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Abstract. This paper constructs a multistate flow network composed of multistate edges
to model a computer network. Each edge has lead time, capacity, and cost parameters.
Therefore, the minimum transmission time through a single path is not a fixed number.
Under the transmission protocol that the data are sent through p (p ≥ 2) minimal paths
simultaneously, the minimum transmission time is also stochastic. This paper is mainly
to evaluate the probability that a given amount of data can be sent through p minimal
paths simultaneously subject to both time and budget constraints. Such a probability is
named network reliability herein, which can be treated as a performance indicator to mea-
sure the transmission capability of a computer network. Without knowing all minimal
paths, a solution procedure is first proposed to calculate network reliability. Furthermore,
the network administrator decides the routing rule indicating the first and the second pri-
ority p minimal paths in order to enhance the network reliability. Subsequently, network
reliability according to the routing rule is also computed. At last, the expected demand,
expected budget, expected time, and the criterion to find an ideal routing rule are pre-
sented as well.
Keywords: Transmission protocol, Network reliability, Multistate flow network, Rout-
ing rule, Multiple minimal paths, Budget

1. Introduction. The shortest path problem to determine a path with minimum length
is one of the well-known and practical problems in computer science, operations research,
networking and other areas. This problem focuses on a network in which each edge has a
fixed length parameter. When data/commodities are transmitted through a flow network,
it is desirable to adopt the shortest path, least cost path, largest capacity path, shortest
delay path, or some combination of multiple criteria [1-4], which are all variants of the
shortest path problem. From the viewpoints of QoS (quality of service) [5-8] and business
competing, it is an essential issue to shorten the transmission time through a computer
network with the time parameter. Hence, a version of the shortest path problem called
the quickest path problem proposed by Chen and Chin [9] arises to derive a single path
with minimum transmission time for sending a given amount of data. Such a path is
named the quickest path. In this problem, each edge has both capacity and lead time
parameters [9-12]. The lead time is the time needed to travel through the edge. Several
variants of the quickest path problems are thereafter proposed: constrained quickest path
problem [13,14], the first k quickest paths problem [15-18], and all-pairs quickest path
problem [19,20].

In the above problems, both the capacity and lead time parameters are assumed to
be deterministic. However, due to failure, partial failure, maintenance, etc., each edge
has multiple capacities/states in many real-life flow networks such as computer, pipelines
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transportation, logistics, telecommunication and urban traffic networks. Such a flow net-
work is named a multistate flow network [21-29]. The minimum transmission time through
a multistate flow network is thus not fixed. For instance, a pipelines transportation system
with each edge representing the transmission medium is a typical multistate flow network.
Virtually, each transmission medium consists of several pipelines, and each pipeline has
only the normal/failure state. That implies a transmission medium has several states in
which state k means that k pipelines are normal.
Besides, a computer network with each edge consisting of several cables such as coaxial

cables and fiber optics, is also a multistate flow network. The transmission protocol, which
allows the data to be transmitted through p (p ≥ 2) disjoint minimal paths (MPs) simul-
taneously, shortens the transmission time. An MP, which is different from the so-called
minimum path, is a path whose proper subsets are no longer paths. For convenience, we
use p-MP to denote p disjoint MPs. For a multistate flow network, the transmission time
problem to send d units of data (i.e., demand at the destination) through p-MP is never
studied yet. Besides, cost is another crucial factor in business competing. The budget
constraint is thus included in this paper. The network administrator needs some key per-
formance indicators to measure QoS, especially the level to meet the customers’ demand.
The first addressed problem is to evaluate the probability that the multistate flow network
can send d units of data through p-MP under both time and budget constraints. Such a
probability named network reliability herein can be treated as a performance indicator to
measure the transmission capability of a multistate flow network. For a specified p-MP,
a simple algorithm is first proposed to generate all lower boundary vectors, the minimal
capacity vectors sending d units of data under both time and budget constraints. Network
reliability can then be calculated in terms of such vectors by applying inclusion-exclusion.
In order to further enhance the transmission capability, the network administrator decides
a routing rule in advance to indicate the first and the second priority p-MP. The second
one will be responsible for the transmission duty if the first is out of order. The second
addressed problem is to evaluate network reliability according to the routing rule. The
remainder of this work is organized as follows. In Section 2, a multistate flow network
with lead time, capacity, and cost parameters is established to model a computer net-
work. The algorithm to generate all lower boundary vectors is subsequently proposed.
The routing rule and network reliability are both presented in Section 3. An example
is demonstrated in Section 4 to illustrate the algorithm and how network reliability may
be calculated. Computational time complexity of the proposed algorithm is analyzed in
Section 5. The expected demand, expected budget, expected time and more discussion
about the routing rule are concluded in Section 6.

1.1. Notations.
p number of MPs to send data simultaneously
T time constraint
B budget constraint
n number of edges
ai edge #i, i = 1, 2, . . ., n
A {ai|i = 1, 2, . . ., n}: set of edges
N set of nodes
li lead time of ai, i = 1, 2, . . ., n
L (l1, l2, . . ., ln)
Mi maximal capacity of ai, i = 1, 2, . . ., n
M (M1,M2, . . .,Mn)
xi current capacity of ai, i = 1, 2, . . ., n
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X (x1, x2, . . ., xn): capacity vector
ri number of possible capacities of ai, i = 1, 2, . . ., n
bij jth possible capacity of ai, j = 1, 2, . . ., ri. Thus, xi takes

possible values 0 = bi1 < bi2 < . . . < biri = Mi, i = 1, 2, . . ., n
ci unit transmission cost on ai per unit of flow, i = 1, 2, . . ., n
C {ci|1 ≤ i ≤ n}
G (A, N , L, M , C): a multistate flow network
m number of total MPs
Ps MP #s, s = 1, 2, . . .,m
ns number of edges in Ps, s = 1, 2, . . .,m
ase edge #e in Ps, e = 1, 2, . . ., ns

d demand
U(ds,Ps) total cost for sending d units of data through Ps

ds assigned demand through Ps, s = 1, 2, . . .,m
g number of p-MP
Qj jth p-MP, j = 1, 2, . . ., g
Pjk MP #k in Qj, k = 1, 2, . . ., p. Qj = {Pj1, Pj2, . . ., Pjp}
dj (dj1, dj2, . . ., djp): assigned demand vector through Qj

λj set of feasible dj subject to the budget constraint
dxe smallest integer such that dxe ≥ x
η(ds, X, Ps) transmission time to send ds units of data through Ps

under X and B
κ(dj, X) minimum transmission time to send dj under X
λ(d,X,B, Qj) minimum transmission time to send d units of data through Qj

under X
Rd,T,B network reliability
Rd,T,B(·) network reliability according to a routing rule
Φj set of X sending d units of data through Qj under T and B,

j = 1, 2, . . ., g
Φj,min {X|X is minimal in Φj}, j = 1, 2, . . ., g
h number of lower boundary vectors for (d,T,B, Qj)
Sk subset of X, k = 1, 2, . . ., h
ds upper bound of ds, s = 1, 2, . . .,m
Γj set of X generated from the algorithm
I, J set of index
ρ number of feasible dj

vjk necessary capacity for Pjk to send djk units of data under T,
k = 1, 2, . . ., p

Vt tth (vj1, vj2, . . ., vjp)
Aj event that Qj fails, j = 1, 2, . . ., g
Fj event that d units of data can be sent through Qj under T and B,

j = 1, 2, . . ., g
Ei a subset of X according to the cost rule, i = 1, 2, . . .,B
Hi a subset of X according to the time rule, i = 1, 2, . . .,T

2. Problem Formulation and the Algorithm.

2.1. Assumptions.

(1) Each edge is multistate with a given probability distribution.
(2) Each node is perfectly reliable.
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(3) The capacities of different edges are statistically independent.

2.2. Constraints. If ds units of data are transmitted through an MP Ps = {as1, as2, . . .,
asns}, s = 1, 2, . . .,m, then the total cost U(ds, Ps) is

U(ds, Ps) =
ns∑
e=1

(ds · cse), (1)

where (ds · cse) is the cost through ase for e = 1, 2, . . ., ns. The following equation states
that the total cost for sending dj through Qj can not exceed the budget,

p∑
k=1

U(djk, Pjk) ≤ B. (2)

So, λj = {dj|dj satisfies constraints (2) and (3)} where

p∑
k=1

djk = d. (3)

The capacity of Ps under the capacity vector X is min
1≤e≤ns

(xse), s = 1, 2, . . .,m. Hence,

the transmission time to send ds units of data through Ps under X, η(ds, X, Ps), is

lead time of Ps +

⌈
ds

capacity of Ps

⌉
=

ns∑
e=1

lse +

 ds
min

1≤e≤ns

xse

 . (4)

The capacity vector X contradicts the time constraint if η(ds, X, Ps) > T. We have the
result of Lemma 2.1.

Lemma 2.1. η(ds, X, Ps) ≥ η(ds, Y, Ps) if X < Y where Y is a capacity vector.

Proof: If X < Y , then xse ≤ yse for each ase ∈ Ps, and min
1≤e≤ns

xse ≤ min
1≤e≤ns

yse. Thus,⌈
ds

min
1≤e≤ns

xse

⌉
≥
⌈

ds
min

1≤e≤ns
yse

⌉
. Since the lead time of Ps is independent of capacity vectors, we

complete the proof by obtaining that η(ds, X, Ps) ≥ η(ds, Y, Ps). The proof is completed.

2.3. Network reliability evaluation. Any capacity vector X with λ(d,X,B, Qj) ≤ T
means that X can send d units of data through Qj under both T and B. Thus, Φj =
{X|λ(d,X,B, Qj) ≤ T}. Network reliability Rd,T,B is the probability that G can send d
units of data through a p-MP under both T and B. If the data are sent through Qj, then

Rd,T,B = Pr {X|λ(d,X,B, Qj) ≤ T}, (5)

where

λ(d,X,B, Qj) = min
dj∈λj

κ(dj, X), (6)

and

κ(dj, X) = max
1≤k≤p

η(djk, X, pjk). (7)

If the network size is large, the number of X ∈ Φj will be enormous. We thus propose an
idea about lower boundary vectors and subsets as follows.

Definition 2.1. X ∈ Φj,min is called a lower boundary vector for (d,T,B, Qj). Or equiv-
alently, X is a lower boundary vector for (d,T,B, Qj) if and only if (i) λ(d,X,B, Qj) ≤ T
and (ii) λ(d, Y,B, Qj) > T for any capacity vector Y with Y < X.
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The following lemma further shows that any capacity vector, which is larger than a
lower boundary vector for (d,T,B, Qj), satisfies both time and budget constraints.

Lemma 2.2. If X is a lower boundary vector for (d,T,B, Qj), then Y ∈ Φj for any
Y > X.

Proof: Since X is a lower boundary vector for (d,T,B, Qj), there exists a dj ∈

λj such that κ(dj, X) = λ(d,X,B, Qj) ≤ T and
p∑

k=1

U(djk, Pjk) ≤ B. Lemma 2.1

states that η(ds, Y, Ps) ≤ η(ds, X, Ps) for any Y > X. Hence, max
1≤k≤p

η(djk, Y, pjk) ≤
max
1≤k≤p

η(djk, X, pjk), equivalently, κ(dj, Y ) ≤ κ(dj, X). Then min
dj∈λj

κ(dj, Y ) ≤ min
dj∈λj

κ(dj,

X). We conclude that Y ∈ Φj by obtaining λ(d, Y,B, Qj) ≤ λ(d,X,B, Qj) ≤ T. The
proof is completed.

Suppose X1, X2, . . ., Xh are all lower boundary vectors for (d,T,B, Qj). Lemma 2.2
implies that Pr {X|λ(d,X,B, Qj) ≤ T} = Pr{X|X ≥ Xk for a lower boundary vector Xk

for (d,T,B, Qj)}. Hence, Rd,T,B could be represented as the union of subsets,

Rd,T,B = Pr

{
h∪

k=1

{X|X ≥ Xk}

}

= Pr

{
h∪

k=1

Sk

}
.

(8)

Several methods such as inclusion-exclusion [23-27,30,31], disjoint-event method [30,32],

and state-space decomposition [21,22,33,34] may be applied to calculate Pr

{
h∪

k=1

Sk

}
.

2.4. Algorithm.
Algorithm 1. Generate all lower boundary vectors for (d,T,B, Qj).

1 for Pjk ∈ Qj, k = 1, 2, . . ., p, find the largest number djk subject to

∑
i:ai∈Pjk

li +

 djk
min

i:ai∈Pjk

Mi

 ≤ T (9)

2 find all integer solutions dj = (dj1, dj2, . . ., djk) of

p∑
k=1

djk = d subject to djk ≤ djk, k = 1, 2, . . ., p (10)

//generate λj

3 Γj = ∅, I = ∅, J = ∅. Suppose there are ρ feasible dj.
4 for t = 1 to ρ, do

//do the following steps for tth dj

5 calculate
p∑

k=1

U(djk, Pjk)

6 if
p∑

k=1

U(djk, Pjk) > B, then goto next t

7 for k = 1 to p, do
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8 find the smallest integer vjk such that∑
i:ai∈Pjk

li +

⌈
djk
vjk

⌉
≤ T (11)

9 end
10 Vt = (vj1, vj2, . . ., vjp)
11 for w = 1 to t− 1 and w /∈ I ∪ J, do
12 if Vt ≥ Vw, then I = I ∪ {t} and goto next t
13 if Vt < Vw, then I = I ∪ {w} and Γj = Γj\{Xw}
14 end
15 Xt = (x1, x2, . . ., xn) where

xi =

{
minimal capacity u of ai such that u ≥ vjk if ai ∈ Pjk, k = 1, 2, . . . , p
0 others

(12)

16 for w = 1 to t− 1 and w /∈ I ∪ J, do
17 if Xt ≥ Xw, then J = J ∪ {t} and goto next t;
18 if Xt < Xw, then J = J ∪ {w} and Γj = Γj\{Xw}
19 end
20 Γj = Γj ∪ {Xt}
21 end
Steps 1 and 2 generate the set λj, and Steps 5 to 15 guarantee that λ(d,Xt,B, Qj) ≤ T

because η(djk, Xt, Pjk) ≤ T for each k = 1, 2, . . ., p (Step 8). The Xt (in Step 15) is thus
a candidate of lower boundary vector for (d,T,B, Qj). Steps 16 to 19 further check the
qualification of the candidates, and the set J stores the index of non-minimal Xt. To make
it clear that Γj = Φj,min, the following theories are essential.

Lemma 2.3. If Xt ∈ Γj, then Xt ∈ Φj.

Proof: It is known that η(djk, Xt, Pjk) =
∑

i:ai∈Pjk

li +
⌈
djk
xjk

⌉
≤

∑
i:ai∈Pjk

li +
⌈
djk
vjk

⌉
≤ T for

each k since xjk ≥ vjk. So κ(dj, Xt) = max
1≤k≤p

η(djk, Xt, pjk) ≤ T. The proof is completed

by obtaining λ(d,Xt,B, Qj) = min
dj∈λj

κ(dj, Xt) ≤ T. The proof is completed.

Theorem 2.1. Each Xt ∈ Γj is a lower boundary vector for (d,T,B, Qj).

Proof: By Lemma 2.3, it is known that Xt ∈ Φj. Suppose Xt /∈ Φj,min. Then there
exists a lower boundary vector Y = (y1, y2, . . ., yn) for (d,T,B, Qj) such that Y < Xt.
Without loss of generality, there exists an edge au ∈ Pj1 such that yu < xu. It is known
that xu is the minimal capacity of au such that xu ≥ vj1. The situation yu < xu results

in that yu < vj1 and
∑

i:ai∈Pj1

li +
⌈
dj1
yu

⌉
> T. It contradicts that Y is a lower boundary

vector for (d,T,B, Qj). Hence, Xt is a lower boundary vector for (d,T,B, Qj). The proof
is completed.

Theorem 2.2. Each lower boundary vector for (d,T,B, Qj) belongs to Γj.

Proof: Let X be a lower boundary vector for (d,T,B, Qj). We claim that X satisfies

Equation (12). Firstly, if there exists an edge ae ∈
p∪

k=1

Pjk such that xe > f , then set

Z = (x1, x2, . . ., xe − f, . . ., xn), where (xe − f) is the maximal capacity of ae such that
(xe − f) < xe. Thus, η(djk, Z, Pjk) ≤ η(djk, X, Pjk) ≤ T, k = 1, 2, . . ., p. That is,
Z ∈ Φj which contradicts that X is a lower boundary vector for (d,T,B, Qj). Secondly,
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if there exists an edge aw /∈
p∪

k=1

Pjk such that xw > 0, then set Y = (x1, x2, . . ., xw −

z, . . ., xn), where (xw − z) is the maximal capacity of aw such that (xw − z) < xw. Thus,

η(djk, Y, Pjk) = η(djk, X, Pjk) ≤ T, k = 1, 2, . . ., p, since aw /∈
p∪

k=1

Pjk. Then Y ∈ Φj which

contradicts that X is a lower boundary vector for (d,T,B, Qj). Hence, xi = 0 for each

ai /∈
p∪

k=1

Pjk. The above proves that X satisfies Equation (12).

We further claim that X ∈ Γj. Suppose to the contrary that X /∈ Γj. Then there exists
a W ∈ Γj such that W < X because Γj is generated from the X satisfying Equation (12).
Theorem 2.1 indicates that W is a lower boundary vector for (d,T,B, Qj). It contradicts
the fact that X is a lower boundary vector for (d,T,B, Qj). Therefore, we conclude that
X ∈ Γj. The proof is completed.

3. Network Reliability According to the Routing Rule. The routing rule, a trans-
mission rule decided by the network administrator, indicates the first priority p-MP, the
second priority (or named alternative) p-MP, etc. The routing level is called 2 (resp. 3)
if an (resp. two) alternative p-MP is standing by. The second priority p-MP takes charge
of the transmission duty if the first fails; and the third takes charge if the second fails.

Definition 3.1. An MP fails if and only if at least one edge in it fails.

Definition 3.2. A p-MP fails if and only if all MPs in it fail.

Then, the probability that Qj fails is

Pr(Aj) = Pr(Pjk fail for each k = 1, 2, . . ., p)

= Pr(xi = 0 for at least one ai ∈ Pj1)× Pr(xi = 0 for at least one

ai ∈ Pj2)× . . .× Pr(xi = 0 for at least one ai ∈ Pjp)

=

p∏
k=1

(
1−

∏
i:ai∈Pjk

Pr(xi ≥ 1)

)
, j = 1, 2, . . ., g. (13)

Theorems 2.1 and 2.2 prove that Φj,min can be generated from the algorithm. Thus,

Pr(Fj) = Pr {Φj,min} = Pr

{
h∪

k=1

Sk

}
, j = 1, 2, . . ., g. (14)

Pr(Fj) is also network reliability if the data are sent only through Qj. We first concentrate
on routing level 2. Without loss of generality, let Q1 and Q2 be the first and the second
priority p-MP, respectively. Network reliability with routing level 2 is thus

Rd,T,B(Q1, Q2)

= Pr(F1) + Pr(F2|A1)× Pr(A1)

= Pr(F1) + Pr(F2)× Pr(A1), (15)

where Pr(F2|A1) = Pr(F2) since MPs and Qj are both statistically independent from
Assumption (3).

4. Numerical Example. We use a computer network shown in Figure 1 to illustrate
the proposed solution procedure for p = 2. The edge data are all shown in Table 1. Let
Q1 consist of P1 = {a1, a2, a3} and P2 = {a4, a5, a6}.



4212 Y.-K. LIN

Table 1. The edge data of Figure 1

edge capacity probability lead time cost edge capacity probability lead time cost
a1 50a 0.86 2 3 a12 60 0.83 2 2

30 0.05 40 0.04
10 0.03 20 0.04
0 0.06 10 0.05

a2 50 0.90 2 4 0 0.04
30 0.03 a13 60 0.82 1 3
10 0.02 40 0.10
0 0.05 20 0.02

a3 40 0.88 3 3 10 0.02
20 0.04 0 0.04
10 0.04 a14 20 0.95 2 2
0 0.04 0 0.05

a4 50 0.85 3 2 a15 70 0.80 3 2
30 0.05 50 0.05
10 0.05 30 0.05
0 0.05 10 0.05

a5 50 0.85 4 3 0 0.05
30 0.05 a16 60 0.82 2 2
10 0.05 40 0.06
0 0.05 30 0.04

a6 40 0.88 3 2 10 0.04
20 0.04 0 0.04
10 0.03 a17 50 0.88 3 3
0 0.05 30 0.03

a7 20 0.96 2 1 10 0.04
0 0.04 0 0.05

a8 50 0.85 3 3 a18 40 0.85 3 4
30 0.05 30 0.05
10 0.05 10 0.05
0 0.05 0 0.05

a9 40 0.83 4 1 a19 50 0.90 3 1
20 0.07 30 0.03
10 0.05 10 0.03
0 0.05 0 0.04

a10 40 0.85 2 2 a20 40 0.80 3 2
20 0.05 20 0.10
10 0.05 10 0.05
0 0.05 0 0.05

a11 50 0.88 3 1 a21 20 0.93 2 2
30 0.02 0 0.07
10 0.05 a22 10 0.96 4 1
0 0.05 0 0.04

aPr{the capacity of a1 is 50} = 0.86.
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Figure 1. A computer network

4.1. Case I. We would like to evaluate network reliability that 200 units of data can be
sent through Q1 under both time 13 and budget 2000. All lower boundary vectors for
(200, 13, 2000, Q1) can be derived as the following steps.

1 The largest demand d1 such that (2 + 2 + 3) +
⌈

d1
min{50,50,40}

⌉
≤ 13 is 200.

Similarly, the largest demand d2 is 120.
2 Totally, 13 feasible d1 = (d1, d2) are obtained from of d1 + d2 = 200 subject to

d1 ≤ 200 and d2 ≤ 120, supposing that data are sent in packages of 10 units.
The results are shown in Table 2.

3 Γj = ∅, I = ∅, J = ∅, ρ = 13.
4 t = 1, d1 = (80, 120).
5 U(80, P1) = 80× (3 + 4 + 3) = 800 and U(120, P2) = 840.
6 U(80, P1) + U(120, P2) < 2000.
7 For k = 1 and 2

8 Then v1 = 20 is the smallest integer such that
(
7 +

⌈
80
v1

⌉)
≤ 13. Simi-

larly, v2 = 40.
10 V1 = (v1, v2) = (20, 40), I = ∅.
15 X1 = (30, 30, 20, 50, 50, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), J = ∅.
20 Γj = Γj ∪ {X1} = {X1}.
4.1 t = 2, d1 = (90, 110).
5.1 U(90, P1) = 90×(3+4+3) = 900 and U(110, P2) = 110×(2+3+2) = 770.
6.1 U(90, P1) + U(110, P2) < 2000.
7.1 For k = 1 and 2.

8.1 v1 = 20 is the smallest integer such that
(
7 +

⌈
90
v1

⌉)
≤ 13. Similarly,

v2 = 40.
10.1 V2 = (20, 40).
12.1 I = I ∪ {2} = {2} since V2 ≥ V1.
4.2 t = 3, d1 = (100, 100).
...
The results are summarized in Table 2.
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Table 2. Results of running the algorithm for Q1

(d1, d2) U(d1, P1) U(d2, P2)
Total
cost

Vt = (v1, v2) X X ∈ Γ1? Remark

(80, 120) 800 840 1640 V1 = (2, 4) V1 > V4

(90,110) 900 770 1670 V2 = (2, 4) V2 ≥ V1

(100, 100) 1000 700 1700 V3 = (2, 4) V3 ≥ V1

(110, 90) 1100 630 1730 V4 = (2, 3) X4 = (3, 3, 2, 3, 3, 4, 0, 0, . . ., 0) YES
(120, 80) 1200 560 1760 V5 = (2, 3) V5 ≥ V4

(130, 70) 1300 490 1790 V6 = (3, 3) V6 ≥ V4

(140, 60) 1400 420 1820 V7 = (3, 2) V7 > V10

(150, 50) 1500 350 1850 V8 = (3, 2) V8 ≥ V7

(160, 40) 1600 280 1880 V9 = (3, 2) V9 ≥ V7

(170, 30) 1700 210 1910 V10 = (3, 1) X10 = (3, 3, 4, 1, 1, 1, 0, 0, . . ., 0) YES
(180, 20) 1800 140 1940 V11 = (3, 1) V11 ≥ V10

(190, 10) 1900 70 1970 V12 = (4, 1) V12 > V10

(200, 0) 2000 0 2000 V13 = (4, 0) X13 = (5, 5, 4, 0, 0, 0, 0, 0, . . ., 0) YES

Three lower boundary vectors for (200, 13, 2000, Q1) are generated: X4 = (3, 3, 2, 3, 3, 4,
0, 0, . . . , 0), X10 = (3, 3, 4, 1, 1, 1, 0, 0, . . . , 0), and X13 = (5, 5, 4, 0, 0, 0, 0, 0, . . . , 0). Let
S1 = {X|X ≥ X4}, S2 = {X|X ≥ X10}, and S3 = {X|X ≥ X13}. Then network
reliability R200,13,2000 = Pr {S1 ∪ S2 ∪ S3} is 0.759799331.

4.2. Case II. For another case that the data are sent through another Q2 = {P3, P4}
where P3 = {a8, a9, a10} and P4 = {a11, a12, a13}, the results described in Table 3 shows
that three lower boundary vectors for (200, 13, 2000, Q2) are generated: X1, X7 and X14.
Network reliability R200,13,2000 increases to be 0.81980716.

Table 3. Results of running the algorithm for Q2

(d3, d4) U(d3, P3) U(d4, P4)
Total
cost

Vt = (v3, v4) X X ∈ Γ2? Remark

(0, 200) 0 1200 1200 V1 = (0, 3) X1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 0, . . ., 0) YES
(10, 190) 60 1140 1200 V2 = (1, 3) V2 > V1

(20, 180) 120 1080 1200 V3 = (1, 3) V3 > V1

(30, 170) 180 1020 1200 V4 = (1, 3) V4 > V1

(40, 160) 240 960 1200 V5 = (1, 3) V5 > V1

(50, 150) 300 900 1200 V6 = (2, 3) V6 > V1

(60, 140) 360 840 1200 V7 = (2, 2) X7 = (0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 3, 2, 2, 0, . . ., 0) YES
(70, 130) 420 780 1200 V8 = (2, 2) V8 ≥ V7

(80, 120) 480 720 1200 V9 = (2, 2) V9 ≥ V7

(90, 110) 540 660 1200 V10 = (3, 2) V10 > V7

(100, 100) 600 600 1200 V11 = (3, 2) V11 > V7

(110, 90) 660 540 1200 V12 = (3, 2) V12 > V7

(120, 80) 720 480 1200 V13 = (4, 2) V13 > V7

(130, 70) 780 420 1200 V14 = (4, 1) X14 = (0, 0, 0, 0, 0, 0, 0, 5, 4, 4, 1, 1, 1, 0, . . ., 0) YES
(140, 60) 840 360 1200 V15 = (4, 1) V15 ≥ V14

(150, 50) 900 300 1200 V16 = (4, 1) V16 ≥ V14

(160, 40) 960 240 1200 V17 = (4, 1) V17 ≥ V14

4.3. Network reliability with routing level 2. Furthermore, according to the routing
rule that Q1 and Q2 are the first and the second priority p-MP, respectively, network
reliability is

R200,13,2000(Q1, Q2) = Pr(F1) + Pr(F2)× Pr(A1)

= 0.759799331 + 0.81980716× 0.02035544 = 0.776486866.
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Comparing with the case that the data are sent only through Q1, the routing rule with
Q1 and Q2 shows an increase of 0.016687535 on reliability.

4.4. Network reliability with routing level 3. We further extend the solution proce-
dure to routing level 3. If Q1, Q2 and Q3 are the first, the second, and the third priority
p-MP, respectively, then network reliability is

Rd,T,B(Q1, Q2, Q3)

= Pr(F1) + Pr(F2|A1)× Pr(A1) + Pr(F3|A1A2)× Pr(A1A2)

= Pr(F1) + Pr(F2)× Pr(A1) + Pr(F3)× Pr(A1)× Pr(A2). (16)

By utilizing the example data, we obtain

R200,13,2000(Q1, Q2, Q3) = 0.759799331 + 0.81980716× 0.02035544

+ 0.791119744× 0.02035544× 0.01775396 = 0.776772769,

which is greater than R200,13,2000(Q1, Q2).

5. Computational Time Complexity. The algorithm takes at most O(n) time to find
the largest assigned demand djk for all Pjk ∈ Qj because each p-MP has no more than n
edges. For each dj, it spends O(n) time to test the budget and time constraints in the
worst case, respectively. Hence, we need at most O(ρn) time for all dj. It subsequently
needs at most O(ρ) time to compare with other Vw for each Vt and at most O(ρ2) time
for all Vt. The transformation from Vt to Xt takes O(n) time in the worst case. Each
Xt needs O(ρn) time to compare with other Xw in the worst case because Γj contains
at most ρ elements. Hence, it needs O(ρ2n) time in the worst case to generate all lower
boundary vectors for (d,T,B, Qj). In sum, it takes at most O(ρ2n) time to execute the
proposed algorithm. It seems that O(10000n) time is needed if d = 100. In practice,
the data amount (dj1, dj2) may be (100, 0), (90, 10), . . . , (0, 100) if p = 2. The number of
feasible dj is 11 but not 101. Thus only O(121n) time is needed to execute the algorithm.

6. Discussion and Conclusion. According to Rd,T,B = Pr {X|X ∈ Φj}, the corre-
sponding total cost for each X does not exceed B. We may divide Φj into disjoint subset
Ei, i = 1, 2, . . .,B, where Ei is the set of X whose total cost equals i. Although differ-
ent dj may generate the same X, we can set the total cost of X as the minimal cost∑p

k=1 U(djk, Pjk) from those corresponding dj. Hence,

Rd,T,B =
B∑
i=1

Pr{Ei}, (17)

and
Rd,T,B −Rd,T,B−1 = Pr {EB}. (18)

Similarly, Φj is divided into disjoint subset Hi, i = 1, 2, . . .,T, where Hi is the set of X
whose total time equals i. Hence,

Rd,T,B =
T∑
i=1

Pr{Hi}, (19)

and
Rd,T,B −Rd,T−1,B = Pr {HT}. (20)

Under the same condition that (time, budget) = (13, 2000), Table 4 lists network relia-
bilities with respect to all combination of priorities. It is known that P(F1) = 0.759799331,
P(F2) = 0.81980716 and P(F3) = 0.791119744. According to the sorting criterion, the
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routing rule that Q2 and Q3 are the first and the second priority p-MP, respectively,
reflects the highest network reliability 0.833852668.

Table 4. Network reliabilities with respect to different priorities

1st priority p-MP Q1 Q2 Q1 Q3 Q2 Q3

2nd priority p-MP Q2 Q1 Q3 Q1 Q3 Q2

network reliability 0.776486866 0.833296606 0.775902921 0.804681371 0.833852668 0.805752449

From the point of view of quality management, we obtain the following practical usage
of the theoretic results.

1. Network reliability is a performance indicator to measure the transmission capability.
Such an indicator reflects the level of QoS for a computer network.

2. The increase (or contribution) on network reliability by the backup p-MP can be
computed easily. The supervisor can judge the contribution of one or more backup
p-MPs.

3. Sensitivity analysis can be executed to improve the most important component (e.g.,
switch or server in computer network) which increases/decreases network reliability
most significantly.

In this paper, we assume each Qj consists of p disjoint MPs and Qi ∩ Qj = ∅ if
i 6= j. The further research can study the routing rule that Qj consists of at least two
intersectional MPs, and the case that some MPs are included in different Qj. Moreover,
it would be worthwhile to find the optimal routing rule with highest network reliability.
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