emphasize control rather than learning in the repetitive-control law, it takes six periods
to complete the learning process (See simulation results in Figure 3(b)). However, if we
select

Qx = I2, Qe = 100 (29)

to emphasize learning, it takes just three periods (Figure 3(c)).
We found that

Qx = 10I2, Qe = 100. (30)
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(a) Tracking error using the design parameters in (34) (b) Tracking error using the design parameters in (35) 
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Figure 5. Results of adjusting Qx in conventional repetitive-control sys-
tem
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Figure 6. Simulation results for conventional repetitive-control system
designed using (32), (33) and (35)

provided the best control and learning performance. The parameters of the resulting
controller are 

Ac =

[
−3.5753 −3.1505
1.4085 −8.1831

]
, Bc =

[
−57.5254
−159.1527

]
,

Kp = [−1.5753 − 1.5915],
Kc = [−1 − 2], Ke = 100.

(31)

In this case, the system enters the steady state in the third period (Figure 4); and even
during the transient response, the largest tracking error is less than 2%.
Note that conventional methods of designing a repetitive-control system cannot sep-

arately adjust control and learning. As mentioned in Remark 3.2, they usually set Qe

to
Qe = 0. (32)

Here, without loss of generality, we let

R = 1 (33)

to obtain a conventional repetitive-control system so that we can compare the results with
those for our 2D system. Letting

Qx = 10I2 (34)

yields the simulation results in Figure 5(a), and letting

Qx = 200I2, (35)

yields the results in Figure 5(b). We found that Qx = 100I2 produced the best results
(Figure 6). Comparing them with Figure 4, we see that our 2D method yields better
transient and steady-state tracking performance than the conventional method does.
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Since other methods set Qe = 0 in the performance index (14), they cannot adjust the
learning directly. In contrast, our method assesses both e(t) and ∆x(t) in the performance
index, thereby enabling the control and learning actions to each be tuned.

5. Conclusion. This paper describes a design method for optimal repetitive control.
Unlike other methods, it employs a 2D model to separate control from learning. The
problem of designing a repetitive controller is first formulated as an optimization problem
for the 2D system. Then, an optimal repetitive controller is obtained by employing
one-dimensional optimal control theory. This method features the preferential tuning of
control and learning. Simulation results demonstrate the validity of the method.

Acknowledgment. This work was supported in part by the National Science Foundation
of China under Grants 60974045, 60674016 and 60425310.

REFERENCES

[1] T. Inoue, M. Nakano and S. Iwai, High accuracy control of servomechanism for repeated contour-
ing, Proc. of the 10th Annual Symposium on Incremental Motion, Control Systems and Devices,
Champaign, Illinois, pp.285-292, 1981.

[2] S. Hara, Y. Yamamoto, T. Omata and M. Nakano, Repetitive control system: A new type servo
system for periodic exogenous signals, IEEE Trans. Automat. Contr., vol.33, no.4, pp.659-668, 1988.

[3] M. Tomizuka, T. C. Tsao and K. K. Chew, Analysis and synthesis of discrete-time repetitive con-
trollers, Trans. ASME, J. Dynam. Syst., Meas., Contr., vol.111, no.2, pp.353-358, 1988.

[4] G. Hillerström and K. Walgama, Repetitive control theory and applications – A survey, Proc. of the
13th IFAC Triennial World Congress, San Francisco, USA, pp.1-6, 1996.

[5] K. Yamada, N. Li, M. Kobayashi and H. Takenaga, A design method for simple multi-period repeti-
tive controllers for time-delay plants, International Journal Innovative Computing, Information and
Control, vol.5, no.10(B), pp.3313-3328, 2009.

[6] J. D. Alvarez, L. J. Yebra and M. Berenguel, Adaptive repetitive control for resonance cancellation
of a distributed solar collector field, Int. J. Adaptive Control and Signal Processing, vol.23, no.4,
pp.331-352, 2009.

[7] L. Wu and Z. Wang, Robust L2-H∞ control of uncertain differential linear repetitive processes, Syst.
& Contr. Letters, vol.57, no.5, pp.425-435, 2008.

[8] J. X. Xu and Y. Tan, Linear and Nonlinear Iterative Learning Control, Springer-Verlag, Berlin
Heidelberg, New York, 2003.

[9] J. Yan and Z. Hou, Iterative learning control based freeway ramp metering with iteration-varying
parameter, International Journal Innovative Computing, Information and Control, vol.6, no.3(A),
pp.875-884, 2010.

[10] L. Xie and C. L. Du, H∞ Control and Filter of Two-Dimensional System, Springer-Verlag, Berlin
Heidelberg, 2002.

[11] Y. Xiao, Stability test for 2-D continuous-discrete systems, Proc. of the 40th IEEE Conf. Decision
and Control, Montreal, Canada, pp.3649-2652, 2001.

[12] J. Shi, F. Gao and T. J. Wu, Robust design of integrated feedback and iterative learning control of
a batch process based on a 2-D Roeser system, J. Process Control, vol.15, no.3, pp.907-924, 2005.

[13] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley-Interscience, New York, 1972.
[14] V. Zhou, Robust and Optimal Control, Prentice Hall, Upper Saddle River, NJ, 1996.
[15] Y. Takeuchi and M. Inoue, Optimization of observations for LQG control systems by an information

theoretic approach, International Journal Innovative Computing, Information and Control, vol.6,
no.1, pp.75-88, 2010.

[16] D. H. Owens and J. Hatonen, Iterative learning control – An optimization paradigm, Annual Reviews
in Control, vol.29, no.1, pp.57-70, 2005.


