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ABSTRACT. In this paper, a new adaptive diagnosis and localization method is given for
small target leak points in an infrared image. The infrared image of a test vessel with cold
compressed air is photographed by a thermal camera. Based on a mathematical model of
the infrared image, the diagnosis and localization method is given as an adaptive algo-
rithm which is synthesized by a developed adaptive center-weighted median filter and an
improved adaptive kernel regression method. Experimental results are given to illustrate
the proposed algorithm is effective and adaptable to small target detection under the com-
plex infrared image background.

Keywords: Leak diagnosis and localization, Kernel regression, Infrared image, Spatially
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1. Introduction. In the nearly decades, detection and localization in air-leakage test are
much important for many manufacturing processes. With the development of technology,
more and more requirements are needed to meet for detection and localization of leak
points. Generally, there are three traditional ways to find tiny leak points in vessels:
air bubbling test, mass spectrometry and ultrasonic positioning. However, the three
traditional ways cannot simultaneously overcome the disadvantages of low efficiency and
poor anti-jamming ability [1, 2]. With the development of infrared technology, infrared
thermography has been used in the field of defect diagnosis and detection in recent years,
for example, [3, 4, 5, 6] and the references therein. The random noise in infrared images
with distinguishing small targets has to be further handled by a suitable filter method.
An approach to fast noise reduction of infrared images has been given in [7]. It is known
that adaptive filter method has been widely used to deal with random noise, such as in
[8, 9, 10, 11]. A non-uniformity correction algorithm based on adaptive filter for infrared
focal plane arrays has been given in [13]. An adaptive image enhancement approach to
infrared images for long-range surveillance has been presented in [14]. An adaptive center
weighted median filter has been proposed for improving the performance of median-based
filters and preserving image details while effectively suppressing impulsive noise in [20].
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The leak detection has developed many years. However, to the best of our knowledge,
there have been few results on infrared applied in the field of leak detection for tank. In
this paper, we firstly introduce infrared image in this field of Leak detection. A computer-
based system that combines a specific pneumatic circuit with an on-line infrared camera
is proposed to determine the air-tightness of a test vessel. In the computer-based system,
the test object is charged with cryogenic compressed air, and its temperature field is
acquired by infrared thermography. The leakage points can be identified by means of the
designed adaptive diagnosis and localization algorithm on the basis of the infrared image.
Furthermore, this adaptive method can improve the detection efficiency of the actual
production and reduce the workload in factory. Selecting the most appropriate algorithms
for detecting small targets in infrared image scenes is necessary, since the characteristics
between small targets and backgrounds are difficult to distinguish. To solve the problem,
a criterion has been proposed to measure the difficulty in distinguishing small targets from
infrared images [12]. A kernel-based nonparametric regression method for clutter removal
in infrared small-target detection applications has been given in [15]. Based on Taylor
expansion, an improved kernel regression method has been presented in [16]. The kernel
regression has also been extended by an adaptive method for debluring applications in
[17]. Up to now, there have been few results developed for the purpose of detecting small
targets in varied infrared image scenes by using an adaptive kernel regression method.
This problem, which motivates us to make the effort, is important and challenging in
both theory and industry.

In this paper, we propose the adaptive diagnosis and localization method for detecting
small targets in varied infrared image scenes. Both the adaptive center-weighted median
filter and the adaptive kernel regression method are developed to the synthesize adaptive
algorithm. Some experimental results are also given to illustrate the effectiveness of the
algorithm. The paper is organized as follows. In Section 2, the model of infrared image is
described. Section 3 gives the developed adaptive center-weighted median filter and the
improved adaptive kernel regression method. The synthesize adaptive algorithm is also
given in this section. In Section 4, we present an application of the adaptive synthesize
algorithm in an experiment. Conclusions are given in Section 5.

2. Problem Statement and Preliminaries.

2.1. Experimental model of leak diagnosis and localization. To improve the de-
tection efficiency for the vessel, a novel leak diagnosis and localization model is introduced
based on infrared thermography and image processing. The leak diagnosis and localization
model used in the experiment is shown in Figure 1.

As is shown in Figure 1, a thermal camera is used as the infrared acquisition device for
its strong on-line capture features. A RGB infrared image photographed by the thermal
camera with temperature change is obtained in real time during the experiment. Because
of the double influences of Joule-Thomson and heat transfer effects generated by leakage
flow, the temperature field around a leak point is shown as singular pixels in the RGB
infrared image. The RGB infrared image will be sent to a computer for the further pro-
cessing to locate the leak points by using the designed adaptive diagnosis and localization
algorithm in this paper.

The diagram of pneumatic circuitry term of Figure 1 in the experiment is shown in
Figure 2.

It is seen from Figure 2 that from left to right there are several components: air source,
auxiliary components, precision regulator, magnetic valve, active cooler, pressure sensor,
test vessel, thermal camera, and so on. The pipelines between the active cooler and
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FicUure 1. Leak diagnosis and localization apparatus
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FIGURE 2. The diagram of pneumatic control system

the test vessel are encapsulated with rubber foamed plastic cover for heat insulation and
preservation.

2.2. Mathematical model of the infrared image. Since the red component and blue
component have no relation with the leak point in the RGB infrared image, they are
ignored in the following image process. Extracting the green component of the RGB
infrared image with leak points, we obtain a gray image which is used as the original
image. The original infrared image with small target leak points during the experiment
consists of three components: target points, background, and noise. Let

K={(z,y)l <z <V,1<y<W}

denote the pixel coordinates of the original infrared image, where V' and W are two
integral numbers which denote the height and width, respectively. The original infrared
image can be described by the following functional model:

f(:v,y)=fT(:U,y)+fB(:U,y)+n(:E,y) (1)

where f(z,y) is the gray scale of a pixel (z,y) at the original infrared image, fr(x,y) is
the gray scale of a pixel at the region of targets, fg(x,y) is the gray scale of a pixel at
the background, and n(z, y) is the intensity of the random noise. In the following section,
an adaptive center-weighted median filter is developed to deal with the random noise
n(z,y). Then, an adaptive kernel regression method of target detection is improved to
eliminate the background component fg(z,y). In the end, a synthesize adaptive diagnosis
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and localization algorithm is given for the small region of leak targets fr(z,y) based on
the infrared image model (1).

3. Main Results.

3.1. Adaptive center-weighted median filter. Let x(k) represent the input pixel
value of the original infrared image at location & € K. At each location k, the adaptive
filter window w{k} in terms of the coordinates symmetrically surrounding the input pixel
x(k) is defined as follows:

w{k} ={zp(k)|f=1,2,--- ,n,n+1,--- N}

where N = 2n + 1 with n is a non-negative integer. Therefore, the input center pixel
of the adaptive center-weighted median filter is z(k) = x,,1(k). The output of adaptive
center-weighted median filter is

y(k) = y.(k) = MED(w.{k}), c=0,1,--- N
where MED denotes the median operation and
wC{k} = {xl(k)v e 7$n(k)7 co xn-l-l(k)v l‘n-l-?(k)v e 7$N(k)}

where

0T (K) = Bust () + -+ B (k)

~~

C

in which ¢ represents the repetition operation and ¢ denotes the number of z, (k). The
MED(w.{k}) outputs the (N+c)/2th largest value of the filter window w.{k}. Therefore,
the key term of the adaptive center-weighted median filter is how to obtain the adaptive
center weight c.

Let O(k) be the observation vector of the adaptive center-weighted median filter. To
generate the observation vector O(k), the following two variables are given as:

u(k) = [z(k) — MED(w{k})| (2)

o) = I8 = Fa B olh) — ) 5

where
jz(k) — zea (k)| < [w(k) — z2(F)] < Jw(k) —@i(k)|, 1<i<2n+1,

and i is not equal to n + 1, ¢l or ¢2. u(k) denotes the absolute difference between the
input z(k) and the median value of w{k}. Note that the values of z. (k) and z.(k) are
selected to be the two closest values of z(k) in the filter window w{k}. If only u(k) is
considered, line component in w{k} will be identified as noise. Hence, we also apply the
variable v(k) such that the input x(k) will not be identified as noise for the reason of that
the variable v(k) is small enough.

By using the two inequalities (2) and (3), the observation vector O(k) can be calculated
as

O(k) = (u(k),v(k)) € R?

It is determined that the R? observation vector space is partitioned into M mutually
exclusive blocks

{Q, i=1,2,--- , M}
with
Q={0(k)eR*: fOk)=i},i=1,2---,M
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where the classifier f(-) is defined as a function of the observation vector O(k). That is,
it determines the partitioning of the observation vector space R? into M non-overlapping
blocks according to the value of the observation vector O(k) € R%. Hence, we have

M
R=J i=12 M
i=1

and
QZHQ]:QSJ VZ%], 27]217277M

Each input data xz(k) corresponding to its observation vector O(k) is only classified into
one of those M blocks according to the classifier f(-). The classifier f(-) can be designed
by using a simple scalar quantization since the partitioning indices are decided with low
computational complexity in the training and filtering process [18].

It is decided that u(k) belongs to an interval ©; with j =1,2,---, M and v(k) belongs
to an interval €, with [ = 1,2,---, M, respectively. Evaluate O(k) that belongs to
block i of the partition such that O(k) € €;, i € {1,2,---, M} by using the equation
i=(j—1)-B+1 where B denotes the number of intervals of u(k) and v(k). When we
obtain the expected value f(O(k)) = i, the conditional mean square error is shown as

éi(k) = Ele*(k)|f(O(k)) = i] = E[(d(k) — y(k))*| £ (O(k)) = i]
where E[-|-] is the conditional expectation, the error e(k) is the difference between the

desired output d(k) and the physical output y(k). Because the M blocks are mutually
exclusive, the total minimum mean square error € is expressed as

=[Gl Ok) =

)

In the following, we design the optimal weight a;(k) with ¢ = 1,2,---, M by using the
least mean square algorithm which is capable of minimizing the error function ¢;(k) with
respect to the block €2; as in [19]. The iterative learning algorithm of a;(k) is derived as

H () = { af (k) — nile(k)l|z(k) — d(k)|, oi* (k) >0,

i 0, alt (k) < 0.
where 7; denotes a learning rate, a)(k) denotes the initial weight and of(k) denotes the
weight after the tth iteration, ¢ = 0,1, ---. Furthermore, every weight within block €2; is

initialized with N. That is, the weights are set such that
a?(k) :N7 1= 1727"' 7M7

based on which the output of the adaptive center-weighted median filter is equal to the
input pixel z(k) since the center weight of(k) is N. Moreover, the filter will degenerate
into a standard median filter when the weight a(k) decreases from N to 1. For the
derivation of least mean-squares (LMS) convergence, the following conditions are sufficient
for the convergence in the mean and mean square:

2
DS Bm —werom =g M
It is obtained that «;(k) with i = 1,2,--- M serves as the adaptive weight ¢ for the
adaptive center-weighted median filter as in [20].
By using the adaptive center-weighted median filter, the noise term n(z,y) in model
(1) is eliminated. That is, the infrared image model (1) can be changed to

f(z,y) = fr(z,y) + fa(r,y) (4)
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after the filter manipulate.

3.2. Adaptive kernel regression method. The nonparametric statistical regression
model of 2-D sample data is written as follows:

gZ:m(ZZ)+€z, Zz:[xz;yz]a 221727 ,N

where g¢; is the image gray of a sample pixel, (z;,y;) is the spatial coordinates of a sam-
ple pixel, m(z;) is the regression function whose form is unspecified, which should be a
nonlinear function to approximate the complex background better, ¢; is a random error
or interference that is uncorrelated with m(z;), N is the total number of sample pixels
which are used to estimate the regression model. In this paper, ¢; is supposed to be a
Gaussian random variable with zero mean.

Under the complex background, the parametric regression model for estimation is adap-
tive. Considering the complexity of background fluctuation, nonparametric regression is
more reasonable in fitting the background component. To estimate the value of regression
function at any point z, if z is near the sample z;, the local expansion of the regression
function m(z;) can be utilized. Therefore, the local signal representation of the unknown
function with a Taylor series is

m(z) = m(z) + (VM) (5= 2) + 55— )T HRE} -2+ ()

where V is the gradient (2 x 1) operator and H is the Hessian (2 x 2) operator, which is
a symmetrical matrix. Moreover, it is obtained that (5) can be rewritten as follows:

m(z) = o + B (zi — 2) + Ba vech{(zi — 2)(zi — 2)"} + -+~ (6)

where vech(-) is the half-vectorization operator which lexicographically orders the lower
triangular portion of a symmetric matrix into a column-stacked vector, e.g.,

vech{[zg}}:[abc]

abc

vech bde :[abcdef]
cef

Furthermore, /3y is m(z), which is the pixel value of interest, and the vectors §; and [
are

g = [ om(z) Om(z) ]T
T ox dy
By = [ 0*m(z) *m(z) 9*m(z) ]T
2T 2022  Oxdy  20y?
A logical step to take is to estimate the parameters §; from all the samples {g;}

while giving the nearby samples higher weights than samples farther away. A formulation
of the fitting problem capturing this idea is to solve the following optimization problem:

N
=1

N
I%IHZ [gz - 50 - 5?(21 - Z) — By — - ']2 : ’Cadapt(zi — 2,9 — g) (7)
7=

with
By = Bfvech{(z — 2)(z — 2)"'}
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where Koqqp: is an adaptive kernel function which rely on not only the spatial distances
(2; — z) but also on the gray distances (g; — ¢g). Based on the data-adapted steering kernel
in [17], we take the adapted kernel K44, in this paper as the following form

Icadapt(zi —2,0i — g) = ’CHf (Zz - Z)

where H? are now data-adaptive full (2 x 2) steering matrices which are defined as

M

H; = huC,;

where h is the global smoothing parameter, y is a scalar capturing local density of samples
and it is nominally set to one, C; are symmetric inverse covariance matrices based on
differences in the local gray-values. The local edge structure is related to the gradient
covariance, where a naive estimate of this covariance matrix may be obtained as follows:

o | 2 ma (2)me (25) 20 me (2)mes (25) ) .
G | S (emazy) S ma(epmn() |° 5 €6

where &; is a local analysis window around the position of interest, m,, (-) and m,,(-) are
the first derivatives along and axes, respectively. In order to have a stable estimation for
the covariance matrix, we parameterize and regularize it as follows:

C; = ’YiRHi AiRe.T
with

Ro= [ o) s Toa= 0 0]

)

where Ry, is a rotation matrix and A; is an elongation matrix. Now the covariance matrix
C; is given by the three parameters ~;, 6; and o;, which are the scaling, rotation and
elongation parameters, respectively.

The optimization problem (7) can be described as a weighted least-square estimation
model. That is, we only calculate 3, from the estimation model for the reason of that the
gray scale of the pixels is the key point to focus on. The matrix form of the estimation
model is written as follows:

m(z) = BO = e?(zzwzzz)szzg (8)

where
€ = [17070,"']T7 g - [917927"' 7gN]T
Wz - dlag {’Cadapt(zl - Z), ’Cadapt(ZZ - Z), e ;’Cadapt(ZN - Z)}
1 (21— 2)T weeh{(zi — 2)(z — 2)"}

7, — 1 (21 - )T wech{(z; — z)(zZ - 2)T}

1 (21 - 2)T wvech{(z — z)(zZ — )T}

The proposed method is based on background prediction with the purpose of obtaining
an exact estimation of the background clutter fB (x,y). After the aforementioned matrix
operation, the value of gray at any pixel can be estimated precisely from the statistical
regression model, and the prediction of the entire image can be obtained. It is easy to
show that (4) can be written as

A

flz,y) = fr(z,y) + f(z,y) +¢ 9)
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where ¢ is the bias of the kernel regression prediction. Letting f(z,y) = m(z) according
to (8), the “pure” target-like infrared image model is represented as follows

f(l‘ay):fT(l‘ay)+8 (10)

3.3. Adaptive diagnosis and localization algorithm. The steps of the synthesize
adaptive diagnosis and localization algorithm for small target leak points in infrared image
are given as follows.

1.

6.

Extract the green component of the RGB infrared image with leak point as the
original infrared image modeled as (1).

. By using the obtained adaptive center-weighted median filter, the noise n(z,y) in

(1) is eliminated. The original infrared image model is changed to (4).

. The histogram equalization method is used to enhance the brightness and contrast

degree of the infrared image gotten from step 2.

. Predict the background clutter of the image obtained from step 3 by the adaptive

kernel regression method in this paper. The predicted background clutter is elimi-
nated from the original image to obtain the target-like image include potential target
points term fr(z,y) and the bias of kernel regression prediction ¢ as (10).

. Extract the leak point from the target-like image by simple threshold segmentation

method, the bias of kernel regression prediction ¢ is omitted and the target points
term fr(z,y) is obtained.
Mark out the leak point by small rectangle in the original image.

4. Experimental Results. The tested side of the vessel in our experiment is given in
the following figure:

FIGURE 3. The tested side of the vessel

In this experiment, we just randomly choose one of the small target leak points in the
tested side of the vessel as diagnosis target which has been remarked by a red rectangle
“00” in Figure 3. The experiments are done under the following conditions:

The FLIR A20m thermal camera is chosen in the experiment
The cast aluminum test vessel contained 500mL of air

The flow rate of the leak is 85mL/min

The inflation pressure is 0.6MPa

The temperature of the compressed air in active cooler is 254K
The ambient temperature is 286K

By using the above conditions, we get one of the RGB infrared image which is sent
to a computer for the processing of extracting the green component of the RGB infrared
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image with leak points. In Figure 4, image (a) is the chosen RGB infrared image which
shows the temperature field of the vessel before inflation, image (b) is the gray original
image gotten from the green component of image (a).

RSN fhitod

(a) RGB image (b) Original image
FIGURE 4. The images before inflation

Another RGB infrared image after inflation of the cold compressed air is obtained and
sent to a computer for the processing to locate the leak point in Figure 3. Utilizing the
adaptive diagnosis and localization algorithm, a series of images are obtained during the
image process. All the images are shown in Figure 5. The test vessel is inflated by cold
compressed air, its temperature field especially around leak the point changes a lot. It
is obviously shown by comparing the difference between Figure 4 and the two images (a)
and (b) in Figure 5.

RGB image b) Original image ) Filter image

d) Target image ) Result image f) Compare image

FIGURE 5. The images after inflation

Figure 5(a) is the chosen RGB infrared image which shows the temperature field of the
vessel at 100s after inflation.

Figure 5(b) is the gray original image gotten from the green component of the RGB
infrared image (a) after step 1 of the algorithm.

Figure 5(c) is the filter image after step 2 and step 3 of the algorithm. It is obtained
from the result of using adaptive center-weighted median filter and histogram equalization
method to image (b).

Figure 5(d) is the target-like image without background clutter after step 4 of the
algorithm. It is obtained from the result of using adaptive kernel regression method to
image (c).

Figure 5(e) is the detected result image of the test after step 5 of the algorithm. The
white point is the leak point that we want to find. The leak point is marked out by the
rectangle “CJ” in image (b) after step 6 of the algorithm.
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Figure 5(f) is also a target-like image by using the kernel regression method in [15].
The same initial parameters are used for images (d) and (f) in Figure 5, respectively.
Letting
Mmax = max {m(z,y)[1 <z <V, 1 <y < W},
the peak signal to noise ratio (PSNR) is defined as follows:

2
max

v W N
(V+1)%W+1) Zx:l Zy:l im(z,y) —m(z,y)

PSNR = 101g m

Then, we have that
PSNR(d) = 21.3, PSNR(f) = 17.6,

where PSNR(d) and PSNR(f) denote the PSNR of (d) and (f), respectively.

Remark 4.1. The leak detection has developed many years. However, to the best of our
knowledge, there have been few results on infrared applied in the field of leak detection
for tank. Leak detection based on infrared image is firstly introduced in this field in the
paper. Compared with the former three traditional ways, the designed adaptive diagnosis
and localization algorithm can improve the detection efficiency of the actual production
and reduce the workload in factory.

Remark 4.2. In the experimental results, we have the leak point is much more distinct
in image (e) than image (f) in Figure 5. Furthermore, from the inequality 21.3 > 17.6
which means PSNR(d) > PSNR(f), it is illustrated that we have obtained a better peak
signal to noise ratio by using the adaptive diagnosis and localization algorithm than the
algorithm in [15]. Hence, the method used in this paper is better than that of [15] in the
leak diagnosis and localization system.

5. Conclusions. In this paper, a new adaptive leak diagnosis and localization method
has been given for small target points in a infrared image. Both the adaptive center-
weighted median filter and the adaptive kernel regression method have been developed in
this paper. By using the two developed techniques, an adaptive diagnosis and localization
algorithm has been proposed. Through some experimental results, it has been shown that
the proposed method generalized previous results available and adaptable to small-target
detection under a complex infrared image background.
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