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Abstract. With the development of information technology, the cloud computing ser-
vice has become a new paradigm for the business and industry. In a cloud computing
environment, the computer network (CN) can be constructed as a multistate network with
several possible states due to failure, partial failure, or maintenance of edges (physical
lines) and nodes (switches or routers). In order to guarantee the CN retains a good qual-
ity of service, the maintenance action is needed to be taken while the CN falls to a specific
state such that it cannot provide sufficient capacity to meet clients’ demand. This paper
proposes a performance indicator, the maintenance reliability, to evaluate the capability
that a CN can send d units of data from the cloud to the client through multiple minimal
paths under both the maintenance budget and time constraints. An adjusting procedure
based on the branch-and-bound approach is developed to evaluate the performance indi-
cator. According to different maintenance budgets and the corresponding maintenance
reliabilities, the system supervisor could determine a reasonable maintenance budget to
maintain the CN for retaining a good quality level.
Keywords: Maintenance reliability, Cloud computing, Computer network (CN), Branch-
and-bound approach

1. Introduction. In recent years, the applications of computer system and Internet ser-
vice have grown rapidly and explosively. For a stable usage environment, Internet service
providers (ISPs) have to guarantee the computer system retains a good quality of service
(QoS) and satisfy their customers/clients all the time. In this paper, we focus on the per-
formance evaluation for a computer network (CN) in the cloud computing environment
(CCE) since the cloud computing is broadly applied in our current information society.
In a cloud computing paradigm, information is processed or stored by servers on the In-
ternet and cached temporarily on clients [1]. All resources (computing capacity, storage
capacity, or network bandwidth) are remotely provided by powerful servers which can be
depicted as the “cloud”. Thus, clients can submit their requirements from anywhere in
the world. From the QoS perspective, a great deal of research [2-4] has been devoted
to studying the performance evaluation of an Internet-based network. Chen and Lin [2]
adopted the end-to-end delay equalizations to improve the playback speed for virtual path
transmissions in Internet environments. Lin [3,4] presented an approach for scheduling
the processors of the grid computing network in the Internet environment which assists in
improving the computing efficiency. Nevertheless, these works mainly focus on measuring
the time attribute rather than the network capability.

In the real world, an ISP company would be interested in evaluating the capability
that a CN can send a given units of data from the source (cloud) to the sink (clients/end
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users). For practical cases, ISP companies can see the physical lines as edges and the
switches/routers as nodes. Thus, a CN in the CCE can be illustrated as a network
topology. Moreover, the capacity state of each edge and node should be stochastic (i.e.,
multistate) due to failure, partial failure, or maintenance. A CN characterized by such
edges and nodes also has several possible states and it is also a multistate network [5-11].
To guarantee the CN retains a stable QoS, it should be maintained when falling to a
specific state such that the cloud cannot provide sufficient capacity to fulfill the client’s
demand d. Hence, the maintenance budget should be considered. Yeh [11] defined the
maintenance cost as the amount needed to restore a network from its failed state back
to its original state, where the failed state is that the network sends less than the given
d units of data. That is, the edges/nodes in the CN should be restored to their highest
capacities when only d units of data can be sent.
However, transmission time is not considered in Yeh’s [11] work. When data are trans-

mitted through a CN, it is necessary to select a shortest delayed path to minimize the
transmission time [12,13]. Nevertheless, the flow of data transmission is not considered
in these works. In order to find a path to deliver the requested number of data from
the source to the sink with minimum transmission time, Chen and Chin [14] proposed
the quickest path problem. In this problem, both the capacity and the lead time are
attributes of each edge and are assumed to be deterministic [14-16]. Variants of quick-
est path problems such as constrained quickest path problem [17,18], the first k quickest
path problem [19,20], and all-pairs quickest path problem [21,22], have been subsequently
proposed. Previous works, however, mainly concern the time attribute without consider-
ing the maintenance to retain the CN with a sufficient capacity state. Moreover, these
literatures assume the nodes are perfect reliable. In a CN, nodes and edges can fail un-
expectedly when malfunctions occur. Therefore, all of the failure, maintenance action,
and transmission time on nodes are needed to be considered as well. Aggarwal et al. [23]
proposed the concept that the failure of a node implies the failure of edges incident from
it. Based on this concept, further related works modified the original network with node
failure to be a conventional network with perfect nodes [6,24].
This paper addresses the performance evaluation of a CN in the CCE considering

demand, maintenance budget, transmission time, and node failure case. The CN must be
maintained to deliver a sufficient capacity level so that it can send at least d units of data
from the cloud to the client within time T. To shorten the transmission time, the data can
be transmitted through k (k ≥ 2) disjoint minimal paths (MPs) simultaneously, in which
an MP is a path whose proper subsets are no longer paths. The performance indicator
is defined as the probability that the network can guarantee a sufficient capacity level to
meet the demand on time and within budget B. This probability is, henceforth, referred
to as maintenance reliability. We first generate all minimal capacity vectors satisfying the
time constraint, and subsequently check if they satisfy the maintenance budget B or not.
For those unqualified capacity vectors whose total costs exceed B, an adjusting procedure
is adopted to elevate them instead of deleting them. A branch-and-bound approach is
proposed to generate all (d,B,T)-MPs, the minimal capacity vectors fulfilling d, B, and
T. The maintenance reliability is derived in terms of (d,B,T)-MPs by the Recursive Sum
of Disjoint Products (RSDP) algorithm afterwards.
Based on the maintenance reliability, the system supervisor could conduct a sensitive

analysis to improve or investigate the most important part in a large CN. The remainder
of this paper is organized as follows. Section 2 addresses the notations and assumptions.
Model formulation and the maintenance reliability are described in Section 3. Algorithms
to generate the (d,B,T)-MPs are proposed in Section 4. Examples presented in Section 5
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illustrate the algorithm and how the maintenance reliability may be calculated. Discussion
on the algorithm and conclusion are summarized in Section 6.

2. Notations and Assumptions. Let G = (E,N,W,C,L) denote a CN with a cloud
Scloud and a client Sclient where E = {ei|i = 1, 2, . . ., n} represents the set of edges,
N = {ei|i = n+1, n+2, . . ., n+r} represents the set of nodes, W = {Wi|i = 1, 2, . . ., n+r}
with the maximal capacity Wi of ei, C = {ci|i = 1, 2, . . ., n + r} with unit maintenance
cost ci of ei, and L = {li|i = 1, 2, . . ., n + r} with lead time li of ei. Suppose the
data are transmitted through P1, P2, . . ., Pk simultaneously, where Pm is the mth MP for
m = 1, 2, . . ., k. The capacity vector X = (x1, x2, . . ., xn+r) is defined as the system state
of G where xi represents the current capacity of edge/node ei. Such a G is assumed to
further satisfy the following assumptions:

(1) The cloud node Scloud and the client node Sclient are perfectly reliable.
(2) The capacity of each edge/node is stochastic with a given probability distribution.
(3) The capacities of different edges/nodes are statistically independent.
(4) All data are transmitted through k MPs simultaneously to shorten the transmission

time.

3. The CN Model and Maintenance Reliability. The capacity is the number of data
sent through the edge/node/MP per unit of time. For each path, the maximal capacity
of Pm is min

i:ei∈Pm

(Wi), where m = 1, 2, . . ., k. Similarly, under the capacity vector X, the

capacity of Pm is min
i:ei∈Pm

(xi). The transmission time to send d units of data through Pm

under the capacity vector X, Λ(d,X, Pm), is

lead time of Pm +

⌈
d

the capacity of Pm

⌉
=

∑
i:ei∈Pm

li +

 d

min
i:ei∈Pm

xi

 , (1)

where dxe is the smallest integer such that dxe ≥ x. The transmission time under the
capacity X contradicts the time constraint if Λ(d,X, Pm) > T. We have the following
lemma showing the relationship between capacity vector and transmission time.

Lemma 3.1. Λ(d,X, Pm) ≥ Λ(d, Y, Pm) for the capacity vector Y if X < Y .

Proof: If X < Y , then xi ≤ yi for each ei ∈ Pm, and min
i:ei∈Pm

xi ≤ min
i:ei∈Pm

yi. Thus, d

min
i:ei∈Pm

xi

 ≥

 d

min
i:ei∈Pm

yi

. So Λ(d,X, Pm) ≥ Λ(d, Y, Pm). The proof is completed.

The data are transmitted through k disjoint MPs, say P1, P2, . . . , Pk, simultaneously.

The demand d assigned to each Pm is dm, where
k∑

m=1

dm = d. For demand vector d =

(d1, d2, . . ., dk), the minimum transmission time Γ(d, X) under the capacity vector X is

Γ(d, X) = max{Λ(d1, X, P1),Λ(d2, X, P2), . . .,Λ(dk, X, Pk)}. (2)

Thus, the minimum transmission time to send d units of data under X is ∆(d,X) =
min

all d:
∑k

m=1 dm=d
{Γ(d, X)}. Any capacity vector X with ∆(d,X) ≤ T means that it satisfies

d and T. For convenience, let ΨT be the set of the capacity vectors satisfying d and T,
and let Ψmin,T = {X|X is minimal capacity vector in ΨT}. That is, Ψmin,T is the set of
the minimal capacity vectors satisfying d and T.
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We further check the maintenance cost for each X in ΨT. The total cost to recover the
edges/nodes in a CN from the state X is

TC(X) =
∑

i:ei∈
k∪

m=1
Pm

ci(Wi − xi), (3)

where ci(Wi − xi) is the maintenance cost for ei on any MP to restore from the current
capacity xi to its highest capacity Wi. In particular, only the edges/nodes appearing
in the MPs are necessary to be restored. The following constraint shows that the total
maintenance cost can not exceed the budget B,∑

i:ei∈
k∪

m=1
Pm

ci(Wi − xi) ≤ B. (4)

Any X with TC(X) ≤ B and ∆(d,X) ≤ T means that X can send d units of data from
Scloud to Sclient under time T and maintenance budget B. Let ΨB store all X fulfilling d,
T, and B while Ψmin,B = {X|X is minimal in ΨB}.

Definition 3.1. X ∈ Ψmin,B is named a (d,T,B)-MP, equivalently, X is a (d,T,B)-MP if
and only if (i) ∆(d,X) ≤ T, (ii) TC(X) ≤ B, and (iii) ∆(d,Y) > T or TC(Y) > B for
any capacity vector Y with Y < X.

Hence, we have the following property for (d,T,B)-MPs.

Theorem 3.1. If X is a (d,T,B)-MP, then Y ∈ ΨB for any Y > X.

Proof: (i) Since X is a (d, T, B)-MP, we obtain ∆(d,X) ≤ T and TC(X) ≤ B.
Lemma 3.1 states that Λ(d, Y, Pm) ≤ Λ(d,X, Pm) for any Y > X, m = 1, 2, . . ., k. Thus,
max{Λ(d1, Y, P1),Λ(d2, Y, P2), . . . ,Λ(dk, Y, Pk)} ≤ max{Λ(d1, X, P1),Λ(d2, X, P2), . . . ,Λ
(dk, X, Pk)}, equivalently, Γ(d, Y ) ≤ Γ(d, X). Then min

all d:
∑k

m=1 dm=d
{Γ(d, Y )} ≤

min
all d:

∑k
m=1 dm=d

{Γ(d, X)}, and ∆(d, Y ) ≤ ∆(d,X) ≤ T.

(ii) Since Y > X, it implies that yi ≥ xi and (Wi − yi) ≤ (Wi − xi) for each ei. Then∑
i:ei∈

k∪
m=1

Pm

ci(Wi − yi) ≤
∑

i:ei∈
k∪

m=1
Pm

ci(Wi − xi). We thus get the result Y ∈ ΨB by obtaining

TC(Y ) ≤ TC(X) ≤ B. The proof is completed.
The maintenance reliability RM is defined as the probability that a CN can send d units

of data from Scloud to Sclient within time T and under the maintenance budget B; i.e., RM

= Pr{X|∆(d,X) ≤ T and TC(X) ≤ B}. Theorem 3.1 implies that Pr{X|∆(d,X) ≤ T
and TC(X) ≤ B} = Pr{X|X ≥ Xv for a (d,T,B)-MP Xv}. Suppose X1, X2, . . . , Xh

are all (d,T,B)-MPs and thus the maintenance reliability RM can be represented as RM

= Pr{X|X ∈ ΨB} = Pr{
h∪

v=1

Dv}, where Dv = {X|X ≥ Xv} for v = 1, 2, . . ., h. Several

methods such as RSDP algorithm [7-9,25], inclusion-exclusion method [6,10,16,24,26],
disjoint-event method [26,27], and state-space decomposition [5,28], may be applied to

compute Pr{
h∪

v=1

Dv}. The RSDP algorithm has a better computational efficiency than

the state-space decomposition for a large network [7-9,25]. Hence, the RSDP algorithm
is applied to derive maintenance reliability herein.
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4. Algorithms.

4.1. The algorithm to generate all (d,T,B)-MPs. Suppose that all Pm are given.
Then all (d,T,B)-MPs can be generated by the following steps.
Step 0. [Initialization] Set Ψmin,T = Ø, Ψmin,B = Ø, and j = 0.

Step 1. Find the largest assigned demand dm such that
∑

i:ei∈Pm

li +

 dm
min

i:ei∈Pm

Wi

 ≤ T.

Step 2. [Obtain feasible demand vector d] Generate all non-negative integer solutions of
k∑

m=1

dm = d where dm ≤ dm, m = 1, 2, . . ., k.

Step 3. [Obtain Ψmin,T] For each demand vector d, do the following steps.
3.1 Find the minimal capacity vm of Pm such that dm units of data can be sent

through Pm under T, m = 1, 2, . . ., k. That is, find the smallest integers vm
such that ∑

i:ei∈Pm

li +

⌈
dm
vm

⌉
≤ T, m = 1, 2, . . ., k. (5)

3.2 j = j + 1. Xj = (x1, x2, . . . , xn+r) is obtained according to

xi =

{
minimal capacity ui of ei such that ui ≥ vm if ei ∈ Pm for a m ∈ {1, 2, . . . , k},
0 if others.

(6)
3.3 For w = 1 to j − 1, if Xj ≥ Xw, then go to Step 3.5; if Xj < Xw, then

Ψmin,T = Ψmin,T\Xw.
3.4 Ψmin,T = Ψmin,T ∪ {Xj}.
3.5 Next d.

Step 4. [Generate Ψmin,B] For each Xj ∈ Ψmin,T, do the following steps.
4.1 Find the maintenance cost TC(Xj) =

∑
i:ei∈

k∪
m=1

Pm

ci(Wi − xi).

4.2 If TC(Xj) ≤ B, then Ψmin,B = Ψmin,B∪ {Xj}, Ψmin,T = Ψmin,T\Xj. and go
to Step 4.4. //Check the maintenance budget to obtain Ψmin,B

4.3 If TC(Xj) > B, do the following steps: //Adjusting procedure
4.3.1 Ψmin,T = Ψmin,T\Xj.

4.3.2 For each ei ∈
k∪

m=1

Pm, let Xj,i = Xj + δi. If the capacity of ei in Xj,i

is Wi + 1, then remove Xj,i. //Adjust Xj by adding a standard basis
vector δi, in which xi = 1 and 0 for others.

4.3.3 Compare each Xj,i with X ∈ Ψmin,B. If Xj,i is larger than or equal to
any X in Ψmin,B, then delete Xj,i; otherwise, Xj,i ∈ Ψmin,T.
If Xj,i is less than an X in Ψmin,B, delete that X from Ψmin,B. //Check
the qualification of the candidate.

4.3.4 Treat eachXj,i ∈ Ψmin,T as the role ofXj and go to Step 4.1. //Recursive
procedure to repeat Step 4.

4.4 Next Xj ∈ Ψmin,T.
Step 5. All Xj ∈ Ψmin,B are the minimal capacity vectors fulfilling d, T, and B.

Step 3 generates all minimal capacity vectors satisfying d and T and thus we obtain the
set Ψmin,T. For those whose maintenance budget exceeds B, Step 4 utilizes an adjusting
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procedure which applies a branch-and-bound approach (see Figure 1) to generate (d,T,B)-
MPs. Each adjusted Xj,i is generated from Xj by adding δi to reduce the total cost. The
following lemma and theorem play critical roles to support the proposed algorithm.

Figure 1. A search tree for the branch-and-bound approach to adjust Xj

Lemma 4.1. Each Xj,i generated from Xj is unnecessary to compare with each other for
checking the qualification.

Proof: Assume that the edges es, et ∈
k∪

m=1

Pm, s 6= t. For es, the capacity level for δs

is 1 and 0 for others; for et, the capacity level for δt is 1 and 0 for others. Both δs and δt
are standard basis vectors, so we cannot find which one is the minimal vector with each
other. Since Xj,s = Xj + δs and Xj,t = Xj + δt, the comparison step between Xj,s and
Xj,t is surplus. The proof is completed.

Theorem 4.1. The set Ψmin,B generated from the algorithm is exactly the set of (d,T,B)-
MPs.

Proof: SupposeXj is not a (d,T,B)-MP, then there exists a (d,T,B)-MP Y = (y1, y2, . . .,
yn+r) such that Y < Xj because Xj fulfills d, T, and B (from Steps 3 and 5.2 of the al-
gorithm). Without loss of generality, we assume an edge eu ∈ P1 such that yu < xu. It
is known that xu is the minimal capacity of eu such that xu ≥ v1. The situation yu < xu

results in that yu < v1 and
∑

i:ei∈P1

li +

⌈
d1
yu

⌉
> T. It contradicts that Y is a (d,T,B)-MP.

Hence, Xj is a (d,T,B)-MP.



MAINTENANCE RELIABILITY OF A COMPUTER NETWORK WITH NODES FAILURE 4051

Conversely, we claim that every (d,T,B)-MP is generated from the algorithm. Let
Ψmin,B = {X1, X2, . . ., Xw} be generated from the algorithm. Suppose X is a (d,T,B)-MP

and X /∈ Ψmin,B. Without loss of generality, there exists an edge ei /∈
k∪

m=1

Pm such that

xi > 0. Set Y = (x1, x2, . . ., xi − z, . . ., xn+r), where (xi – z) is the maximal capacity of
ei such that (xi – z) < xi. Then Λ(d,Y ,Pm) ≤ T due to Y > X, where m = 1, 2, . . . ,
k. That contradicts that X is a (d,T,B)-MP. Hence, any (d,T,B)-MP belongs to {X1,
X2, . . . , Xw}. We conclude that {(d,T,B)-MPs} is exactly Ψmin,B generated from the
algorithm. The proof is completed.

4.2. The RSDP algorithm. In terms of the minimal capacity vectors obtained in Sec-
tion 4.1, the maintenance reliability RM can be derived by the RSDP algorithm. The
RSDP algorithm is a recursive algorithm combined by the sum of disjoint product prin-
ciple [25]. In this algorithm, a maximum operator, “⊕”, is defined as

X1,2 = X1 ⊕X2 ≡ (max(x1i, x2i)) for i = 1, 2, . . ., n+ r. (7)

For example, suppose that two (d,T,B)-MPs, X1 = (1, 0, 1, 1, 0, 0, 1, 1) and X2 =
(0, 0, 2, 0, 0, 0, 2, 2). Then, X1,2 = X1 ⊕ X2 = (max(1, 0),max(0, 0), . . . ,max(1, 2)) =
(1, 0, 2, 1, 0, 0, 2, 2).

5. Illustrative Examples.

5.1. Example 1. To illustrate the solution process, we use a random CN with 12 edges
and 6 failure nodes shown in Figure 2. In this example, each edge is combined with several
Optical Carrier 18 (OC-18) lines and each line provides two possible capacities, 1 giga bits
per second (Gbps) and 0 bits per second (bps). Since the lines are provided by different
suppliers, the capacity of each edge follows a distinct probability distribution. Table 1
provides the capacity, lead time, and per unit maintenance cost of each edge/node.

Figure 2. A random CN

Assume that the cloud have to send d = 6 Gbps data to the client through P1 = {e1,
e13, e2, e14, e3}, P2 = {e5, e15, e6, e16, e7}, and P3 = {e9,e17, e10, e18, e11} simultaneously
within T = 10 seconds and B = 7500. It implies that the CN is falling to the failed state
when the capacity level is less than 6 Gbps.
Step 0. Set Ψmin,T = Ø, Ψmin,B = Ø, and j = 0.
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Table 1. The edge/nodea data of Figure 2

Edge/
Cost

Lead time Capacity (Gbps)
Node (sec) 0 1 2 3 4 5

e1 250 3 0.001602 0.036262 0.273671 0.688465 0.000000 0.000000b

e2 150 1 0.000008 0.000369 0.007022 0.066895 0.318631 0.607076
e3 300 2 0.000857 0.024503 0.233422 0.741218 0.000000 0.000000
e4 200 2 0.000146 0.004738 0.057506 0.310186 0.627422 0.000000
e5 350 1 0.000187 0.005657 0.064039 0.322202 0.607915 0.000000
e6 200 1 0.013689 0.206622 0.779689 0.000000 0.000000 0.000000
e7 400 3 0.001602 0.036262 0.273671 0.688465 0.000000 0.000000
e8 250 2 0.000016 0.000652 0.010543 0.085301 0.345082 0.558406
e9 350 3 0.000081 0.003104 0.044350 0.281663 0.670802 0.000000
e10 300 2 0.009025 0.171950 0.819025 0.000000 0.000000 0.000000
e11 250 1 0.001602 0.036262 0.273671 0.688465 0.000000 0.000000
e12 250 2 0.000146 0.004738 0.057506 0.310186 0.627422 0.000000
e13 150 2 0.004096 0.064512 0.338688 0.592704 0.000000 0.000000
e14 250 1 0.000207 0.006083 0.066908 0.327107 0.599695 0.000000
e15 150 2 0.004096 0.064512 0.338688 0.592704 0.000000 0.000000
e16 250 1 0.000207 0.006083 0.066908 0.327107 0.599695 0.000000
e17 150 2 0.004096 0.064512 0.338688 0.592704 0.000000 0.000000
e18 250 1 0.000207 0.006083 0.066908 0.327107 0.599695 0.000000

ae1 to e12 for edges; e13 to e18 for nodes.
bThe edge does not provide this capacity.

Step 1. The largest demand d1 such that (l1 + l13+ l2+ l14+ l3)+
⌈

d1
min{W1,W13,W2,W14,W3}

⌉
≤ 10 is d1 = 3. Similarly, we have the largest demand d2= 4 and d3 = 2.

Step 2. Generate all non-negative integer solutions of d1 + d2 + d3 = 6 where d1 ≤ d1,
d2 ≤ d2, and d3 ≤ d3. The feasible (d1, d2, d3) are (3,3,0), (3,2,1), (3,1,2), (2,4,0),
(2,3,1), (2,2,2), (1,4,1), (1,3,2), and (0,4,2).

Step 3. For (d1,d2,d3) = (3,3,0), do the following steps.
3.1 The lead time of P1 is l1 + l13 + l2 + l14 + l3 = 9. Then v1 = 3 is the smallest

integer such that

(
9 +

⌈
3

v1

⌉)
≤ 10. Similarly, v2 = 2 and v3 = 0.

3.2 X1 = (3, 3, 3, 0, 2, 2, 2, 0, 0, 0, 0, 0, 3, 3, 2, 2, 0, 0).
3.3 Ψmin,T = Ψmin,T ∪ {X1} = {X1}.
3.4 Next (d1,d2,d3).

...

3.5 Ψmin,T = {X2, X4, X6, X7, X9}. The results are shown in Table 2.
Step 4. For Ψmin,T = {X2, X4, X6, X7, X9}, do the following steps.

4.1 For X2, TC(X2) = 6550.
4.2 TC(X2) = 6550 ≤ B = 7500, so Ψmin,B = Ψmin,B ∪ {X2} = {X2}, Ψmin,T =

Ψmin,T\X2 = {X4,X6, X7, X9}.
4.1a For X4, TC(X4) = 7600.
4.2a TC(X4) = 7600 > B = 7500, so X4 is needed to be adjusted.
4.3a Adjust X4 by the following steps.
4.3.1a Ψmin,T = Ψmin,T\X4 = {X6, X7, X9}.
4.3.2a For i = 1, 2, 3, 5, 6, 7, 9, 10, 11 (edges), and 13-18 (nodes), let X4,i =

X4 + δi. We get all X4,i as follows:
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Table 2. Results of step 3 in Example 1

(d1, d2, d3) (v1, v2, v3) X
Xj ∈ Ψmin,T

or not
Remark

(3,3,0) (3,2,0) X1 = (3, 3, 3, 0, 2, 2, 2, 0, 0, 0, 0, 0, 3, 3, 2, 2, 0, 0) No X1 > X4

(3,2,1) (3,1,1) X2 = (3, 3, 3, 0, 1, 1, 1, 0, 1, 1, 1, 0, 3, 3, 1, 1, 1, 1) Yes -
(3,1,2) (3,1,2) X3 = (3, 3, 3, 0, 1, 1, 1, 0, 2, 2, 2, 0, 3, 3, 1, 1, 2, 2) No X3 > X2

(2,4,0) (2,2,0) X4 = (2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0) Yes -
(2,3,1) (2,2,1) X5 = (2, 2, 2, 0, 2, 2, 2, 0, 1, 1, 1, 0, 2, 2, 2, 2, 1, 1) No X5 > X4

(2,2,2) (2,1,2) X6 = (2, 2, 2, 0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 2, 1, 1, 2, 2) Yes -
(1,4,1) (1,2,1) X7 = (1, 1, 1, 0, 2, 2, 2, 0, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1) Yes -
(1,3,2) (1,2,2) X8 = (1, 1, 1, 0, 2, 2, 2, 0, 2, 2, 2, 0, 1, 1, 2, 2, 2, 2) No X8 > X7

(0,4,2) (0,2,2) X9 = (0, 0, 0, 0, 2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2) Yes -

X4,1 = X4+δ1 = (2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0)+(1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (3, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0);
X4,2 = X4 + δ2 = (2, 3, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0);

...

X4,18 = X4 + δ18 = (2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 1).
The capacity x6 in X4,6 is larger than the maximal capacity W6 = 2, so
it is not feasible. Hence, X4,6 should be removed.

4.3.3a Ψmin,B = {X2}. Since no X4,i is larger than or equal to any X in Ψmin,B,
no X4,i is deleted in this step. So, Ψmin,T = {X4,1, X4,2, X4,3, X4,5, X4,7,
X4,9, X4,10, X4,11, X4,13, X4,14, X4,15, X4,16, X4,17, X4,18, X6, X7, X9}.

4.3.4 Treat each X in Ψmin,T as Xj and go to Step 5.1, respectively.
4.1b For X4,1, TC(X4,1) = 7350.

...

The results are summarized in Table 3.

Table 3. Results of step 4 in Example 1

X Xj,i ∈ Ψmin,B or not Total Cost Remark
X2 = (3, 3, 3, 0, 1, 1, 1, 0, 1, 1, 1, 0, 3, 3, 1, 1, 1, 1) Yes 655 -
X4,1 = (3, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0) Yes 735 -
X4,2 = (2, 3, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0) Yes 745 -
X4,3 = (2, 2, 3, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0) Yes 730 -
X4,5 = (2, 2, 2, 0, 3, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0) Yes 725 -
X4,6 = (2, 2, 2, 0, 2, 3, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0) No - x6 > W6

X4,7 = (2, 2, 2, 0, 2, 2, 3, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0) Yes 720 -
X4,9 = (2, 2, 2, 0, 2, 2, 2, 0, 1, 0, 0, 0, 2, 2, 2, 2, 0, 0) Yes 725 -
X4,10 = (2, 2, 2, 0, 2, 2, 2, 0, 0, 1, 0, 0, 2, 2, 2, 2, 0, 0) Yes 730 -
X4,11 = (2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 1, 0, 2, 2, 2, 2, 0, 0) Yes 735 -
X4,13 = (2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 3, 2, 2, 2, 0, 0) Yes 745 -
X4,14 = (2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 3, 2, 2, 0, 0) Yes 735 -
X4,15 = (2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 3, 2, 0, 0) Yes 745 -
X4,16 = (2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 3, 0, 0) Yes 735 -
X4,17 = (2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 4, 0) Yes 745 -
X4,18 = (2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 4) Yes 735 -
X6 = (2, 2, 2, 0, 1, 1, 1, 0, 2, 2, 2, 0, 2, 2, 1, 1, 2, 2) Yes 635 -
X7 = (1, 1, 1, 0, 2, 2, 2, 0, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1) Yes 740 -
X9 = (0, 0, 0, 0, 2, 2, 2, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2) Yes 720 -
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Step 5. The set Ψmin,B = {X2, X4,1, X4,2, X4,3, X4,5, X4,7, X4,9, X4,10, X4,11, X4,13, X4,14,
X4,15, X4,16, X4,17, X4,18, X6, X7, X9 } is the set of the minimal capacity vectors
fulfilling d = 6, B = 7500 and T = 10.

We subsequently obtain the maintenance reliability RM = 0.770811759747860 by the
RSDP algorithm [25].

5.2. Example 2. We employ the Taiwan Academic network (TANET) with 31 edges and
25 nodes shown in Figure 3 [29] to demonstrate the utility of the approach for assessing
practical case. The TANET is the backbone network that connects all educational and
academic organizations in Taiwan. Consider the case where NTU and NSYSU are the
source and sink, respectively. The capacity, lead time, and per unit maintenance cost of
each edge are given in Table 4. For the case where the TANET has to preserve a minimal
service level that delivers at least 20 Gbps of data from the source to the sink through
P1 = {e1, e32, e2, e33, e3, e34, e4, e35, e5, e36, e6, e37, e7, e38, e8, e39, e9, e40, e10, e41, e11,
e42, e12, e43, e13} and P2 = {e22, e49, e23, e50, e24, e51, e25, e52, e26, e53, e27, e54, e28} in
no more than 35 seconds. Given a maintenance budget of 30,000 USD, the maintenance
reliability is RM = 0.789893606527573.

Figure 3. The Taiwan academic network [29]
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Table 4. The edge and node data of Figure 3

Edge/Node Cost Lead time (sec)
Capacity (Gbps)

0 1 2 3 4 5

e1 350 1 0.000064 0.004608 0.110592 0.884736 0.000000 0.000000
e2 380 1 0.000343 0.013671 0.181629 0.804357 0.000000 0.000000
e3 360 2 0.000100 0.003600 0.048600 0.291600 0.656100 0.000000
e4 350 1 0.000041 0.001884 0.032502 0.249180 0.716393 0.000000
e5 360 1 0.000216 0.010152 0.159048 0.830584 0.000000 0.000000
e6 380 1 0.000125 0.007125 0.135375 0.857375 0.000000 0.000000
e7 350 2 0.001000 0.027000 0.243000 0.729000 0.000000 0.000000
e8 380 1 0.000008 0.001176 0.057624 0.941192 0.000000 0.000000
e9 360 1 0.000064 0.004608 0.110592 0.884736 0.000000 0.000000
e10 380 1 0.000027 0.002619 0.084681 0.912673 0.000000 0.000000
e11 350 2 0.000064 0.004608 0.110592 0.884736 0.000000 0.000000
e12 380 1 0.000343 0.013671 0.181629 0.804357 0.000000 0.000000
e13 360 1 0.000125 0.007125 0.135375 0.857375 0.000000 0.000000
e14 300 3 0.000010 0.000450 0.008100 0.072900 0.328050 0.590490
e15 340 2 0.000125 0.007125 0.135375 0.857375 0.000000 0.000000
e16 280 1 0.000024 0.001276 0.025428 0.225220 0.748052 0.000000
e17 280 1 0.000008 0.001176 0.057624 0.941192 0.000000 0.000000
e18 220 2 0.000024 0.001276 0.025428 0.225220 0.748052 0.000000
e19 240 2 0.000003 0.000188 0.004334 0.049836 0.286557 0.659082
e20 250 1 0.000003 0.000188 0.004334 0.049836 0.286557 0.659082
e21 320 3 0.000003 0.000188 0.004334 0.049836 0.286557 0.659082
e22 360 1 0.008100 0.163800 0.828100 0.000000 0.000000 0.000000
e23 320 1 0.002500 0.095000 0.902500 0.000000 0.000000 0.000000
e24 380 1 0.001600 0.076800 0.921600 0.000000 0.000000 0.000000
e25 300 2 0.003600 0.112800 0.883600 0.000000 0.000000 0.000000
e26 360 2 0.004900 0.130200 0.864900 0.000000 0.000000 0.000000
e27 380 1 0.004900 0.130200 0.864900 0.000000 0.000000 0.000000
e28 350 3 0.003600 0.112800 0.883600 0.000000 0.000000 0.000000
e29 220 2 0.000006 0.000475 0.013538 0.171475 0.814506 0.000000
e30 240 3 0.000006 0.000475 0.013538 0.171475 0.814506 0.000000
e31 300 1 0.000041 0.001884 0.032502 0.249180 0.716393 0.000000
e32 350 1 0.000343 0.013671 0.181629 0.804357 0.000000 0.000000
e33 360 1 0.000216 0.010152 0.159048 0.830584 0.000000 0.000000
e34 400 1 0.000216 0.010152 0.159048 0.830584 0.000000 0.000000
e35 420 2 0.000125 0.007125 0.135375 0.857375 0.000000 0.000000
e36 450 1 0.000013 0.000812 0.019086 0.199340 0.780749 0.000000
e37 380 1 0.000024 0.001276 0.025428 0.225220 0.748052 0.000000
e38 400 2 0.000729 0.022113 0.223587 0.753571 0.000000 0.000000
e39 400 1 0.000125 0.007125 0.135375 0.857375 0.000000 0.000000
e40 360 1 0.000125 0.007125 0.135375 0.857375 0.000000 0.000000
e41 400 1 0.000125 0.007125 0.135375 0.857375 0.000000 0.000000
e42 420 2 0.000125 0.007125 0.135375 0.857375 0.000000 0.000000
e43 400 1 0.000125 0.007125 0.135375 0.857375 0.000000 0.000000
e44 380 3 0.000003 0.000188 0.004334 0.049836 0.286557 0.659082
e45 420 3 0.000003 0.000188 0.004334 0.049836 0.286557 0.659082
e46 440 2 0.000064 0.004608 0.110592 0.884736 0.000000 0.000000
e47 450 1 0.000125 0.007125 0.135375 0.857375 0.000000 0.000000
e48 480 3 0.000125 0.007125 0.135375 0.857375 0.000000 0.000000
e49 420 3 0.006400 0.147200 0.846400 0.000000 0.000000 0.000000
e50 450 1 0.006400 0.147200 0.846400 0.000000 0.000000 0.000000
e51 400 1 0.004900 0.130200 0.864900 0.000000 0.000000 0.000000
e52 460 2 0.006400 0.147200 0.846400 0.000000 0.000000 0.000000
e53 400 1 0.004900 0.130200 0.864900 0.000000 0.000000 0.000000
e54 420 1 0.006400 0.147200 0.846400 0.000000 0.000000 0.000000
e55 450 1 0.000003 0.000188 0.004334 0.049836 0.286557 0.659082
e56 450 2 0.000003 0.000188 0.004334 0.049836 0.286557 0.659082
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6. Discussion and Conclusion. In Example 1, the total maintenance cost TC(X4) =
7600 exceeds the budget B = 7500. Intuitively, we may delete the unqualified capacity
vector X4, which implies that the set D4 = {X|X ≥ X4} is also removed. However, this
deleting action unexpectedly removes some X fulfilling d, T, and B. For instance, both
X4,1 and X4,10 adjusted from X4 are also removed if X4 is deleted (see Figure 4). In
fact, both X4,1 and X4,10 satisfy not only the maintenance budget but also the demand
and time constraints because they are larger than X4. Besides, neither X4,1 nor X4,10 are
included in any other set Dv. Thus, the maintenance reliability would be underestimated
if X4,1 and X4,10 are neglected.
For other budget cases, Table 5 shows the number of (d,T,B)-MPs and the main-

tenance reliability by adjusting unqualified capacity vectors and deleting unqualified
capacity vectors. In experiment 3, the maintenance reliability is underestimated to
be 0.747125520745587 if X1 is deleted, while the exact maintenance reliability RM is
0.770811759747860. Other experiments show that the number of (d,T,B)-MPs by delet-
ing unqualified capacity vectors would be decreasing with the tighten budgets and thus
the maintenance reliability would be underestimated. Therefore, the adjusting procedure
is valid and necessary for evaluating maintenance reliability.

Figure 4. Results of Xj and branched Xj for Example 1

In the CN, edges and nodes have various capacities due to failure or maintenance and
thus the CN has several possible states. We model the CN as a multistate network with
capacity vector X and MPs to describe the flows through the CN, where the maintenance
action is taken while the network falls to the failed state such that it cannot provide
sufficient capacity to satisfy demand d. Furthermore, the transmission time to send the
data from the cloud to the client is also addressed from QoS viewpoint. The maintenance
reliability RM is treated as a performance indicator to evaluate the probability that a CN
can send d units of data from the cloud to the client through several MPs simultaneously
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under maintenance budget and time constraints. Under different maintenance budgets
and the corresponding maintenance reliabilities, the system supervisor could further de-
termine a reasonable maintenance budget to maintain the CN for keeping a good quality
level. According to the maintenance reliability, the system supervisor could conduct a
sensitive analysis to identify the most important edge and node improvements, which
would have the most significant impact on the maintenance reliability of a large CN.

Table 5. Comparison of adjusting unqualified capacity vectors and delet-
ing them for Example 1

Experimenta Budget

Adjusting unqualified
capacity vectors

Deleting unqualified
capacity vectors

Number of
(d,T,B)-MPs

Maintenance
reliability

Number of
(d,T,B)-MPs

Maintenance
reliability

1 8000 5 0.770811759747862 5 0.770811759747862
2 7750 5 0.770811759747862 5 0.770811759747862
3 7500 18 0.770811759747860 4 0.747125520745587
4 7250 86 0.770811759747841 3 0.583432444739906
5 7000 408 0.770811759747822 2 0.525156484084328
6 6750 1566 0.770811759747743 2 0.525156484084328
7 6500 5018 0.770811759747663 1 0.441757117934860

aFix d = 6 and T = 10 for all experiments.
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