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Abstract. The aim of fuzzy risk analysis is to evaluate the probability of failure of
every component consisting of many sub-components and the probability of failure is the
combination of estimations of severity of loss and probability of failure of sub-components
which are vaguely known. In this paper, we present a new method for fuzzy risk analysis
with linguistic evaluating values. Firstly, we propose the unbalanced linguistic weighted
geometric operator, which can be used to deal with aggregation of unbalanced linguistic
values with numerical weights. Then, we generalize the operator to deal with aggregation
of unbalanced linguistic values with linguistic weights, and discuss some properties of
the operator. Finally, we apply the operator to aggregate linguistic evaluating values of
fuzzy risk analysis. A comparison is given between the new method in this paper and the
one based on interval-valued fuzzy numbers in the same linguistic evaluating values. The
advantages of our method are that the evaluating result is linguistic value which is no need
of approximation processing and easier to communicate to decision- and policy-makers,
no loss of information and no complex computation due to the linguistic aggregation
operator and the 2-tuple fuzzy linguistic representations.
Keywords: Fuzzy risk analysis, Aggregation operator, Linguistic aggregation operator,
2-tuple fuzzy linguistic representation

1. Introduction. From the system point of view, risk analysis means to combine the
individual responses to one statement on the system’s performance for the purpose of
decision-making. It deals with the occurrence of individual failure events (e.g., changes in
components or in relations among components as distinct points in space and time) and
their possible consequences on the system level [1]. In the procedure of risk analysis, the
estimation of the likelihood (e.g., frequencies) and the consequences of hazard occurrence
are included. The estimation of the likelihood of hazard occurrence depends greatly on
the reliability of the system’s components, the interaction of the components taking the
system as a whole and human-system interactions. Risk evaluation needs a systematic
research of accidental scenarios, including failure rates for the component (e.g., safety
barriers) as well as for operator behavior (human factor) within an evolving environment
[3]. In practice, information of risk analysis stems from historical data of complex systems
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or knowledge of decision makers, experts and regulators, accordingly, there exist quali-
tative and quantitative methods in risk analysis to identify the risk drivers, assess their
likelihood of occurrence and their potential consequences, and find ways to monitor and
then mitigate the risks [2]. The differences between qualitative and quantitative methods
to risk analysis are focused on the evaluation of the likelihood of accident sequences. In
the quantitative methods, probability and Bayesian networks are the main tools for risk
analysis due to their ability to model probabilistic data with dependencies between events,
compute the distribution probabilities in a set of variables according to the observation of
some variables and the prior knowledge of the others, and quantify low probability events
[3, 22, 23]. The qualitative methods to risk analysis are largely based on expert judge-
ment under the assumed boundary conditions, in which statements and implications are
considered in performing a risk analysis, and in which the result is expressed by linguistic
value of assessment, e.g., safe or unsafe. Due to uncertainty and complexity, information
about the probabilities of various risk items is vaguely known, which makes researchers
consider risk analysis based on fuzzy logic, i.e., fuzzy risk analysis. In recent years, many
methods to fuzzy risk analysis based on fuzzy numbers have been discussed, e.g., based
on fuzzy arithmetic operations [4], the similarity measure of fuzzy numbers [6, 7], interval
fuzzy numbers, the alpha level sets, the ranking of fuzzy numbers [5, 8, 9, 10, 12, 13, 14]
and fuzzy partition tree [21]. In all of these fuzzy risk analysis, many shapes (membership
functions) associated to fuzzy number are used to represent fuzziness of the evaluating
value of the risk of each subcomponent, e.g., triangular fuzzy numbers, trapezoidal fuzzy
numbers and interval fuzzy numbers, then fuzzy arithmetic operations, the similarity
measure of fuzzy numbers and the ranking of fuzzy numbers could help us to evaluate
the result of risk analysis system. To the best of our knowledge, there are following three
drawbacks when we use membership functions associated to fuzzy numbers to represent
fuzziness in risk analysis: 1) Fuzzy arithmetic operations, the similarity measure of fuzzy
numbers and the ranking of fuzzy numbers depend on membership functions associated
to fuzzy numbers. For example, triangular fuzzy numbers, trapezoidal fuzzy numbers and
interval fuzzy numbers, different shapes of fuzzy numbers correspond to different results.
In practice, which one is the best in risk analysis is a problem; 2) Fuzzy number is a
fuzzy concept. For example, “about 3” is a fuzzy number, and its semantics (membership
function) is triangular or trapezoidal. In risk analysis, linguistic values or fuzzy numbers
rather than membership functions are used to represent fuzziness of the evaluating value,
and the result of risk analysis does not depend on their membership functions; 3) In
many cases, processing membership functions associated to linguistic values increase the
computational complexity, and membership functions are no longer kept the same form
after fuzzy arithmetic operations. As the results do not exactly match any of the initial
linguistic values, an approximation process must be developed to express the results in
the initial expression domain which induces the consequent loss of information and hence
the lack of precision.
To overcome the above mentioned drawbacks, risk analysis based on Computing with

Words (CWW) is an alternative method, which was proposed by Zadeh. It is a methodol-
ogy for reasoning, computing and decision-making with information described in natural
language [15, 16, 30], and a system of computation which adds to traditional systems
of computation, including two important capabilities [31]: a) the capability to precisiate
the meaning of words and propositions drawn from natural language; b) the capability to
reason and compute with precisiated words and propositions. In CWW, linguistic values
rather than membership functions or numerical values play an important or key role;
i.e., linguistic values are computational variables, which makes the results of risk analysis
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no loss of information and easier to communicate to decision- and policy-makers. Infor-
mally, risk analysis based on CWW belongs to qualitative methods. In [17], we use fuzzy
number indexes of linguistic evaluating values to deal with fuzzy risk analysis problems,
in which the linguistic evaluating values are represented by their fuzzy number indexes,
and in which the final evaluation value is obtained by linguistic information fusion based
on fuzzy number indexes of linguistic values [19, 20]. In [18], we considered unbalanced
linguistic information in fuzzy risk analysis, and proposed a new method for fuzzy risk
analysis with unbalanced linguistic evaluating values.

In this paper, we provide an alternative method to risk analysis based on CWW, i.e.,
fuzzy risk analysis based on an unbalanced linguistic aggregation operator. The orga-
nization of this paper is as following: In Section 2, we make brief reviews of fuzzy risk
analysis, the 2-tuple fuzzy linguistic representation model and unbalanced linguistic term
sets. We propose the unbalanced linguistic weighted geometric operator in Section 3, and
discuss some interesting properties of the operator. In Section 4, we use an example to
illustrate our method to fuzzy risk analysis. Furthermore, we compare our method with
the one based on interval-valued fuzzy numbers in the same linguistic evaluating values.
The paper is concluded in Section 5.

2. Preliminaries. In this section, we will review methods for fuzzy risk analysis, the
2-tuple fuzzy linguistic representation model and unbalanced linguistic term sets.

2.1. Fuzzy risk analysis. The aim of fuzzy risk analysis is to evaluate the probability
of failure of every component consisted of many sub-components, in which, estimations
of severity of loss and probability of failure of sub-components are included. Formally,
risk analysis can be described as follows: assume that there are r components P1, P2, · · ·
and Pr made by r manufactories M1, M2, · · · and Mr, respectively. Each component Pi

consists of s sub-components pi1, pi2, · · · and pis. Each sub-component pij (1 ≤ i ≤ r,
1 ≤ j ≤ s) is evaluated by severity of loss Lij and probability of failure Fij, each probabil-
ity of failure Fi of component Pi are calculated by severity of loss Lij and probability of
failure Fij (1 ≤ j ≤ s), then the larger the value of Fi, the higher the probability of failure
of component Pi made by manufactory Mi (1 ≤ i ≤ r). The structure of fuzzy risk analy-
sis can be shown in Figure 1 [9]. According to the evaluation of the likelihood of accident

sub-component pi1
severity of loss Li1

probability of failure Fi1

sub-component pi2
severity of loss Li2

probability of failure Fi2

· · · sub-component pis
severity of loss Lis

probability of failure Fis

component Pi evaluated by
probability of failure Fi

Figure 1. The structure of fuzzy risk analysis

sequences, qualitative and quantitative approaches to risk analysis have been discussed.
In the quantitative approaches to risk analysis, every severity of loss Lij and probability
of failure Fij of sub-components pij (1 ≤ i ≤ r, 1 ≤ j ≤ s) are described by probabili-
ties, then Bayesian networks are used for obtaining final evaluation results. As a general
modeling approach, Bayesian networks offers a compact presentation of the interactions
in a stochastic system by visualizing system variables and their dependencies. Formally,
a Bayesian network consists of two main parts: a qualitative part and a quantitative part.
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The qualitative part is a directed acyclic graph mirrored the nodes of the system vari-
ables, the conditional dependence between variables are represented by the edges of the
graph. Conditional probability functions are included in the quantitative part according
to the relations between the nodes of the graph. According to Figure 1, the probability of
failure Fi of component Pi can be calculated by the conditional probability distribution
P (Fi|Pa(Li1, Fi1), Pa(Li2, Fi2), · · · , Pa(Lis, Fis)), where Pa(Lij, Fij) (1 ≤ j ≤ s) is joint
distribution function of sub-component pij. Due to the complexity of systems and lack of
data, risk assessments often rely on experts’ opinion. The experts’ opinion has its inher-
ent vagueness, which is expressed by linguistic evaluation values, such as very low, fairly
low, pretty low, medium, almost high, more or less high, very high and absolutely high,
etc. According to the concept of linguistic variable proposed by Zadeh [29], membership
functions can be used to represent linguistic evaluating values and handle risk analysis,
generally, risk analysis based on fuzzy numbers is presented as follows: 1) Aggregate all
evaluating values {(Lij, Fij)|1 ≤ j ≤ s} of component Pi by fuzzy number aggregation
operators, e.g., fuzzy weighted mean method and the generalized fuzzy number arithmetic
operator, where Li1 and Fi1 are represented by corresponding fuzzy numbers (membership

functions), i.e., Fi =
∑s

j=1 Fij⊗Lij∑s
j=1 Lij

, in which, ⊗ is as generalized fuzzy numbers multiplica-

tion, Fi is a fuzzy number; 2) Rank fuzzy numbers {Fi|1 ≤ i ≤ r} by the ranking values
of the fuzzy numbers. The larger the value of Pi is, the higher the risk of the manufactory
Mi is; 3) Approximate fuzzy number max{Fi|1 ≤ i ≤ r} to linguistic values, the final
evaluation result is a linguistic evaluation value corresponding to the fuzzy number.
In [17, 18], alternative methods have been presented, i.e., CWW is used to handle

risk analysis, compared the methods with risk analysis based on fuzzy numbers, evalu-
ating values are linguistic evaluating values instead of fuzzy numbers (their membership
functions), the final evaluations are directly represented by linguistic evaluating values,
without approximation from a fuzzy number to a linguistic evaluation value. Generally,
risk analysis based on CWW is presented as follows: 1) Aggregate all linguistic evaluating
values {(Lij, Fij)|1 ≤ j ≤ s} of component Pi by linguistic aggregation operators, i.e.,
Fi = f({(Lij, Fij)|1 ≤ j ≤ s}), in which, f is a linguistic aggregation operator; 2) Rank
linguistic evaluating values {Fi|1 ≤ i ≤ r} by the ranking method of linguistic values.
The larger the value of Pi is, the higher the risk of the manufactory Mi is.

2.2. The 2-tuple fuzzy linguistic representation model. The 2-tuple linguistic rep-
resentation model be introduced by Herrera [24]. Let S = {s0, · · · , sg} be the initial
finite linguistic value set. Formally, the 2-tuple linguistic representation model is formed
by (si, α), in which, si ∈ S (i ∈ {0, 1, · · · , g}) and α ∈ [−0.5, 0.5), i.e., linguistic infor-
mation is encoded in the space S × [−0.5, 0.5). Based on the representation (si, α), we
can easily obtain the following symbolic translation of linguistic values from β ∈ [0, g] to
S × [−0.5, 0.5), i.e., ∆ : [0, g] → S × [−0.5, 0.5), β 7−→ (si, α), in which, i = round(β)
(round(·) is the usual round operation), α = β−i ∈ [−0.5, 0.5). Intuitively, ∆(β) = (si, α)
expresses that si is the closest linguistic value to β, and α is the value of the symbolic trans-
lation. Additionally, there is a ∆−1 function such that from a 2-tuple it returns its equiva-
lent numerical value β ∈ [0, g], i.e., ∆−1 : S× [−0.5, 0.5) −→ [0, g], ∆−1(si, α) = i+α = β.
In fact, it defines a set of transformation functions between linguistic values and 2-tuples

linguistic representations as well as numeric values and 2-tuples linguistic representations.
Evidently, an order relation on S × [−0.5, 0.5) can be deduced by ∆−1, i.e., for any
(si, αi), (sj, αj) ∈ S×[−0.5, 0.5), (si, αi) ≤ (sj, αj) if and only if ∆−1(si, αi) ≤ ∆−1(sj, αj).

2.3. Representation of unbalanced linguistic terms. Unbalanced linguistic terms
proposed in [25] are used to deal with scales for assessing preferences where the experts
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need to assess a number of terms in a side of reference domain higher than in the other one.
Generally, an unbalanced linguistic term set S has a minimum label, a maximum label,
and a central label, and the remaining labels are non-uniformly and non-symmetrically
distributed around the central one on both left and right lateral sets, i.e., we can represent
S as the form S = Sl ∪ Sc ∪ Sr, in which, Sl contains all left lateral labels but the central
label, Sc just contains the central label, Sr contains all right lateral labels higher than the
central label.

Example 2.1. [26] S = {none (N), low (L), medium (M), almost high (AH), high (H),
quite high (QH), very high (V H), almost total (AT ), total (T )} is an unbalanced linguistic
term set, in which, Sl = {N,L}, Sc = {M} and Sr = {AH,H,QH, V H,AT, T}.

N L M AH H QH VH AT T

Figure 2. Scale with more values on the right of the midterm

To obtain 2-tuple fuzzy linguistic representations of unbalanced linguistic terms, we
need the concept of linguistic hierarchies LH =

∪
t l(t, n(t)) [28], which takes into account

a set of levels where each level is a linguistic term set with different granularity from the
remaining levels of the hierarchy, where l(t, n(t)) is a linguistic hierarchy with t being a
number that indicates the level of the hierarchy and n(t) the granularity of the linguistic
term set of t. The linguistic term set Sn(t+1) of the level t + 1 is obtained from its
predecessor Sn(t) as l(t, n(t)) → l(t + 1, 2 × n(t) − 1). Transformation function of LH is
defined as follows [27]: for any t and t′, TF t

t′ : l(t, n(t)) −→ l(t′, n(t′)) such that

TF t
t′(s

n(t)
i , αn(t)) = △t′(

△−1
t (s

n(t)
i , αn(t))× (n(t′)− 1)

n(t)− 1
). (1)

Example 2.2. Let a linguistic hierarchies LH be LH = l(1, 3)∪ l(2, 5)∪ l(3, 9)∪ l(4, 17)
= {s30, s31, s32} ∪ {s50, s51, · · · , s54} ∪ {s90, s91, · · · , s98} ∪ {s170 , s171 , · · · , s1716}. (s95, 0.3) is a 2-tuple
fuzzy linguistic representation of level 3, it’s 2-tuple fuzzy linguistic representation in level

2 is TF 3
2 (s

9
5, 0.3) = △2(

△−1
3 (s95,0.3)×(5−1)

9−1
) = △2(

5.3×4
8

) = △2(2.65) = (s53,−0.35).

By using linguistic hierarchies LH =
∪

t l(t, n(t)), we can obtain the 2-tuple fuzzy
linguistic representation of each term of unbalanced linguistic term set in LH by using
the algorithm presented in [25].

Example 2.3. Continuing Example 2.1. For unbalanced linguistic term set S = {N,L,M,

AH,H,QH, V H,AT, T}, 1) due to n(2) = 5 and n(2)−1
2

= |Sl| = |{N,L}| = 2, the
representation of Sl is obtained from level 2 of LH as follows: {L ← s51, N ← s50}; 2)

due to n(3) = 9, n(4) = 17 and n(3)−1
2

= 4 < |Sr| = |{AH,H,QH, V H,AT, T}| =
6 < n(4)−1

2
= 8, we use level 3 and level 4 to represent Sr = {AH,H,QH, V H,AT, T},

according to lab3 and lab4 of [25], {AH,H} and {QH, V H,AT, T} are represented in
level 3 and level 4, respectively, {AH ← s95, H ← s96}, {QH ← s1713, V H ← s1714, AT ←
s1715, T ← s1716}; 3) according to density and bridging representation gaps [25], the upside
and the downside of the central label M are represented in level 2 and 3 of LH by means

of s52 and s94, respectively. The upside and the downside of the label H are represented

in level 3 and 4 of LH by means of s96 and s1712, respectively; 4) the final 2-tuple fuzzy

linguistic representations of S in LH are Sl : {N ← s50, L ← s51}, Sc : {M ← s52 ∪ s94},
Sr : {AH ← s95, H ← s96 ∪ s1712, QH ← s1713, V H ← s1714, AT ← s1715, T ← s1716}.



7110 Z. PEI AND P. SHI

Let S be an unbalanced linguistic term set. Formally, for any 2-tuple fuzzy linguistic
representation (si, αi) (si ∈ S and αi ∈ [−0.5, 0.5)), (si, α) can be converted by the
following unbalanced linguistic transformation functions in LH and vice versa, i.e., LH :

S × [−0.5, 0.5) −→ LH × [−0.5, 0.5), (si, αi) 7−→ (s
G(i)
I(i) , αi) such that s

G(i)
I(i) ∈ LH; LH−1 :

LH × [−0.5, 0.5) −→ S × [−0.5, 0.5), (sn(t)k , αk) 7−→ (si, λ), in which, s
n(t)
k ∈ Sn(t) ⊂ LH,

(si, λ) is decided by cases as follows: Case 1: If there exists si ∈ S such that si ← s
n(t)
k ,

then we consider two possible situations depending on si represented in LH: 1) if si is
represented with only one label in LH, e.g., L← s51 in Example 2.3, then (si, λ) = (si, αk);

2) if si is represented with two labels in LH from levels, e.g., H ← s96∪s1712 in Example 2.3,

then (si, λ) depends on the localization of si ∈ S, and λ = αk or
△−1

t (s
n(t)
k ,αk)×(n(t+1)−1)

n(t)−1
−

round(
△−1

t (s
n(t)
k ,αk)×(n(t+1)−1)

n(t)−1
). Case 2: If there exists no si ∈ S such that si ← s

n(t)
k ,

then LH−1((s
n(t)
k , αk)) = LH−1(TF t

t′(s
n(t)
k , αk)), in which, t′ is a level of LH such that

TF t
t′(s

n(t)
k , αk) = (s

n(t′)
k′ , αk′) and ∃sj ∈ S, sj ← s

n(t′)
k′ .

Example 2.4. Continuing Example 2.3. We have LH(H, 0.3) = (s96, 0.3), LH−1(s1713,
−0.2) = (QH,−0.2), LH−1(s1712, −0.2) = LH−1(TF 4

3 (s
17
12,−0.2)) = LH−1(s96, −0.1) =

(H,−0.1), LH−1(s1712, 0.4) = LH−1(TF 4
3 (s

17
12, 0.4)) = LH−1(s96, 0.2) = (H, 0.4).

3. The Unbalanced Linguistic Weighted Geometric Operator. To aggregate un-
balanced linguistic values, we propose the unbalanced linguistic weighted geometric op-
erator in this section.

Definition 3.1. An weighted geometric operator of dimension n is a mapping g : (R+)n →
R+ that has associated with it a weighting vector W = (w1, w2, · · · , wn), with wi ∈ [0, 1]
and

∑n
i=1wi = 1, such that g(a1, a2, · · · , an) =

∏n
j=1 a

wi
i .

Definition 3.2. Assume that the set of unbalanced linguistic values V ={si|i=1, 2, · · · , n}
be aggregated, in which, si ∈ S = {s0, s1, · · · , sm} (m ≥ n) is an unbalanced linguistic
value, a weighting vector is W = (w1, w2, · · · , wn) with wi ∈ [0, 1] and

∑n
i=1wi = 1.

Then the unbalanced linguistic weighted geometric operator (the ULWG operator) is de-
fined as fULWG({(wi, si)|i = 1, · · · , n}) = fULWG({(wi, TF

ti
t0 (LH(si)))|i = 1, 2, · · · , n})

= LH−1(△t0(
∏n

i=1(△
−1
t0 (TF ti

t0 (LH(si))))wi)) = LH−1(s
n(t0)
k , αk), where, ti is the level of

LH(si) in LH, t0 is a level of LH fixed by users, s
n(t0)
k ∈ Sn(t0) ⊂ LH and αk ∈ [−0.5, 0.5)

such that

k + αk =
n∏

i=1

(△−1
t0
(TF ti

t0 (LH(si))))
wi . (2)

Remark 3.1. In Definition 3.3, TF ti
t0 (LH(si)) means that unbalanced linguistic values

are represented at level t0 of LH, t0 is decided by users. In fact, by using TF ti
t0 (·) and

LH(·), S is converted in Sn(t0) of LH. By using LH−1 (s
n(t0)
k , αk), fULWG(V ) is converted

to the 2-tuple fuzzy linguistic representation of unbalanced linguistic value.

Example 3.1. Let S = {N,L,M,AH,H,QH, V H,AT, T} be a set of unbalanced lin-
guistic values. Suppose that {(0.25, AH), (0.35, QH), (0.4, H)} will be aggregated. Here,
we select t0 = 3 and densitySR

=extreme [25], hence, TF ti
3 (LH(AH)) = TF 3

3 (s
9
5) = s95,

TF ti
3 (LH(QH)) = TF 4

3 (s
17
13) = (s96, 0.5), TF

ti
3 (LH(H)) = TF 3

3 (s
9
6) = s96, according to

Equation (2), we have k+αk = 50.25×6.50.35×60.4 .
= 5.93, fULWG({(0.25, AH), (0.35, QH),

(0.4, H)}) .
= LH−1(s96,−0.07) = (H,−0.07).
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In many cases, weight wi is a linguistic weight rather that number in [0, 1], e.g., in fuzzy
risk analysis, every severity of loss Lij of sub-component pij (1 ≤ i ≤ r, 1 ≤ j ≤ s) acts
as the weight in aggregation, i.e., in Equation (2), wi is a linguistic value. We use the
following method to obtain numbers in [0, 1] from unbalanced linguistic values: 1) For any
unbalanced linguistic values {l1, · · · , lk} and LH =

∪
t l(t, n(t)), we have {TF

t1
t0 (LH(l1))),

· · · , TF tk
t0 (LH(lk)))}, where ti is the level of LH(li) (i ∈ {1, · · · , k}) in LH, t0 is a level

of LH fixed by users; 2) The function f : {l1, · · · , lk} → [0, 1] is defined by

f(li) =
△−1

t0 (TF ti
t0 (LH(li)))∑k

j=1△
−1
t0 (TF ti

t0 (LH(lj)))
. (3)

Evidently, for any li ∈ {l1, · · · , lk}, f(li) ∈ [0, 1] and
∑k

i=1

△−1
t0

(TF
ti
t0
(LH(li)))∑k

j=1 △
−1
t0

(TF
ti
t0
(LH(lj)))

= 1.

Definition 3.3. Assume that the set of unbalanced linguistic values V = {(li, si)|i =
1, · · · , n} is aggregated, and every li is a linguistic weight corresponding to si. Then the
ULWG operator with linguistic weights (the ULWGLW operator) is defined as fULWGLW (
{(li, si)|i = 1, · · · , n})=fULWG({(f(li), TF ti

t0 (LH(si)))|i=1, 2, · · · , n})=LH−1(△t0(
∏n

i=1

(△−1
t0 (TF ti

t0 (LH(si))))f(li))) = LH−1(s
n(t0)
k , αk), where, ti is the level of LH(si) in LH, t0

is a level of LH fixed by users, s
n(t0)
k ∈ Sn(t0) ⊂ LH and αk ∈ [−0.5, 0.5) such that

k + αk =
n∏

i=1

(△−1
t0
(TF ti

t0 (LH(si))))
f(li). (4)

in which, every f(li) is decided by Equation (3).

Proposition 3.1. Let unbalanced linguistic values V = {(wi, si)|i = 1, · · · , n} be ag-
gregated, where wi ∈ [0, 1] and

∑n
i=1wi = 1. If for any i ∈ {1, · · · , n}, wi = 1, then

fULWG({(w1, s1), · · · , (wn, sn)}) = si.

Proof: According to Equation (2), if for any i ∈ {1, · · · , n}, wi = 1, then for any
r ̸= i, wr = 0, k + αk =

∏n
r=1(△

−1
t0 (TF tr

t0 (LH(sr))))wr = (△−1
t0 (TF ti

t0 (LH(si))))wi ×
(
∏

r ̸=i(△
−1
t0 (TF tr

t0 (LH(sr))))wr) = (△−1
t0 (TF ti

t0 (LH(si))))× (
∏

r ̸=i(△
−1
t0 (TF tr

t0 (LH(sr))))0)
= △−1

t0 (TF ti
t0 (LH (si))), hence, fULWG(s1, · · · , sn) = LH−1(△−1

t0 (TF ti
t0 (LH(s1)))) = si.

As special cases, we have 1) Denote sj = max{s1, · · · , sn}, if wj = 1, then fULWG((w1, s1),
· · · , (wn, sn)) = sj; 2) Denote sk = min{s1, · · · , sn}, if wk = 1, then fULWG((w1, s1), · · · ,
(wn, sn)) = sk; 3) If wj = wk = 0, then fULWG reduces to the linguistic Olympic operator,
i.e., the smallest and largest linguistic values are deleted from linguistic evaluating values.

Proposition 3.2. Let unbalanced linguistic values V ={(wi, si)|i=1, ..., n} be aggregated,
where wi ∈ [0, 1] and

∑n
i=1wi = 1. The ULWG operator satisfies: 1) min{s1, · · · , sn}

≤ fULWG({(w1, s1), · · · , (wn, sn)}) ≤ max{s1, · · · , sn}; 2) fULWG is idempotent, i.e.,
fULWG({(w1, s1), · · · , (wn, sn)}) = s1 when s1 = · · · = sn; 3) fULWG is monotone in rela-
tion to the input values si, i.e., for any s′i ≥ si, fULWG((w1, s1), · · · , (wi, s

′
i), · · · , (wn, sn))

≥ fULWG((w1, s1), · · · , (wi, si), · · · , (wn, sn)); 4) fULWG is commutative; 5) fULWG reduces
to the linguistic geometric mean if wi =

1
n
for all i = 1, · · · , n, i.e., fULWG({(w1, s1), · · · ,

(wn, sn)}) = (sk, αk) and k + αk =
n

√∏n
i=1△

−1
t0 (TF ti

t0 (LH(si))).

Proof: According to Equation (2), k+αk =
∏n

i=1(△
−1
t0 (TF ti

t0 (LH(si))))wi ≤
∏n

i=1(△
−1
t0

(TF
tj
t0 (LH(sj))))wi = (△−1

t0 (TF
tj
t0 (LH(sj))))

∑n
i=1 wi = △−1

t0 (TF
tj
t0 (LH(sj))). Hence, fULWG

({(w1, s1), · · · , (wn, sn)}) = LH−1(s
n(t0)
k , αk)≤LH−1(△−1

t0 (TF
tj
t0 (LH(sj))))=sj=max{s1,

· · · , sn}. Similarly, we can prove fULWG({(w1, s1), · · · , (wn, sn)}) = LH−1 (s
n(t0)
k , αk) ≥
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LH−1(△−1
t0 (TF tk

t0 (LH(sk) ))) = sk = min{s1, · · · , sn}. 2., 3., 4. and 5. can be proved
similarly.

4. Illustrative Example. In this section, we apply the ULWG operator to deal with
fuzzy risk analysis problems, we firstly use an example to illustrate the fuzzy risk anal-
ysis process of our method, where linguistic evaluating values are unbalanced linguistic
evaluating values, in the example, assume that the following unbalanced linguistic eval-
uating values are considered: 1) Unbalanced linguistic evaluating values for severity of
loss: L = {none (N), low (L), medium (M), almost high (AH), high (H), quite high
(QH), very high (V H), almost total (AT ), total (T )}; 2) Unbalanced linguistic evalu-
ating values for probability of failure: F = {none (N), small (S), medium (M), almost
big (AB), big (B), quite big (QB), very big (V B), almost total (AT ), total (T )}. The
proposed fuzzy risk analysis algorithm is now presented as follows: 1) Unbalanced lin-
guistic evaluating values for severity of loss and probability of failure are represented in
the level t0 of LH =

∪
t l(t, n(t)), where t0 is fixed by decision makers; 2) According

to transformation function (1), the transformed unbalanced linguistic evaluating values
are 2-tuple fuzzy linguistic representations; 3) Aggregate all linguistic evaluating values
{(Lij, Fij)|1 ≤ j ≤ s} of component Pi by the ULWG operator with linguistic weights,
i.e., Fi = fULWGLW ({(Lij, Fij)|1 ≤ j ≤ s}) = fULWG({(f(Lij), TF

ti
t0 (LH(Fij)))|1 ≤

j ≤ s}) = LH−1(△t0(
∏n

i=1 (△−1
t0 (TF ti

t0 (LH(Fij))))
f(Lij))) = LH−1(s

n(t0)
k , αk), k + αk =∏n

i=1(△
−1
t0 (TF ti

t0 (LH(Fij))))
f(Lij), f(Lij) =

△−1
t0

(TF
ti
t0
(LH(Lij)))∑k

j=1 △
−1
t0

(TF
ti
t0
(LH(Lij)))

; 4) Rank linguistic eval-

uating values {Fi|1 ≤ i ≤ r} by the ranking method of linguistic values, i.e., Fi1 ≥ Fi2 if

and only if △−1
t0 (s

n(t0)
k1

, αk1) ≥ △−1
t0 (s

n(t0)
k2

, αk2). The larger the linguistic evaluation value
Fi of Pi, the higher the risk of the manufactory Mi.

Example 4.1. Assume that there are three manufactories M1, M2 and M3 producing
the components P1, P2 and P3, respectively, where P1, P2 and P3 are the same product
made by different manufactories. Each component Pi consists of three sub-components
Pi1, Pi2 and Pi3, where 1 ≤ i ≤ 3. Assume that there are two evaluating items Lij

and Fij to derive the probability of failure Fi of component Pi made by manufactory Mi,
where Lij denotes the severity of loss of the sub-component Pij, Fij denotes the proba-
bility of failure of the sub-component Pij, 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3. The linguistic
evaluation values of every sub-component Pij are shown in Table 1. In the example, the

Table 1. Linguistic evaluating values of the sub-components made by manufactories

manufactory sub-components the severity of loss the probability of failure
P11 L AT

M1 P12 QH S
P13 AH M
P21 M QB

M2 P22 H M
P23 N T
P31 L V B

M3 P32 M B
P33 AT S

linguistic hierarchies be LH = l(1, 3) ∪ l(2, 5) ∪ l(3, 9) ∪ l(4, 17) for the severity of loss
and the probability of failure of sub-components, the levels t0 of the severity of loss and
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the probability of failure are fixed by 2 and 3, respectively. Transformations of linguistic
evaluating values are shown in Table 2, we can obtain every Fi of component Pi ac-
cording to (3), (4) and TABLE 2, respectively. For component P1 with sub-components

Table 2. Transformations of linguistic evaluating values

manufactory sub-components Lij TF ti
2 (LH(Lij)) Fij TF ti

3 (LH(Fij))
P11 L (s51, 0) AT (s98,−0.5)

M1 P12 QH (s53, 0.25) S (s92, 0)
P13 AH (s53,−0.5) M (s94, 0)
P21 M (s52, 0) QB (s97,−0.5)

M2 P22 H (s53, 0) M (s94, 0)
P23 N (s50, 0) T (s98, 0)
P31 L (s51, 0) V B (s97, 0)

M3 P32 M (s52, 0) B (s96, 0)
P33 AT (s54,−0.25) S (s92, 0)

P11, P12 and P13, we have f(L) =
△−1

2 (s51,0)

△−1
2 (s51,0)+△−1

2 (s53,0.25)+△−1
2 (s53,−0.5)

.
= 0.15, f(QH) =

△−1
2 (s53,0.25)

△−1
2 (s51,0)+△−1

2 (s53,0.25)+△−1
2 (s53,−0.5)

.
= 0.48, f(AH) =

△−1
2 (s53,−0.5)

△−1
2 (s51,0)+△−1

2 (s53,0.25)+△−1
2 (s53,−0.5)

.
= 0.37,

F1 = fULWGLW ({(L,AT ), (QH,S), (AH, M)}) = fULWG({(f(L), (s98,−0.5)), (f(QH), (s92,
0)), (f(AH), (s94, 0))}) = LH−1(△3((△−1

3 (s98,−0.5))f(L)× (△−1
3 (s92, 0))

f(QH)× (△−1
3 (s94, 0)

)f(AH))) = LH−1(△3(7.5
0.15 × 20.48 × 40.37))

.
= LH−1(△3(3.13)) = (M,−0.43). According

Table 3. The probability of failure of the component made by manufactory

manufactory the component the probability of failure
M1 P1 F1 = (M,−0.43)
M2 P2 F2 = (AH,−0.15)
M3 P3 F3 = (M,−0.325)

to Table 3, the probability of failure F2 of the component P2 made by manufactory M2 is
(AH,−0.15), i.e., almost big with the value of the symbolic translation −0.15, it is the
largest linguistic evaluation value among the linguistic evaluating values of F1, F2 and F3.
Hence, the risk of the manufactory M2 is the highest.

Example 4.2. [11] Assume that the balanced linguistic values are {Absolutely-low, Very-
low, Low, Fairly-low, Medium, Fairly-high, High, Very-high, Absolutely-high}, their cor-
responding interval valued fuzzy numbers are shown in Table 4. The linguistic evaluating
values of every sub-component Pij are shown in Table 5. In Table 5, wij denotes the
degree of confidence of the decision-maker’s opinion with respect to sub-components Pij.
The method proposed in [11] is presented as follows: 1) Aggregate the linguistic evaluat-
ing values of sub-components Pij of each component Pi made by manufactory Mi based
on the fuzzy weighted mean method and the interval-valued fuzzy numbers arithmetic op-
erators proposed in [11] to get the probability of failure Fi, e.g., for F1, according to
Table 4 and Table 5, we have F1 = ((low ⊗ fairly low) ⊕ (fairly high ⊗ medium) ⊕
(very low ⊗ fairly high))/(low ⊕ fairly high ⊕ very low) = (A3⊗A4)⊕(A6⊗A5)⊕(A2⊗A6)

A3⊕A6⊕A2

=
(A∗

3⊗A∗
4)⊕(A∗

6⊗A∗
5)⊕(A∗

2⊗A∗
6)

A∗
3⊕A∗

6⊕A∗
2

= [(0.240, 0.328, 0.656, 0.905; 0.288), (0.195, 0.306, 0.678, 0.949;

0.763)], where, A∗
2, A

∗
3, A

∗
4, A

∗
5 and A∗

6 are type-1 fuzzy numbers of A2, A3, A4, A5 and A6,
respectively, e.g., A∗

2 = (0.0075+0
2

, 0.0075+0
2

, 0.015+0.02
2

, 0.0525+0.07
2

; 0.5+1
2

) = (0.00375, 0.00375,
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0.0175, 0.06125; 0.75), A∗
2 ⊗ A∗

6 = (0.00375 × 0.615, 0.00375 × 0.65125, 0.0175 × 0.77875,
0.06125 × 0.825;min(0.75, 0.75)), A∗

2 ⊕ A∗
6 = (0.00375 ⊕ 0.615, 0.00375 ⊕ 0.65125, 0.0175

⊕0.77875, 0.06125⊕ 0.825;min(0.75, 0.75)); 2) Calculate the degree of similarity between
the upper fuzzy numbers of the interval-valued fuzzy numbers Fi and every linguistic value
shown in Table 4, respectively, e.g., for F1 and A1, we have S

U
X(F

U
1 , AU

1 )=SU
X((0.195, 0.306,

0.678, 0.949; 0.763), (0, 0, 0, 0; 1)) = 1 − |0.195−0|+|0.306−0|+|0.678−0|+|0.949−0|
4

= 0.468; 3) Cal-
culate the spread between the upper fuzzy numbers of the interval valued fuzzy numbers
Fi and every linguistic value shown in Table 4, respectively, e.g., for F1 and A1, we have
STDU(FU

1 , AU
1 ) = |STDFU

1
− STDAU

1
| = 0.347, x1 = (0.195 + 0.306 + 0.678 + 0.949)/4 =

0.532, STDFU
1

=
√

(0.195−x1)2+(0.306−x1)2+(0.678−x1)2+(0.949−x1)2

4−1
; 4) Calculate the degree of

similarity on the X-axis between the interval-valued fuzzy numbers Fi and every linguis-
tic value shown in Table 4, respectively, e.g., for F1 and A1, we have SX(F1, A1) =
1 − (|(0.195 − 0.24) − (0 − 0)| + |(0.306 − 0.328) − (0 − 0)| + |(0.678 − 0.656) − (0 −
0)|+ |(0.949− 0.905)− (0− 0)|)/4 = 0.96675; 5) Calculate the degree of similarity on the
Y -axis between the interval-valued fuzzy numbers Fi and every linguistic value shown in
Table 4, respectively, e.g., for F1 and A1, we have SY (F1, A1) = 1 − |yF1 − yA1 | = 0.915,
where yF1 and yA1 are associated to areas of FU

1 , FL
1 , AU

1 and AL
1 , respectively; 6)

Calculate the degree of similarity between the interval-valued fuzzy numbers Fi and ev-
ery linguistic value shown in Table 4, respectively, which is decided by the above men-
tioned degrees of similarity and the spread, e.g., for F1 and A1, we have S(F1, A1) =
SU
X(FU

1 ,AU
1 )×(1−|0.763−1|)

1+STDU (FU
1 ,AU

1 )
× SX(F1, A1)× SY (F1, A1) = 0.234. By using the method, the prob-

ability of failure of P1 made by manufactory M1 is “Medium”, the probability of failure of
P2 is “fairly-high” and the probability of failure of P3 is “fairly-high”. Hence, the risk of
manufactories M2 and M3 is the highest, see [11] for more detail.

Table 4. Linguistic values and their corresponding interval-valued fuzzy numbers

Linguistic values Interval-valued fuzzy numbers
Absolutely-low (s90) A1 = [(0, 0, 0, 0; 1), (0, 0, 0, 0; 1)]

Very-low (s91) A2 = [(0.0075, 0.0075, 0.015, 0.0525; 0.5), (0, 0, 0.02, 0.07; 1)]
Low (s92) A3 = [(0.0875, 0.12, 0.16, 0.1825; 0.5), (0.04, 0.1, 0.18, 0.23; 1)]

Fairly-low (s93) A4 = [(0.2325, 0.255, 0.325, 0.3575; 0.5), (0.17, 0.22, 0.36, 0.42; 1)]
Medium (s94) A5 = [(0.4025, 0.4525, 0.5375, 0.5675; 0.5), (0.32, 0.41, 0.58, 0.65; 1)]

Fairly-high (s95) A6 = [(0.65, 0.6725, 0.7575, 0.79; 0.5), (0.58, 0.63, 0.8, 0.86; 1)]
High (s96) A7 = [(0.7825, 0.815, 0.885, 0.9075; 0.5), (0.72, 0.78, 0.92, 0.97; 1)]

Very-high (s97) A8 = [(0.9475, 0.985, 0.9925, 0.9925; 0.5), (0.93, 0.98, 1, 1; 1)]
Absolutely-high (s98) A1 = [(1, 1, 1, 1; 1), (1, 1, 1, 1; 1)]

In the following, we use our method to get the probability of failure Fi made by man-
ufactory Mi (i = 1, 2, 3). In this example, because linguistic evaluating values are bal-
anced, transformation function TF t

t′ : l(t, n(t)) −→ l(t′, n(t′)) are unnecessary, or trans-
formation function TF t

t′ is such that t = t′ = 3. According to (3), (4) and Table 5, we
have F1 = fULWG({(low, fairly low), (fairly high,medium), (very low, fairly high)})
= fULWG({(s92, s93), (s95, s94), (s91, s95)}) = LH−1(△3((△−1

3 (s93, 0))
f(s92) × (△−1

3 (s94, 0))
f(s95) ×

(△−1
3 (s95, 0))

f(s91))), in which, f(s92) =
△−1

3 (s92)

△−1
3 (s92)+△−1

3 (s95)+△−1
3 (s91)

= 2
2+5+1

= 0.25, f(s95) =
5

2+5+1
= 0.625 and f(s91) = 1

2+5+1
= 0.125. Hence, F1 = LH−1(△t0(3

0.25 × 40.625 ×
50.125))

.
= LH−1(△t0(3.83) = LH−1(s94,−0.17) = (Medium,−0.17). Similarly, F2 and F3

can be obtained as F2 = fULWG({(s92, s97), (s95, s95), (s91, s94)}), = LH−1((△−1
3 (s97, 0))

f(s92) ×



FUZZY RISK ANALYSIS BASED ON LINGUISTIC AGGREGATION OPERATORS 7115

Table 5. Linguistic evaluating values of the sub-components made by manufactories

manufactory sub-components the severity of loss the probability of failure
P11 low fairly-low (w11 = 0.9)

M1 P12 fairly-high medium (w12 = 0.7)
P13 very-low fairly-high (w13 = 0.8)
P21 low very-high (w21 = 0.85)

M2 P22 fairly-high fairly-high (w22 = 0.9)
P23 very-low medium (w23 = 0.9)
P31 low fairly-low (w31 = 0.95)

M3 P32 fairly-high high (w32 = 0.8)
P33 very-low fairly-high (w33 = 1.0)

(△−1
3 (s95, 0))

f(s95)× (△−1
3 (s94, 0))

f(s91))
.
= LH−1(s95, 0.3) = (Fairly-high, 0.3), F3 = fULWG({

(s92, s
9
3), (s

9
5, s

9
6), (s

9
1, s

9
5)}) = LH−1((△−1

3 (s93, 0))
f(s92) × (△−1

3 (s96, 0))
f(s95) × (△−1

3 (s95, 0))
f(s91))

.
= LH−1(s95,−0.07) = (Fairly-high,−0.07). Accordingly, the probability of failure of P1

made by manufactory M1 is “(Medium, –0.17)”, the probability of failure of P2 is “(Fairly-
high, 0.3)” and the probability of failure of P3 is “(Fairly-high, –0.07)”. Hence, the risk
of the manufactory M2 is the highest.

Compared our method with the method proposed in [11], because interval valued fuzzy
numbers are used to represent evaluating values, computation of the method is complex and
the result of the method is the lack of precision, i.e., P2 and P3 have the same probability of
failure “fairly-high”, this is loss of information due to the degree of similarity between the
interval-valued fuzzy numbers. However, the result of our method is that the probability of
failure of P2 is “(Fairly-high, 0.3)” more than “(Fairly-high, –0.07)” of P3, there is no loss
of information due to 2-tuple fuzzy linguistic representation and no complex computation
due to linguistic aggregation operator.

5. Conclusion. Inspired by the weighted geometric operator, we proposed the unbal-
anced linguistic weighted geometric operator to deal with aggregation of unbalanced lin-
guistic values with numerical weights as well as linguistic weights. Its properties showed
that the result of the aggregation operator lies in the Min and Max operators. By the
linguistic aggregation operator, we can directly represent the final linguistic evaluating
values and there is no loss of information. Compared our method with the one based on
interval-valued fuzzy numbers, it is concluded that our method overcomes the issues of
complex computation, loss of information and the lack of precision.
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