
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2012 ISSN 1349-4198
Volume 8, Number 3(B), March 2012 pp. 2065–2088

E-LEARNING CONTENTS AUTOMATIC CONVERSION

Jose-Maria Gutierrez-Martinez, Antonio Garcia-Cabot, Eva Garcia
Luis de-Marcos, Roberto Barchino, Jose-Antonio Gutierrez-de-Mesa

Jose-Javier Martinez, Salvador Oton, Jose-Ramon Hilera
and Juan-Manuel de-Blas

Computer Science Department
Technical School of Computer Science Engineering

University of Alcalá
28871, Alcalá de Henares, Madrid, Spain

{ josem.gutierrez; a.garciac; eva.garcial; luis.demarcos; roberto.barchino }@uah.es
{ jantonio.gutierrez; josej.martinez; salvador.oton; jose.hilera; juan.mbq }@uah.es

Received December 2010; revised April 2011

Abstract. In this paper, an automatic transformation tool between different content
packaging specifications is proposed. The aim of this tool is to serve as a gateway for
independent, heterogeneous Learning Management Systems, thus achieving interoperabil-
ity. The tool is designed to support all existing content packaging specifications, but in
this paper we focus on two of the most important: IMS and SCORM. The paper also
describes in detail the conversion process for these two specifications, by depicting all the
aspects of the tool.
Keywords: Transformation, IMS, Content packaging, SCORM

1. Introduction. Information technologies have widely spread in our society and its in-
fluence in the learning process is very important at this moment. This influence has led
to the rise of new specific techniques for teaching and learning, called e-learning [1]. The
technological key in e-learning systems is Internet, and also how it can be integrated with
other more common technologies, like using SMS (Sort Message Service) messages to mo-
bile phones with data relative to the educative process [2]. These technologies are used to
perform most of the activities of the learning process as proposed in the Learning Tech-
nology System Architecture (LTSA) from the Learning Technology Standards Committee
of IEEE [3]. Below it is showed in a diagram (Figure 1) with main elements, relations
and actions of the architecture.

This architecture defines the basic entities which are found in e-learning systems: learn-
ers, teachers, learning contents and assessments.

In the whole process there is an element always present, the content. These contents
need to be maintained, delivered, fixed and could receive many other operations along
their use through e-learning systems. As many of these operations can be simplified
or aided by software tools, it is absolutely necessary to use a standard format in the
representation of the contents. These learning contents are known as “learning objects”,
which can be defined as “minimal units in which training materials can be organized, in
order to ease contents’ management: creation, indexation, storage, delivery, use, reuse,
evaluation and training improvement” [4]. And also they can be later assembled and/or
aggregated in order to create greater units of instructions (lessons, courses, etc.).

The European Committee for Standardization in the Learning Technologies Standard
Observatory [5] presents the most important specifications (Table 1) for content aggrega-
tion in e-learning system.

2065



2066 J.-M. GUTIERREZ-MARTINEZ, A. GARCIA-CABOT, E. GARCIA ET AL.

Figure 1. Learning technology system architecture

Table 1. Specifications in content aggregation in e-learning

ADL SCORM Content
Aggregation Model

http://www.adlnet.org

IMS Content Packaging http://www.imsglobal.org/content/packaging
AICC Course Structure http://www.aicc.org/docs/tech/cmi001v4.pdf
AICC Packaging http://aicc.org/docs/tech/cmi012v1.pdf
IEEE P1484.6 Course Sequencing http://ieeeltsc.org/

IMS [6] and SCORM [7] specifications share many of their characteristics but also have
some key differences in the representation of the structure of the learning content.
Other important issue to be considered is the extension of these systems and the huge

number of organizations that use them. This situation leads to the fact that the same
contents are created, maintained, modified and so on [8]. These are usually not identical
copies, but the contents are the same and aim to the same learning objective. So it would
be useful to share the work among the organization to avoid repeating the work over and
over again. This would save time and resources and would lead to high quality contents.
The main obstacle to get this is the, previously presented, existence of different types of
models for contents.
From all of this, we can infer the utility of automatic conversion between formats. This

conversion will allow the interaction between learning platforms at a high level of automa-
tion. The transformation is planned to be used as a part, the most relevant part, of a
system of intelligent agents designed to allow the Learning Management System (LMS)
interoperation with others LMS systems and with others systems of a learning content,
e.g., repositories of learning objects [9]. The network of agents and its interaction with
LMS and Learning Contents Managements Systems (LCMS) can be designed and devel-
oped using existing interfaces [10] and the systems of agents can be developed using tools
and frameworks [11,12]. So, one of the main remaining problem is the automatic con-
version of contents. We focus on this problem. We also consider that this interoperation
would benefit ubiquity, allowing the use of e-learning tools in mobile devices (m-learning),
using a wide range of representations, like 3D models [13].

2. Related Work. The reusability of learning contents always has been an interesting
topic in learning research [14]. The result of this are some works with comparative analyses
between different learning content models [15], these analyses show the similarities and
differences of some learning content models such as ‘Learnativity content model’, ‘CISCO



E-LEARNING CONTENTS AUTOMATIC CONVERSION 2067

RLO/RIO model’ and ‘SCORM content aggregation model’. This can be useful when
you want to transform from a learning content model to another.

More specifically concerning to conversion of learning content models, there are some
researches in developing an ontology for the conversion between learning contents [16], this
ontology provides an explicit definition of the LO (Learning Object) content structure, for-
mally specifying both LO component types and relationships between those components.
Other researches are focused in the transformation of documents, e.g., transformation of
a UML (Unified Modeling Language) diagrams to a IMS-learning design manifest [17].
This is possible because the diagrams are specified with XML and using XSLT sheets they
can be converted in other specifications. This can be applied to conversion of learning
content models because the models are specified using markup languages such as XML.

We propose an alternative model to try to overcome these drawbacks. We first analyze
the features of the different standards but we also propose a method for the automatic con-
version of contents that comply with different standards. Our approach is demonstrated
by implementing an application that performs the conversion and then by checking its
results. Our model does not consider any intermediate format, language or transforma-
tion. In our understanding, standards of content packaging are designed to be processed
by systems and not by humans. A review of the format of the different specifications
discloses it. So we think that automatic transformation tools are the only element that
is really required to convert into different formats. Visual languages may be useful for
content creation but, in our opinion, they are not so useful for transformation.

3. Automatic Conversion Process. The main activity in the interaction process be-
tween platforms is the transformation from one content model to another. As this inter-
action could be very complex, and could imply many issues, we focused on the conversion
process and the two main specifications (IMS and SCORM).

It is necessary a methodology for evaluating the complexity of the conversion and to
ensure its feasibility, we perform these main tasks:

• Content model structure analysis: firstly it is necessary to find the common and
not common points between the specifications. With the results of this analysis, the
transformations required are discovered. Also, the planning for the next tasks was
established, in order to set the appropriate contents to be transformed and the steps
needed to do so.

• Sample content is selected and it is packaged using IMS and SCORM specifications.
This task produced the starting material and the goal to be reached. With these
elements the transformation can be done and can be verified for correction.

• Developing a prototype for transforming from one specification to other one. The
transformation prototype was created using the Java language, and XML (Extensible
Markup Language) [18].

• Finally a validation is needed, which ensures that the content modeled using IMS and
automatically transformed to SCORM (using the prototype of task 3) is equivalent,
not necessarily equal, to the content modeled in SCORM in the task 2 and equivalent
to the original IMS formatted content.

3.1. Content model structure. Both content models selected share the same compo-
nents and differ in the structure of those components. The components and the compar-
ison between their formats are:

• The main component of both specifications is a compressed ZIP file which comprises
the rest of the files. The name of the file and the internal structure are not specified.
In this component, both formats are the same.



2068 J.-M. GUTIERREZ-MARTINEZ, A. GARCIA-CABOT, E. GARCIA ET AL.

• The second component is the manifest file, present in both specifications. The file is
called manifest, and its name must be “imsmanifest.xml” because it was first used
in IMS and subsequently SCORM used the same name and the general structure,
adding elements. This component will require processing to add elements while
transforming from IMS to SCORM and removing them in the opposite direction.

• The next component to consider contains multiple elements. These elements are
the XML (more specifically XML Schema) files needed to validate automatically the
format of the manifest file. These files are not the same in both specifications as
SCORM includes all IMS files and some specific of SCORM. For our purpose, it
is possible to add and remove the additional SCORM files or maintain always all
files as IMS will not be affected by the presence of unused files and these files are
lightweighted.

• The last component considered is the learning content. The format of this content
must be web compatible and no other limits are set. As this is the only limitation
in both specifications, the format could be the same and there is no need to do
any transformation. But, in addition to the format requirements, SCORM adds one
requirement to the web contents to be used in its packages. They must contain
some ECMAScript code (formerly known as JavaScript). This code can be added
automatically when converting from IMS to SCORM, and detected and deactivated
when converting to IMS from SCORM.

3.2. Conversion. As obtained from the model specifications, the conversion needs to
act on three components of the content package. This section summarizes the changes in
both directions. The conversion from IMS format to SCORM format implies the following
steps:

1. Modification of manifest to include SCORM required elements and sequencing, this
will be described in the following section.

2. Inclusion of SCORM XML Schema files to validate the modified manifest.
3. Modification of each learning content element to include ECMAScript code.

On the other hand, the conversion from SCORM format to IMS format implies the
following steps:

1. Modification of manifest to eliminate SCORM required elements and sequencing.
These elements are not IMS compatible.

2. Removal of SCORM XML Schema files.
3. Modification of each learning content element to disable ECMAScript code.

4. Sample Content and Its Transformation. The sample content selected is an
Adobe Photoshop course (Figure 2) created using HTML (HyperText Markup Language)
pages and simple media such as images. The list of contents of the course is shown in
Figure 2.
The pages of the course can be classified in four classes: the main page (introduction),

section pages (the main content), reviewing pages and abstract page.
Figure 3 shows one content page.

4.1. Generation of the sample contents. In order to model contents using the actual
IMS and SCORM standards, existing tools are going to be used, specifically the Reload
(Figure 4) editor and browser [19]. We carefully looked for tools that were both easy
to use and regularly updated. So in this way, Reload is a good tool for this purpose, it
supports IMS and SCORM content packaging as well as the generation of a simple IMS
manifest including only metadata, but not the structure of contents. This structure then



E-LEARNING CONTENTS AUTOMATIC CONVERSION 2069

Figure 2. Course contents list

has to be specified in another way, such as HTML links, to create a complete IMS or
SCORM package.

Three different versions of the contents are created. One of them will be IMS compliant
and another one will be SCORM compliant. The third one will be a plain metadata-only
IMS package. The main objective is to create three packages containing the textual
contents in the root folder, as well as a folder with images. We will have three folders
(Figure 5) in this structure: one for IMS CP (Content Packaging), another one for the
IMS manifest-only file, and the last one for the SCORM CP (Content Packaging). This
structure is represented in Figure 5.

Once these operations are completed, we can browse the folders and the collection of
files containing the packages structure information and the metadata.

The first column of Figure 6 shows the structure created for content where only the
IMS metadata associated to a context is created. Only one file is added, with a fixed
name, “imsmanifest.xml”. This file meets the IMS requirements, and is written in the
XML dialect created by IMS to model metadata.

The central column represents the files generated for an IMS CP package. Because of
the package structure, the imsmanifest.xml file references the “xsd” files that establish
the XML dialect. In addition to this, the file contains more information than the previous
case.

Last but not least important, on the third column presents the files used in a SCORM
SP 1.2 package. These files are the same used in the IMS CP, but here there are also
additional xsd files to define the extra structure of the SCORM manifest. It is worth
remembering that the manifest file is still named “imsmanifest.xml” in all the three cases.

Once this step is finished, it can be checked that the differences are minimal. In IMS
CP there are three new files (with respect of IMS metadata only) called ‘ims xml.xsd’,



2070 J.-M. GUTIERREZ-MARTINEZ, A. GARCIA-CABOT, E. GARCIA ET AL.

Figure 3. Contents layout (in Spanish)

Figure 4. Reload SCORM player tool



E-LEARNING CONTENTS AUTOMATIC CONVERSION 2071

Figure 5. Destination

Figure 6. Structure created (from left to right: IMS metadata only, IMS
CP and SCORM CP)

‘imscp v1p1.xsd’ and ‘imsmd v1p2p2.xsd’. The different between IMS CP and SCORM
CP is only one file called ‘adlcp rootv1p2.xsd’. All these files are schemas which are used
to validate the manifest of each specification. Therefore, to convert from a specification
to another one it is necessary adding or removing these files.

Because of this, we will focus now on the manifest, and the first step is to include the
most relevant parts of the three “imsmanifest.xml” files, which were generated by the tool
for each of the three cases.

Table 2 presents the file that was created using only IMS metadata.
The following was prepared for a full IMS learning content package. Please note that

the following code (Table 3) is just a fragment, due to the extreme length of the file.
The following file (Table 4) was generated for a full SCORM learning content package.



2072 J.-M. GUTIERREZ-MARTINEZ, A. GARCIA-CABOT, E. GARCIA ET AL.

Table 2. Fragment of IMS metadata only



E-LEARNING CONTENTS AUTOMATIC CONVERSION 2073

The analysis of the three generated manifests led us to select the IMS and the SCORM
CPs, discarding only the IMS metadata. We decided to exclude the latter because it
allows only the specification of general metadata on learning content without including
information about the resources included in the package.

Paying more attention to those two remaining models, we can conclude that the differ-
ence focuses more on the way the information is structured rather than the information
itself. It is observed that SCORM CP has a tag called ‘⟨metadata⟩’ with data about the
organization, in this case ADL SCORM. Also, SCORM CP has an additional attribute in



2074 J.-M. GUTIERREZ-MARTINEZ, A. GARCIA-CABOT, E. GARCIA ET AL.

Table 3. Sample of IMS content package

the tag ‘resource’ called ‘adlcp:scormtype’. It defines the resource SCORM type, shall be
set to “sco” or “asset”. The reason is because the course that is being modeled exhibits
compatible characteristics with the two models. We should keep in mind that SCORM
has more possibilities, and it also includes the behavior modeling interaction between the
IMS and the content. As a result, the transformation will be carried out as a XSLT XML
type transformation. This will be performed with a Java application using the DOM and
SAX libraries.
The next step required is the content validation against a tool capable of displaying

contents. Microsoft LRM is capable of displaying SCORM and IMS contents. However,
in the practice, the tool only works with SCORM CP. Also the Reload SCORM Player
can display SCORM content and is known to work correctly with SCORM and IMS
contents. In conclusion, for our purposes we use the Reload tool to validate correct
contents packaging.



E-LEARNING CONTENTS AUTOMATIC CONVERSION 2075

Table 4. Sample of SCORM content package



2076 J.-M. GUTIERREZ-MARTINEZ, A. GARCIA-CABOT, E. GARCIA ET AL.

Figure 7. First content element

In Figure 7, it is depicted an Adobe Photoshop course by showing its first page. The
content is shown running in a Web browser, and there are also some controls that allow
navigation through the course in the LMS. This part of the LMS is included in the client
browser.
The navigation bar in the LMS client part offers the possibility to step to the next

content, or the previous one, exit the LMS, show or hide the navigation tree. In our
example, there are three elements from the ten available for that course. All the elements
are equally marked as ‘item’. If the course has multiple organizations, and one of them
has some contents only, like in this case, the rest of the elements will not be taken into
account, and will not appear on the tree.
The last issue to highlight is the available options in the top bar, which complement the

navigation window, and are useful when courses have subchapters and complex structures.



E-LEARNING CONTENTS AUTOMATIC CONVERSION 2077

In Figure 8, we can see the “about” screen, accessible through the related element on
the LMS navigation bar. This window is used to check the product version, as well as
internal details like the building date.

Figure 8. Second element content, and “about” window

Figure 9. Trying to access a forbidden content



2078 J.-M. GUTIERREZ-MARTINEZ, A. GARCIA-CABOT, E. GARCIA ET AL.

Once an item is completed, it cannot be reviewed again. Doing so would imply re-
peating that element in the course structure, which is not allowed in the selected content
organization.
To avoid this situation, and thus preventing the students from going back, the LMS

server is aware of the content status, because it maintains a connection with the client.
This way, the server can deny the item access, and shows a screen to the user with more
information.
What we have seen is only a fraction of the possible control over the contents and the

training process. This control is richer in features than the current alternatives, even
more if we realize that all control is over standard contents, compatible with all LMS that
support SCORM.
In Figure 9 the information message is shown. This message is generated by the LMS

server. This message can also be generated because the established navigation rules are
very strict, setting up the need of sequentially accessing the contents without repeating
and without going back.
This possibility can be useful in some cases, and undesirable in others. It has been

included for testing purposes as part of the available options when designing contents.
Finally, when the course is completed, the LMS will show a screen to inform the user.

Achieving this type of detection at the end of the course, and also keeping a track of
the learner learning status is one of the inherent advantages of using SCORM. Figure 10
shows this screen with a summary of a finished course.

Figure 10. Summary of a finished course

As last evidence, shown in Figure 11, we present a working prototype of the EDVI
LMS tool developed in our Computer Science Department [20-22]. As it can be seen, the
structure of the tool is similar, although has its own characteristics, and a higher level of
complexity and adaptability than the LRM tool.
At this point, we have already selected the chosen content. It has been packaged using

three different tested options, and the two most interesting have been selected. Finally,
the packages have been validated by loading them in the available tools. In the next
section, we will discuss the issues related to transformation.



E-LEARNING CONTENTS AUTOMATIC CONVERSION 2079

Figure 11. EDVI visualization tool

4.2. Transformation. Once we have the contents to transform, they will be displayed
in the source and destination formats, which will be destination and source in the second
transformation. These contents are formatted using the IMS Content Packaging and
SCORM. The transformation will be done following the below steps (Table 5).

Table 5. Steps for transformation contents

1. Analyze differences between specifications (IMS and SCORM)
a) Observing the folders
b) Looking for differences in the files
c) Analyzing the metadata of manifest file

2. Copy the files needed into the new specification
3. Add/Remove the new attributes to the new manifest file

With these contents, the first task is to establish the differences between the two pack-
aging methods, with the enough detail to perform the transformation. This analysis is
performed in three levels:

• The first level is about folders. No differences can be found in this level. The
folder structure is the same in both cases, and also, a root directory containing the
packaging key files can be found. The files related with the content are stored in the
packaging root folder or inside subfolders.

• The next level of analysis is related to key files. In this case, it is easy to find the
first difference. On the one hand, the manifest file and the XML schemas files are



2080 J.-M. GUTIERREZ-MARTINEZ, A. GARCIA-CABOT, E. GARCIA ET AL.

needed to validate the manifest depending on the packaging version used. On the
other hand, using SCORM, there are the same files, plus the SCORM schema files
that validate SCORM metadata and other data types.

• Finally, at file level, the analysis focuses on the manifest file. There are some re-
markable differences (Table 6 and Table 7). The most important is the inclusion of
SCORM metadata like the following.

Table 6. Metadata of SCORM content package

Another important difference is the existence of XML attributes and items defined by
the SCORM guide, besides the related to IMS. An example of these attributes could
already be found in the previous code, and also in the following.

Table 7. Resource of SCORM content package

It is clear enough that in order to perform the transformation, although it will not
be necessary to modify the folder structure, it will be necessary, though, to add the
schema files when transforming to SCORM, and to delete them when transforming to
IMS. Finally, it will be necessary to modify the manifest file structure in order to add
SCORM metadata in one way, and to delete them when doing the opposite operation.
How can this operation be performed? By using a simple program, all the needed

files can be copied. But the real difficulty comes with the part of adding metadata and
attributes.
To add attributes, it would be necessary to handle the manifest documents in a smart

way, not only doing simple transformations, but handling the information at semantic
level.
However, the specifications are XML-based. One of the most important characteristics

of XML in this field is the content and structure separation. This feature also allows any
XML document to capture the semantics. Thanks to this, it is easy to create a program
that accepts an XML document as an input, in this case the IMS or SCORM manifest
file, and generate as an output a memory representation of this document, keeping intact
the original semantic representation. This representation is part of one of the XML
outlying specifications designed with the name of DOM (Document Object Model). The
existence of DOM was prior to the release of XML, and it was firstly used to model HTML
documents on the web browsers. Later in a new version, DOM was adapted to represent
XML documents.
In DOM, each element is an object stored in memory integrated in a tree. The way

each element of the tree (children, neighbors, ancestors, or even a random element) is
accessed is defined (and standardized) by its name.
As a result of this, it is easy to establish a sequence of steps to perform the transfor-

mation from the source document to the destination one. It will be necessary to load into
memory the SCORM manifest and locate and delete the SCORM “metadata” specific
nodes. All the SCORM-only attributes will be deleted as well.



E-LEARNING CONTENTS AUTOMATIC CONVERSION 2081

Table 8. Sample code of transformation



2082 J.-M. GUTIERREZ-MARTINEZ, A. GARCIA-CABOT, E. GARCIA ET AL.

On the other hand, when transforming to SCORM, it will be necessary to locate the
metadata in order to add the SCORM content, as well as the resources and attributes.
The platform chosen to perform the transformation will be Java.
The basic implementation for the document reader module, which prepares a document

for a later processing, is shown in Table 8.
The above code in Table 8 is a part of the completed code developed for the transfor-

mation. In this sample is shown the reader of the file. Later it would process the changes
in the file and the following it would add the changes to the manifest objective. Finally,
the files are encapsulated in a ‘zip’ file.
The developed application enables to specify, using simple controls, the input transfor-

mation file, the output file, and the contents used in both files (Figure 12). The application
has an interface like the following:

Figure 12. Transformation application (in Spanish)

In Figure 12, it can be observed that the graphical interface can be divided in six main
areas. On the top, information about the name and the purpose of the application is
displayed. The bottom is related with the status of the operations. On the center, there
is a grid composed of four boxes, which can be divided in two types: transformation
specification and transformation contents. On the specification ones (on the left), there
is a place to specify the transformation source and destination. This information includes
the file name and the format. When a format is selected on the source box, the other
format is automatically selected on the destination box. Meanwhile, the boxes on the



E-LEARNING CONTENTS AUTOMATIC CONVERSION 2083

right will be displayed in every moment, and for information purposes, the processed
information from and to the source and destination files.

The possible transformation states (Figure 13) are the following:

• Transformation not initiated: the source file is missing.
• Transformation not initiated: the destination file is missing.
• Transformation in progress.
• Transformation ended successfully.
• Error “ ”.

Figure 13. States diagram of transformation process

Transformation starts on a ‘Not initiated’ state. If the source or the destination files
are missing then an error is produced. If the files are present the transformation moves to
the state ‘In progress’ where the transformation is performed. If there is any error during
the transformation then a transition to the Error state occur informing about the nature
of the fault. Otherwise the transformation ends successfully. If there is any error during
the process, an error message will be generated depending on the case scenario.

The application shows, status and information dialog windows depending on the opera-
tions. These windows also show information related to the obtained results. For instance,
the window displayed after a successful transformation is one of these windows (Figure
14).

Figure 14. Application information dialog windows (in Spanish)

4.3. Validation. The validation method to use depends on the type and characteristics
of the application. In this case, for the transformation application, there are two possible
methods. The first one is a detailed comparison of the obtained files, and the second one is
a comparison of the results using content tools. The first method would completely ensure
similarity between both results. However, it would have been almost impossible to achieve
a transformation like this due to partial incompatibilities present in the related standards.
Small changes in the internal identifiers or partial losses during the transformation of



2084 J.-M. GUTIERREZ-MARTINEZ, A. GARCIA-CABOT, E. GARCIA ET AL.

an attribute would now allow achieving strictly exact results. The second comparison
method, conceptually on a higher level, applied to the results of content tools, will led us
to perfectly valid results, and would indicate us that even the contents are not exactly
the same, they are indeed equivalent from the point of view of they are being used on a
learning management system.
Because of this, the high level comparison model was chosen, where the tests will be

made up of a transformation and an equivalence check by running the contents on tools
compatible with the standard used on each content. The purpose of this method is to
demonstrate the impossibility to find differences, whatever standard is being used, from
the point of view of the contents used, and when multiple versions have been obtained
from the automatic transformation program.
Once the test method is established, the next step is to choose the tool. For this test,

the tool selected is Reload (Figure 15), which offers support for IMS and SCORM packets.
This tool has been proved easy to operate, and useful on all the development stages in our
work. As just one tool is used to show the contents, the results will be more transparent,
because the only possible changes would be in the contents section.

Figure 15. Tool interface used on demo

As it can be seen in Figure 15, the tool is really simple, and besides of including the
course content, it almost has no external additional information elements. Of course, it
also has basic navigation controls. These characteristics, specially its limitations, make
the tool unusable regularly, but they make it an excellent tool for testing and verifying
contents, which is obviously what we want.



E-LEARNING CONTENTS AUTOMATIC CONVERSION 2085

So using this tool, the initial course and the result of the transformation were loaded.
In addition to this, a cyclic transformation was also tested. This method consists of
transforming the already transformed content, going back to the original format.

In the following image, the first lesson is presented for a transformed IMS course (Figure
16), as well as a self-evaluation question. In the first place, the first content lesson is
represented, in this case, using IMS.

Figure 16. First lesson of a transformed IMS course

The content shown in Figure 16 is the IMS version. It is stored in a folder, which is
composed of the contents, the libraries, and programs that IMS must load to implement
the tracking. These libraries will allow the platform to know the student’s work evolution.
This code, which is mainly composed by ECMAScript and HTML, is saved in a different
folder checking duplications file names.

It is observed that the first lesson in IMS transformed course is similar to the SCORM
non-transformed course.

As the represented contents can include non-static element types, we also include a
contents transformation of a questionnaire (Figure 17). The next image show the ini-
tial (SCORM) of a question. It is important to ensure the compatibility of questions’
transformation since questionnaires are common on many e-learning contents. This will
enable the integration of our process on any initiative that includes them. Question-
naires are becoming increasingly important since they are susceptible of adaptation and
personalization applying different artificial intelligence techniques (like in [23]).

The content files of the two versions, saved in the previous mentioned folders, can be
measured by their respective, and different, sizes. In this case, these sizes are very similar,
which ensure us the similarity between the original and the generated version.

The values are:
Initial-Content-SCORM folder. Total size: 762,129 bytes.



2086 J.-M. GUTIERREZ-MARTINEZ, A. GARCIA-CABOT, E. GARCIA ET AL.

Figure 17. Self-evaluation SCORM version question

Final-Content-IMS folder. Total size 765,043 bytes.
These tests, whose results are presented on this paper, allow us to state that the trans-

formation produces a packet that is not internally the same, but it creates an equivalent
version, indistinguishable when used on a learning management tool. This result vali-
dates our main goal of obtaining interoperability between heterogeneous systems by using
agents, automatic and independent applications.

5. Conclusions and Future Work. Content interoperability is important because it
ensures that learning contents can be used on different learning platforms. There are
different specifications that define the structure that learning contents must have in order
to be interoperable. Thus, a higher degree of interoperability can be achieved if automatic
tools for transforming contents between different specifications. We have analyzed two
packaging specifications and defined the methods for transforming contents compliant with
one specification to the other one. We have developed the transforming agent and tested
it in a sample scenario. Based on this work, it can be concluded that the transformation
between different learning content models is possible. It provides interoperability with
LMS systems using different content packaging formats, it ensures the reusability between
platforms.
Some deficiencies have been detected in this system such as (1) the only use of formats

of SCORM and IMS and (2) not use of an efficient method of transformation (e.g., XSLT
sheets). Taking into account this, the future work it would be to extend the number of
available formats and to allow the use of modern formats such as IMS Common Cartridge.
Also, it is proposed as future work the use of an efficient transformation method as XSLT
sheets, this standard would allow to develop easily the use of other learning content
models. We have also focused on the transformation process and we have not investigated
how transformation should be integrated within the teaching-learning process. It is also
important to define how it will be integrated into the different systems involved in the
process, notably the LMS and other aiding systems [24], and how the design perspective
of these systems could be affected [25].



E-LEARNING CONTENTS AUTOMATIC CONVERSION 2087

Acknowledgment. This research is co-funded by: (1) the FPI research staff education
program of the “Junta de Comunidades de Castilla-La Mancha” and (2) the Government
of Madrid Autonomous Community and University of Alcalá (grant CCG10-UAH/TIC-
5915). The authors also gratefully acknowledge the helpful comments and suggestions of
the reviewers, which have improved the presentation.

REFERENCES

[1] R. Zemsky and W. F. Massy, Thwarted innovation: What happened to e-learning and why, The
Learning Alliance at the University of Pennsylvania, 2004.

[2] R. Barchino, J. M. Gutiérrez, S. Otón and L. Jiménez, Experiences in applying mobile technologies in
an e-learning environment, International Journal of Engineering Education, vol.23, no.3, pp.454-459,
2007.

[3] Learning Technology System Architecture – LTSA Home Page, Current LTSA Specification,
http://edutool.com/ltsa/, 2006.

[4] D. A. Wiley, Connecting learning objects to instructional design theory: A definition, a metaphor,
and a taxonomy, in The Instructional Use of Learning Objects, D. A. Wiley (ed.), 2000.

[5] European Committee for Standarization, Information Society Standarization System, Learning Tech-
nologies Standards Observatory, http://www.cenorm.be/cenorm/bussinessdomains/isss/index.asp,
2006.

[6] IEEE, Learning Technology Standards Committee, Learning Object Metadata, 1484.12.1. 2002.
[7] ADL, Shareable Content Object Reference Model. The SCORM 2004 Content Aggregation Model,

Advanced Distributed Learning Initiative, vol.2005, 2004.
[8] S. Otón, A. Ortiz and J. R. Hilera, Sistema de Reutilización de Objetos de Aprendizaje, VIII congreso

Iberoamericano de Informática Educativa.
[9] S. Otón, A. Ortiz, J. R. Hilera, R. Barchino, J. M. Gutierrez, J. J. Mart́ınez, J. A. Gutiérrez, L.

de Marcos and M. L. Jiménez, Service oriented architecture for the implementation of distributed
repositories of learning objects, International Journal of Innovative Computing, Information and
Control, vol.6, no.3(A), pp.843-854, 2010.

[10] P. Vandepitte, L. Van Rentergem, E. Duval, S. Ternier and F. Neven, Bridging an LCMS and
an LMS: A blackboard building block for the ARIADNE knowledge pool system, Proc. of World
Conference on Educational Multimedia, Hypermedia and Telecommunications, pp.423-424, 2003.

[11] E. W. C. Leung and Q. Li, Agent-based approach to e-learning: An architectural framework, The
Human Society and the Internet Internet-related Socio-Economic Issues, pp.341-353, 2001.

[12] C.-M. Wang, M.-C. Chiang, C.-S. Yang and C.-W. Tsai, Aided contents supporting service for e-
learning systems, International Journal of Innovative Computing, Information and Control, vol.7,
no.7(A), pp.4005-4026, 2011.

[13] J. M. Gutiérrez, S. Otón, L. Jiménez and R. Barchino, M-learning enhancement using 3D worlds,
International Journal of Engineering Education, vol.24, no.1, pp.56-61, 2008.

[14] C. Gunn, S. Woodgate and O. Winnie, Repurposing learning objects: A sustainable alternative?
Research in Learning Technology, vol.13, no.3, pp.189-200, 2005.

[15] K. Verbert and E. Duval, Towards a global component architecture for learning objects: A com-
parative analysis of learning object content models, Proc. of the ED-MEDIA World Conference on
Educational Multimedia, Hypermedia and Telecommunications, pp.202-208, 2004.

[16] K. Verbert, D. Gašević, J. Jovanović and E. Duval, Ontology-based learning content repurposing,
Special Interest Tracks and Posters of the 14th International Conference on World Wide Web, Chiba,
Japan, 2005.

[17] J. R. Hilera, L. de-Marcos, J. M. Gutiérrez, S. Otón, S. Barchino, E. Garćıa, J. A. Gutiérrez, J.
J. Mart́ınez and A. Garćıa, Transforming UML-activity diagrams into IMS-learning design manifest
using XMI and XSL, Proc. of the IADIS International Conference E-Learning, pp.422-424, 2011.

[18] E. R. Harold, Processing XML with Java: A Guide to SAX, DOM, JDOM, JAXP, and TrAX,
Addison-Wesley, Boston, 2003.

[19] C. D. Milligan, P. Beauvoir and P. Sharples, The reload learning design tools, Journal of Interactive
Media in Education, 2005.

[20] R. Barchino, J. M. Gutiérrez and S. Otón, An example of learning management system, in IADIS
Virtual Multi Conference on Computer Science and Information Systems, P. Isáıas, M. Baptista and
A. Palma (eds.), IADIS Press, 2005.



2088 J.-M. GUTIERREZ-MARTINEZ, A. GARCIA-CABOT, E. GARCIA ET AL.

[21] J. M. Gutiérrez, L. Jimenez, R. Barchino and J. A. Gutiérrez, Un sistema de apoyo a la enseñanza
presencial basado en Internet, Revista Iberoamericana de Sistemas, Cibernética e Informática, vol.2,
no.2, 2004.

[22] L. de-Marcos, J.-J. Martinez, J.-A. Gutierrez, R. Barchino, J.-R. Hilera, S. Oton and J.-M. Gutier-
rez, Genetic algorithms for courseware engineering, International Journal of Innovative Computing,
Information and Control, vol.7, no.7(A), pp.3981-4004, 2011.

[23] P. J. Munoz-Merino, C. D. Kloos and M. Munoz-Organero, Deciding on different hinting techniques
in assessments for intelligent tutoring systems, International Journal of Innovative Computing, In-
formation and Control, vol.7, no.2, pp.841-858, 2011.

[24] C.-M. Wang, M.-C. Chiang, C.-S. Yang and C.-W. Tsai, Aided contents supporting service for e-
learning systems, International Journal of Innovative Computing, Information and Control, vol.7,
no.7(A), pp.4005-4026, 2011.

[25] H.-Y. Kao, M.-C. Liu, C.-L. Huang and Y.-C. Chang, Evaluation and classification of e-learning
systems from design perspectives, ICIC Express Letters, Part B: Applications, vol.2, no.4, pp.873-
878, 2011.


