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ABSTRACT. The Harmony Search (HS) method is an emerging meta-heuristic optimiza-
tion algorithm. However, like most of the evolutionary computation techniques, the HS
does not store or utilize the useful knowledge gained during the search procedure in an
efficient way. In this paper, we propose and study a hybrid optimization approach, in
which the HS is merged together with the Cultural Algorithm (CA). Our modified HS
method, namely HS-CA, has the interesting feature of embedded problem-solving knowl-
edge. Simulations of some typical benchmark problems demonstrate that the HS-CA can
yield a superior optimization performance over the regular HS algorithm. We also apply
the proposed HS-CA in a case study of the optimal wind generator design to further ex-
amine its effectiveness.

Keywords: Harmony search (HS), Cultural algorithm (CA), Search knowledge, Hybrid
optimization methods, Wind generator optimization

1. Introduction. Firstly proposed by Geem et al. in 2001 [1], the HS method is inspired
by the underlying principles of the musicians’ improvisation of the harmony. During the
recent years, it has been successfully applied in the areas of function optimization [2], me-
chanical structure design [3], pipe network optimization [4], Magnetic Resonance Imaging
(MRI) brain segmentation [5], and redundancy optimization problems of electrical and
mechanical systems [6]. A lot of modified HS algorithms have been studied in the past
decade. For example, based on the continuous HS, Geem proposes a discrete version by
introducing the stochastic derivatives for the discrete variables involved [7]. Omran and
Mahdavi embed the ideas borrowed from swarm intelligence into the regular HS, and
develop an improved HS technique: Global-best HS [8]. Several new variants of the HS
method are also introduced by the authors of the present paper [9-11].

Theoretical research on the working principles and search mechanism of the HS method
has been reported in the recent literature, which can provide a useful guideline for users
to design this algorithm in practice. Das et al. discuss the exploratory power of the HS
by analyzing the evolution of the population variance over successive generations of the
HM [12]. Based on their analysis work, they further propose a modified HS algorithm,
Exploratory HS (EHS), in which the bandwidth (bw) for the pitch adjustment is set to be
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proportional to the standard deviation of the HM population. In the simulation study,
the EHS can not only outperform three existing HS variants over all the test functions but
also yield better or at least comparable results when compared with a few state-of-the-art
swarm intelligence techniques. Unfortunately, empirical study has shown that the original
HS method sometimes suffers from a slow search speed [2]. One main reason behind this
weakness is that the problem-dependent knowledge that can be collected from the evolving
process is not considered in the HS method. It has been proved that the employment of
an effective mechanism to represent, acquire, store, and utilize the search knowledge
can bias and accelerate the convergence of various evolutionary computation methods
[13]. As a matter of fact, Reynolds proposes a distinguishing Cultural Algorithm (CA),
in which there exist two spaces, population space and belief space, for the acquisition
and deployment of search knowledge [14]. The problem-solving experiences from the
individuals in the population space are first extracted and stored in the belief space,
and are next used to influence the evolution of the population space. Therefore, in this
paper, we develop and explore a hybridization of the HS and CA: HS-CA. In our HS-CA,
the situational and normative knowledge from the CA is applied to properly adjust and
guide the mutation of the new solution candidates in the HS method so that an improved
convergence performance can be achieved. The application of the proposed HS-CA in the
optimal design of wind generator is also investigated.

The rest of this paper is organized as follows. We briefly introduce the background
of both the HS and CA in Sections 2 and 3, respectively. In Section 4, by embedding
the CA into the HS method, we propose a new hybrid optimization algorithm: HS-CA.
The principle of the developed HS-CA is discussed in detail here. Simulations of a total
of 15 nonlinear functions and four engineering optimization problems are demonstrated
in Section 5. The wind generator design problem is presented and explained in Section
6, and Section 7 demonstrates the investigation results of the application of the HS-CA
in this case study. Finally, in Section 8, we conclude our paper with some remarks and
conclusions.

2. Harmony Search (HS) Method. As we know, when musicians compose the har-
mony, they usually try various possible combinations of the music pitches stored in their
memory. This kind of efficient search for a perfect harmony is analogous to the procedure
of finding the optimal solutions to engineering problems. The HS method is inspired by
the explicit principles of the harmony improvisation [1]. Figure 1 shows the flowchart of
the basic HS method, in which there are four principal steps involved.

Step 1. Initialize the HS Memory (HM). The initial HM consists of a given number of
randomly generated solutions to the optimization problems under consideration. For an
n-dimension problem, an HM with the size of HM S can be represented as follows:

1 1 1
L1, Lg, y Ty
2 2
‘T ‘T v e ‘T
1 29 ’ n
HM = ) , (1)
HMS HMS HMS
Ty » Ta Tty Ty

where [z% 2%, -+ 2] (i=1,2,--- ,HMS) is a solution candidate. HMS is typically set
to be between 10 and 100.

Step 2. Improvise a new solution [z}, x},---, )] from the HM. Each component of
this solution, z7, is obtained based on the Harmony Memory Considering Rate (HMCR).
The HMCR is defined as the probability of selecting a component from the present HM
members, and 1-HMCR is, therefore, the probability of generating it randomly. If z’

comes from the HM, it is chosen from the jth dimension of a random HM member,
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and it can be further mutated according to the Pitching Adjust Rate (PAR). The PAR
determines the probability of a candidate from the HM to be mutated. Obviously, the
improvisation of [z, ), - -- , 2! ] is rather similar to the production of the offspring in the
Genetic Algorithms (GA) [15,16] with the mutation and crossover operations. However,
the GA creates fresh chromosomes using only one (mutation) or two (simple crossover)
existing ones, while the generation of new solutions in the HS method makes full use of
all the HM members.

Step 3. Update the HM. The new solution from Step 2 is evaluated. If it yields a better
fitness than that of the worst member in the HM, it will replace that one. Otherwise, it
is eliminated.

Step 4. Repeat Step 2 to Step 3 until a preset termination criterion, e.g., the maximal
number of iterations, is met.

Similar to the GA, Particle Swarm Optimization (PSO) [17-19], and Differential Evo-
lution (DE) [20,21], the HS method is a random search technique. It does not require
any prior domain information, such as the gradient of the objective functions. However,
different from those population-based evolutionary approaches, it only utilizes a single
search memory to evolve. Therefore, the HS method has the characteristics of algorithm
simplicity.

Solution

o Random Solutions
Improvisation

Y Y

Selection

Y

Evaluation

Y

Harmony Memory | Worst Member - Comparison

Ehmination

Replacement

FIGURE 1. Harmony search (HS) method
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3. Cultural Algorithm (CA). As proposed by Reynolds, the CA is a dual inheritance
system with its evolution on two different levels: population level and belief level [22].
The culture in the CA refers to the beliefs or experiences, which can be gained from
and used to direct the evolving individuals. The basic framework of the CA is shown in
Figure 2, where there are two spaces, population space and belief space, interacting with
each other. Similar to the regular evolutionary computation algorithms, the evolution
of the individuals in the population space is based on such operations as mutation and
crossover [23,24]. However, besides the population space, the CA has the belief space that
can acquire and store certain domain knowledge from the individuals in the population
space. More precisely, the most fitted individuals in the population space are selected
by the ‘Accept’ function to update the knowledge in the belief space. The function
of ‘Influence’ takes advantage of this kind of knowledge to guide the evolution of the
population space. The knowledge in the belief space is classified into two essential types:
situational knowledge and normative knowledge. The situational knowledge is actually the
best exemplar chosen from the population space, while the normative knowledge contains
the useful information concerning the search regions, where the above-average individuals
may exist. In a word, both the situational knowledge and normative knowledge in the
belief space can control and improve the population space.

Update

Accept Influence

Evolution

FIGURE 2. Cultural algorithm (CA)

The pseudo codes of the aforementioned CA can be presented as follows [13]:

Step 1: Set t = 0.

Step 2: Initialize population space P°.

Step 3: Initialize belief space B".

Step 4: Update belief space B' using Accept(P?).

Step 5: Update population space P using I'nfluence(B?).

Step 6: t =t + 1.

Step 7: Return back to Step 4 until a given termination criterion is met.
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It is concluded from the above descriptions that the unique belief space plays a key role
in the CA. In the next section, we will integrate the knowledge management and utilization
mechanisms of the CA into the original HS method, and propose a hybrid optimization
approach: HS-CA. This HS-CA uses the belief space to enhance the generation of new
HM members so that their fitness can be significantly improved.

4. Fusion of HS and CA: HS-CA. From Section 2, we can observe that based on
the PAR, the new solution candidates improvised from the existing HM members may go
through a mutation procedure. The mutation is generally a ‘blind” and local exploration
in the search space. Unfortunately, it is well known that the pure random-based mutation
is not effective in guiding the evolution of individuals. Thus, the CA can be employed to
influence the direction and size of the mutation in the HS method. That is to say, the
knowledge in the belief space of the CA is first extracted from the HM, and next used
to direct the mutation of the new solutions. Inspired by this idea, we here propose a
hybridization of the HS method and CA: HS-CA, as illustrated in Figure 3.

Selected HM Members

New Member . Knowledge
Mutation ,
HS > . S CA
Adjustment

HM Members Update

FicUre 3. Hybridization of HS and CA: HS-CA

To put it into more details, suppose any individual in the HS-CA is represented as

xt = [zt al,,--- 2! y], where N is the dimension of the solution space, and ¢ is the
bl bl b

iteration step. All the individuals are evaluated by fitness function f(-). The optimization
goal is, therefore, to find the optimal x* that can maximize f(-). The situational knowledge
of the CA is denoted as S. As discussed above, S should be the best individual selected
from the HM, and is updated as follows:

St+1 = Xiest’ if f(Xgest) > f(St)7

Sttt = St otherwise.

The normative knowledge of the CA is represented by NV intervals for the dimensions
of the individuals. Each interval is associated with a triple (I}, LY, Ul). I! is a closed
interval with lower bound ! and upper bound u}. L! and U} are the ‘scores’ for I} and u!,
respectively. Usually, I¢ and u! are initialized by the given problem domain, and both L}
and U} are initially set to be +o00. (I}, L}, U}) can be updated by the top HM members
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xi,xb, -+ x4, where M is the number of the selected candidates, e.g., M = HMS x Top,
where T'op is a percentage constant. For X;-, we have:

1 _ ot oot ¢ t t
LT =al,, if %, < i or f(x}) > L,
I =1 otherwise.

L p(t) i ot ¢ t t
L7 = f(x}), ifal, <Ior f(xh)> L,
Lt =1 otherwise.

1t oot ¢ t t
u; =l if %, > or f(x5) > Uj,
ultt =l otherwise.

AR R Y AP t t t
Ui = f(xh), ifaj, >uor f(x%)>Uf,
Uittt = U, otherwise.

Note that the update policy of the normative knowledge is that it should be conservative
and progressive to narrow and widen respectively the interval I!. Both the situational
knowledge and normative knowledge is utilized to determine the mutation operation in
the HS of our HS-CA.

Suppose X, is a new solution improvised by the random combination of the components
of the HM members, and x', is the mutated version of x,. If a conventional mutation
operator is used, x’, can be generated as:

x', = x, + Rand, (2)

where Rand represents a random number generator. However, compared with (2), the
In fluence function of the CA on the mutation is more goal-directed. There are four basic
types of Influence functions, Ny, Sy, Ny + S4, and Ny + Ny, depending on the ways how
the situational knowledge and normative knowledge is employed to guide the mutation.
They are explained in details as the following.
For N,
X'\, = X., + Size(I;) x N(0,1), (3)
where Size(I;) is the size of the belief interval I; for the ith dimension of x,, and N(0, 1)
is a random number with the normal distribution, whose mean and standard derivation
are 0 and 1, respectively.
For Sd,
X'y, = X4, + o Xx N(0,1)], ifx,, <8S;,
X'y, = X4, — |0y x N(0,1)], ifx,, >S;,
x'y, = X4, +0; X N(0,1),  otherwise,
where o; is the given mutation step for the ¢th dimension of x,, and S; is the situational
knowledge for the 7th dimension of x, in the belief space.

For N, + Sy,
X'y, = Xy, + |Size(I;) x N(0,1)], ifx,, <8,
X', = Xy, — |Size(I;) x N(0,1)], ifx,, >S,,
X', = Xy, + Size(I;) x N(0,1), otherwise.
For Ns + Ny,
X'y, = X, + |Size(;) x N(0,1)], if x,, <1,
X', = x,, — |Size(;) x N(0,1)],  if x., > uj,

X'y, = Xy + 0 % Size(I;) x N(0,1), otherwise,

where [; and u; are the normative knowledge (lower and upper bounds for the ith dimen-
sion of x,, respectively) in the belief space, and f is a preset small constant.

It should be emphasized that the belief space in the CA can identify the promis-
ing regions, where the above-average individuals may be present. The objective of the
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In fluence function is to promote the newly generated solutions to those regions so that
their fitness is improved. Different from the mutation operation in (2), the one of the
proposed HS-CA is effectively controlled by the Influence function. Therefore, embed-
ding the CA into the HS method can indeed yield a superior optimization performance.
In Section 5, we are going to use 15 nonlinear functions and four engineering problems to
demonstrate the accelerated convergence of our HS-CA.

5. Optimization of Nonlinear Functions and Engineering Design. In this section,
we investigate the effectiveness of the proposed HS-CA with some simulation examples of
nonlinear functions as well as engineering problems.

5.1. Nonlinear functions. The following 15 n-dimensional nonlinear functions, which
have been widely used as popular optimization benchmarks [25,26], are employed to com-
pare the optimization (minimization) capabilities between the HS and HS-CA.

Ackley function:

—0.2 % i o % i cos(2mx;)
f(x) = —20e = —eti= +20—e, x;€[-10,10]. (4)
Alpine function:
= Z |z; sin(z;) + 0.1x;|, = € [-10,10]. (5)
i=1

Bohachevsky function:
fl) =" [27 + 227, — 0.3 cos(3mx;) — 0.4 cos(dmzi) +0.7]), o €[-5.12,5.12]. (6)
=1

De Jong function:
n

flo) = ia}, z€[-256,2.56]. (7)
Dixon and Price function: -
f(x) = (21 +1)%+ Xn:z'(mf —x;1)%, x; € [-10,10]. (8)
i=1
Griewank function:
400021: —Hcos—+1 z; € [-10,10] . (9)
Hyper Ellipsoid function:
221 —100, 100] . (10)
Levy function:
f(x) = sin?(3rz;) + T:gll (z; — 1) [1 +sin®(3ma;1)] + (z, — 1) [1 +sin®(3rz,,)] (1)

€ [~10,10].

Michalewicz function:

= isin(xi) {sin (%)} 20, z; € [0,7]. (12)
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Powell function:

n

4
f(x) = Z (2453 + 10245_9)% 4+ 5(w4i_1 — 745)” + (Tai2 — Tai1)* + 10(245_5 — 745)7,
i1

x; € [—4,5]. (13)

Rastrigin function:

f(x) =) a7 +10 — 10cos(2ma;), x5 € [-5.12,5.12]. (14)
i=1
Rosenbrock function:

F(x)=3"100 (i1 — 27)" + (0 — 1)°, 2 € [~10,10]. (15)
i=1
Sphere function:
fx)=> 2!, x;€[-10,10]. (16)

Trid function:

f(X) = i (ZL‘Z — 1)2 — il‘il'il, x; € [—100, 100] . (17)

Zakharov function:

n n . 2 n . 4
9 1T; 1T;
f(x)_;xiwL(;Q) +<;2> . @ € [-5,10]. (18)
The global minima of all the above functions are at f(x) = 0, except for Michalewicz
function and Trid function, whose global minima are unknown when n = 50.

Generally, evaluation of the objective function is the most time consuming part of most
optimization systems. Therefore, we use the Number of Function Evaluation (NFE) rather
than number of iterations as the principal criterion to compare the convergence speeds of
the HS and HS-CA. Both of them have 100 HM members, i.e., HMS = 100, which are
always initialized to be equal. The relevant parameters in these two optimization methods
are as follows: HMCR = 0.8 and PAR = 0.6. Their evolution procedures are terminated
after 10,000 NFE. In the HS-CA, we use the In fluence function of Ny + N, for all the 15
functions, and the corresponding CA parameters of Top and § are given in Table 1.

Tables 2-4 present the optimal solutions acquired by the HS and HS-CA, when n = 10,
n = 30, and n = 50, respectively. We stress that the results here are based on the average
of 100 independent trials. As an illustrative example, the optimal solutions to the Ackley
function (n = 10) acquired from the HS and HS-CA are shown in Figure 4(a) and Figure
4(b), respectively. In addition, Figure 5 shows the iteration procedures (average over 100
trials) of these two methods in optimizing the same function. Apparently, compared with
the original HS method, for all the 15 test functions, our HS-CA can achieve considerably
better optimization results within the same NFE, due to the CA-based utilization of the
search knowledge extracted from the HS. That is, the HS-CA has a superior nonlinear
function optimization capability.

The above simulation results indeed demonstrate that the HS-CA can outperform the
regular HS method. Nevertheless, its performance is unavoidably affected by the CA
parameters involved. More specifically, the choice of Top, [, and Influence function
play a pivotal role in the optimization capability of the HS-CA. For example, Figure
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TABLE 1. Parameters of Top and  in HS-CA

Top| p
Ackley Function 10% | 0.1
Alpine Function 10% | 0.1

Bohachevsky Function |10% | 0.1
De Jong Function 10% | 0.1
Dixon and Price Function | 10% | 0.1
Griewank Function 10% | 0.1
Hyper Ellipsoid Function | 10% | 0.1

Levy Function 10% | 0.1
Michalewicz Function | 10% | 0.01
Powell Function 10% | 0.1
Rastrigin Function 5% | 0.1
Rosenbrock Function 10% | 0.1
Sphere Function 10% | 0.1
Trid Function 10% | 0.2

Zakharov Function 5% | 0.1

TABLE 2. Optimal solutions acquired by HS and HS-CA within 10,000

NFE (n = 10)
HS HS-CA
Ackley Function 1.4802 1.3516 x 1012
Alpine Function 0.0117 2.1185 x 1071
Bohachevsky Function 0.7144 0.0105
De Jong Function 8.8887 x 1076 [ 2.1577 x 10~ %
Dixon and Price Function 1.4288 0.6613
Griewank Function 21.6018 0.1543
Hyper Ellipsoid Function 137.1776 0.0962
Levy Function 0.0944 6.5504 x 10~
Michalewicz Function —9.0838 —9.5722
Powell Function 0.0378 0.0015
Rastrigin Function 2.8585 0.2498
Rosenbrock Function 44.4376 7.8584
Sphere Function 0.0025 2.7335 x 10~
Trid Function —165.7292 —200.5229
Zakharov Function 2.5722 8.5050 x 1077

6 illustrates the iteration procedures of the HS-CA with Top = 5%, Top = 10%, and
Top = 15% for the optimization of the Rastrigin function (n = 50). Apparently, different
Top values can lead to different convergence characteristics of our HS-CA. We also examine
the effect of parameter 5 on the HS-CA in optimizing the Michalewicz function (n = 50),
as shown in Figure 7. The HS-CA with 5 = 0.01 converges must faster than the ones with
B = 0.05 and 8 = 0.1. Unfortunately, there is no analytic way yet for us to choose the
best values for these CA parameters, which are often determined based on trial and error.
The four kinds of the Influence functions for the Rastrigin function optimization are
explored in Figure 8. It can be observed that the effectiveness of this HS-CA significantly
deteriorates with the I'nfluence functions of N, and N, + S;. Reynolds argues that the
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TABLE 3. Optimal solutions acquired by HS and HS-CA within 10,000

NFE (n = 30)
HS HS-CA
Ackley Function 2.5364 5.165 x 10°
Alpine Function 0.5881 0.0015
Bohachevsky Function 4.6559 0.3680
De Jong Function 0.0046 8.2869 x 10~17
Dixon and Price Function 24.5650 0.8037
Griewank Function 61.9223 0.3622
Hyper Ellipsoid Function | 5.6404 x 10® | 1.1386 x 107
Levy Function 1.1288 0.0398
Michalewicz Function —17.2730 —28.6997
Powell Function 3.7738 0.1544
Rastrigin Function 24.0671 11.3442
Rosenbrock Function 251.3008 35.4433
Sphere Function 0.0773 6.0406 x 1010
Trid Function —451.8707 —897.9181
Zakharov Function 261.7912 176.3173
TABLE 4. Optimal solutions acquired by HS and HS-CA within 10,000
NFE (n = 50)
HS HS-CA
Ackley Function 3.0282 0.0126
Alpine Function 2.3841 0.0078
Bohachevsky Function 12.4675 1.4351
De Jong Function 10.0609 6.7928 x 1077
Dixon and Price Function 415.4205 3.3149
Griewank Function 102.9463 3.2802
Hyper Ellipsoid Function | 5.7603 x 10™ | 3.2679 x 10!
Levy Function 3.2569 0.1956
Michalewicz Function —21.9800 —44.0748
Powell Function 14.2161 1.1277
Rastrigin Function 61.6260 39.7626
Rosenbrock Function 821.9302 91.6834
Sphere Function 0.6496 1.4131 x 1077
Trid Function —185.4805 —996.127
Zakharov Function 581.7118 470.9657

reason behind this may lie in the structures of the functions to be optimized [14]. Further
discussions on the Influence function are given in the same paper as well.

5.2. Engineering optimization problems.

Example 5.1. Minimization of weight of tension/compression spring. This simple but
representative engineering optimization problem targets at minimizing the weight of a
tension/compression spring, subject to the constraints on its shear stress, surge frequency,
and minimum deflection [27]. The parameters to be optimized are the mean coil diameter
D, wire diameter d, and number of active coils N. A tension/compression spring with
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these design parameters is shown in Figure 9. The spring design problem can be explained

as follows:

minimize f(x) = zizy(zs + 2),

subject to g1(x) =1 — 75Ty 0
JECL IO ) = T 785t =
(%) 4:6% — 1Ty n 1 1<0
X) = —
92 12566(23z2 — 27) ' 510822~ —
) 140 452,
x)=1———
gs x%l'g >~ Y,
g4(X) x1+x2—1§0,




4358 X.-Z. GAO, X. WANG, T. JOKINEN, S. J. OVASKA, A. ARKKIO AND K. ZENGER

12 T T 0 T

Best Solution Found

0 1 ey | L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Iterations

FIGURE 5. Optimization procedures of Ackley function (n = 10) with HS
(solid line) and HS-CA (dotted line)
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FIGURE 6. Optimization procedures of Rastrigin function (n = 50) with
HS-CA (solid line: Top = 5%, dotted line: Top = 10%, dashed line: Top =
15%)
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FIGURE 7. Optimization procedures of Michalewicz function (n = 50) with
HS-CA (solid line: g = 0.1, dotted line: § = 0.05, dashed line: 5 = 0.01)
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FIGURE 9. Tension/compression spring in Example 5.1

where x1 1s D, x5 15 d, and x3 is N.

To compare the HS and HS-CA in dealing with the above optimal spring design problem,
we use a total of 30,000 function evaluations and 100 trials. The Influence function of
Ns + Ny is considered in our HS-CA, and (5 is 0.2. All the other parameters used in
both the HS and HS-CA are set to be the same. The optimization results (average over
100 trials) of these two methods are summarized in Table 5. Apparently, the HS-CA
can provide us with a better objective function value than the HS: f(x) = 0.012989 vs.
f(x) =0.013201.

TABLE 5. Optimization results of weight of tension/compression spring
with HS and HS-CA

1 T T3 f(x)
HS 0.054645 | 0.433579 | 8.743544 | 0.013201
HS-CA | 0.055071 | 0.445656 | 7.913870 | 0.012989

Example 5.2. Optimal welded beam design. The optimal design of the welded beam has
been an important benchmark for modern optimization methods [28]. The goal here is to
minimize the fabricating cost of the welded beam, subject to the constraints on the shear
stress of the weld, T(x), bending stress on the beam, o(x), buckling load on the beam,
Pc(x), end deflection of the beam, §(x), and side constraints. The four design variables,
h, [, t, and b, are denoted as x1, T2, x3, and x4, respectively, as illustrated in Figure 10.
The details of this practical optimal welded beam design problem are:

f(X) = (1 + Cl)x%1‘2 + 021'35154(1‘2 + 14),

subject to  g1(x) = 7(X) — Tax < 0, ¢2(X) = 0(X) — Omax < 0,
1

— x4 <0, 94(x) = 0(X) — dpax < 0,

g5(x) = F — Po(x) <0,
where ¢; (¢; = 0.10471) and ¢y (c; = 0.04811) are the unit costs of the weld material

and bar stock, respectively, 7(x) = \/(7')2+27'7"3% + (7")?, 7 = ﬁim’ = ME
M= F(L+3). R =5+ @22 0 =2 (Vo [§ + (252)] ), ok = %2,
2.6
4.013E/ 2824
5(x) = $HZ, Po(x) = —3— ( . ;—g,/%), F = 6000 b, L = 14 in, Syax = 0.25 in,

E =30x10° psi, G = 12x10° psi, Tmax = 13,600 psi, omax = 30,000 psi, 0.125 < x; < 5,
0.1 <x9,23 <10, and 0.1 < x4 < 5.
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Again, we use the same parameters as in Example 5.1, except that NFE = 100,000, and
B is chosen to be f = 0.1. Table 6 shows the average optimization results of our HS-CA
and HS method. We can observe that the former is capable of outperforming the later in
attacking this demanding welded beam design problem.

F1GURE 10. Welded beam design

TABLE 6. Optimization results of welded beam design with HS and HS-CA

T Ty T3 Ty f(x)
HS 0.269560 | 4.114880 | 7.912975 | 0.305209 | 2.306814
HS-CA | 0.299005 | 2.744191 | 7.502979 | 0.311244 | 2.093270

Example 5.3. Optimal gear train design. The goal of the optimal gear train design is to
minimize the cost of the Gear Ratio (GR) of a gear train, which is shown in Figure 11

[29]. The GR can be defined as:

GR = 18D

(19)

nEpna’
where ny, ng, np, and ng are the numbers of the teeth of the gearwheel in Figure 11,
and they are denoted as x1, xs, x3, and x4, respectively in this engineering optimization
problem. x1, x5, x3, and x4 are all integers between [12,60]. The objective function f(x)

to be minimized is
1 Tr3T9
= — — ) 20
/() (6.931 x1x4> (20)

The same simulation parameters as in the above example are used in the HS and HS-CA
here. The average optimal design variables and costs acquired are given in Table 7, which
actually demonstrate the superior optimization capability of our HS-CA.
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FIGURE 11. Gear train design

TABLE 7. Optimization results of gear train design with HS and HS-CA

T Ty T3 | 14 f(x)
HS |47.9120.12]17.63 | 48.66 | 9.3078 x 10~ 10
HS-CA | 48.94 | 19.14 | 18.73 | 49.31 | 2.4815 x 10~ 1©

Example 5.4. Optimal pressure vessel design. The structure of the center and end section
of a pressure vessel is shown in Figure 12, which is made of carbon steel ASME SA 203
grade B [30]. The objective of the optimal design is to find a feasible set of dimensions
T (shell thickness), Ty, (spherical head thickness), R (radius of cylindrical shell), and L
(shell length) with a minimum total manufacturing cost for the pressure vessel, subject to
the constraints on the minimal wall thicknesses, the minimal value of the tank, as well as
the length of the cylindrical shell. The design variables Ty, Ty, R, and L are denoted as
1, To, T3, and x4, respectively here. Note that the variables Ty and Ty, must be the integer
multiples of 0.0625.

minimize:  f(x) = 0.6224x 2374 + 1.7781x922 + 3.16112%74 + 19.8477 13,
subject to:  g1(x) = 0.019323 — 21 <0,

)
g2(x) = 0.009543 — 5 < 0,
g3(x) = 750 x 1728 — 7aix, — 0.75mx3 <0,
ga(x) = x4 — 240 <0,
1 S T1,T9 S 99, 10.0 S T3,T4 S 200.0.

The average optimized pressure vessel design variables and costs obtained by the HS
and HS-CA are provided in Table 8. Apparently, the optimization performance of the
proposed HS-CA is moderately better than that of the original HS method in manipulating
this optimal design problem.

TABLE 8. Optimization results of pressure vessel design with HS and HS-CA

T Ty T3 Ty f(x)
HS 1.8088 [ 2.1281 | 57.0342 | 108.2850 | 2.3396 x 10?
HS-CA | 1.0781 | 1.0006 | 54.0931 | 69.1591 | 9.2040 x 10°
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FIGURE 12. Pressure vessel design

6. Optimal Design of Permanent Magnet Direct Driven Wind Generator: A
Case Study.

6.1. Structure of wind generator. The wind generator shown in Figures 13-15 is a
radial flux type permanent magnet generator, in which the NdFeB magnets are surface
mounted. The remanence flux density of the magnets is 1.05 T, and coercivity 800 kA /m.
The stator winding is a three-phase two-layer full-pitch diamond winding. The number of
the slots per pole and phase is 2. The stator slot form and the constant dimensions of the
slot are illustrated in Figure 14. The stator iron core consists of 55 mm long sub-cores,
between which there are radial 6 mm wide ventilation ducts. The length of the sub-core is
constant, and the number of the ventilation ducts is a decimal fraction in the calculations.
The stator frame, the bearing shields, and the rotor steel body are all 20 mm thick (Figure
15). In the rotor body disc, there are holes, and around 50% of the disc is iron and 50%
holes. The iron loss factor of the stator lamination is p;5 = 6.6 W /kg with 50 Hz and 1.5
T. The air-gap length is 5 mm. The rated values of this generator are given in Table 9.
The stator winding overhang is presented in Figure 16. The constant dimensions are
also shown in this figure. The clearance between the coils is 4 mm. The bending angle «

Stator

Slots for
stator
se¢  winding

Permanent magnet

FI1GURE 13. Cross-section and dimensions of permanent magnet generator
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FIGURE 15. Axial cross-section of permanent magnet generator

TABLE 9. Rated values of generator

Power 3 MW
Voltage 690 V
Connection Star
Speed 16.98 rpm
Number of phases 3
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FIGURE 16. The overhang form and dimensions of the stator winding

is
by +4 mm
o = arcsin —————, 21
by + bq ( )

where b, is the slot width, and by is the tooth width. The coil span at the middle of the

slot is Do h
w = T (Ds & hsor) (22)
2p
where Dy is the air gap diameter, hg is the slot height, and p is the pole pair number.

The axial length of the overhang is
_wtana g

lax = 5 + 5 + 60 mm. (23)
The average conductor length of a winding turn is
hS O
lm:2o+ v +W1t+B1mm>, (24)
cos 2

where [ is the length of the stator core (Figure 15).

6.2. Objective function and design parameters. The design principles of the above
wind generator are given in [31]. The objective function f(z) (in €) to be minimized is
the sum of the material costs and capitalized costs of the total losses of the generator:

f (@) = krempe + kcumeu + kpvmpm + EretMerame + Kross Prot» (25)

where mpe, Mcu, Mpr, and Mpame are the masses of the stator iron core, the stator wind-
ing, the permanent magnets, and the stator frame and rotor body, respectively, ke, kcu,
kpn, and kper are the unit prices of the stator core, the copper, the permanent magnets,
and the stator frame and rotor body, respectively, and ks is the capitalized costs of the
losses (Table 10). The cost of the stator core actually includes the punching, the waste
parts of the sheet, as well as the assembly of the stator core. The manufacturing cost of
the winding is taken into account in the copper cost. The permanent magnet cost includes
the corrosion protection, the assembly into bigger cassettes, and the magnetization of the
magnets. The stator frame and rotor body costs consist of the material cost and cost of
manufacturing the frame and body.
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TABLE 10. Unit prices of materials and capitalized loss costs

Electrical steel, kpe 4 € /kg

Copper, kcy 12 € /kg

NdFeB magnets, kpy 60 € /kg

Stator frame and rotor steel body, ke | 2 € /kg
Losses, kross 2 €/W

The stator resistive losses are calculated at the temperature of 100 °C, and the iron
losses in the stator teeth are

Prea = 2 - p15 (Ba/1.5T) (f/50Hz)"" mg, (26)

where pi5 is the iron loss factor, By is the maximum flux density in the teeth, f is the
frequency, and myq is the mass of the stator teeth. The iron losses in the stator yoke are

Prey = 1.5 p15 (B, /1.5T)% (f/50Hz)"* my, (27)

where By is the maximum flux density in the yoke, and my is the mass of the yoke. The
losses in the permanent magnets are assumed to be 1% of the rated power, i.e., 30 kW.
The additional losses are assumed to be 3% of the rated power, i.e., 90 kW. The friction
and ventilation losses are

P,=10-D, (I +0.6-7,) (7nD,)*[W], (28)

where D, is the outer rotor diameter ([m]), 7, is the pole pitch ([m]), and n is the rotational
frequency of the rotor ([1/s]) [32]. Table 11 gives the nine design parameters to be
optimized and their valid ranges. A total of five practical constraints are also provided in
Table 12.

TABLE 11. Design parameters with ranges

Parameters Symbols Ranges

Stator outer diameter Dy 3.0-15.0 m

Stator core length including the ventilation ducts [ 0.2-3.0 m

Stator yoke height hys 0.01-0.5 m

Rotor yoke height gy 0.01-0.5 m

Stator slot height hgiot 0.07-0.3 m

Stator slot width by 0.007-0.04 m
Maximum flux density in air gap Brax 0.4-0.9T
Number of effective conductors in stator slot 2 8-26

Number of poles pairs P 20-100

TABLE 12. Optimization constraints

Stator tooth width > 8§ mm
Stator yoke flux density | <2.2T
Rotor yoke flux density | <2.2T
Stator tooth flux density | < 2.2 T
Maximum output power | > 4.8 MW
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7. HS-CA-Based Optimal Wind Generator Design. In this section, we investigate
the effectiveness of the proposed HS-CA in the above optimal wind generator design
problem. The HS coefficients are chosen as the same as in Section 5. The CA parameters
of Top and 3 in the HS-CA are 10% and 0.5, respectively. After a total of 100 independent
trials have been run, the average convergence procedures of the HS and four variants of
our HS-CA within 1,000 and 10,000 NFE are illustrated in Figures 17 and 18, respectively.
Figures 19 and 20 show respectively the corresponding optimal costs acquired by the HS
and HS-CA during the 100 trials. Note that the costs in these two figures have been
ranked. Especially, Tables 13 and 14 present the optimal wind generator parameters and
costs obtained after 1,000 and 10,000 NFE, respectively. The best costs, worst costs, and
average costs obtained in these two cases are also summarized in Tables 15 and 16.

5
g x 10 T T T T x 105 T T T
74F
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8.5 \ g 7.2
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g | S8 6003200000 0ereseesvrevasesed
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W 68 e s T =
® | D
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FIGURE 17. Average convergence procedures of HS and HS-CA within
1,000 NFE (thick line: HS, solid line: HS-CA (Nj), dotted line: HS-CA
(S4), dash-dot line: HS-CA (N, + Sy), dashed line: HS-CA (N + Ny))

It is well known that the stator outer diameter, D, is one of the most important design
parameters of our wind generator. Therefore, the relationship between the optimal costs
and Dg, is demonstrated in Figure 21. For each Dy, in Figure 21, the optimal cost is
chosen from 100 independent 10,000-NFE trials on the basis of HS-CA (N, + Ny). We
can observe that at the beginning, with Dy, growing from 4 m, the cost acquired becomes
smaller and smaller. The best one can be obtained, when Dy, is approximately 8.2 m.
Nevertheless, this relationship curve is rather flat. If the optimal outer diameter 8.2 m is
halved to 4 m, the capitalized cost will increase by only around 15%.

As we know that the optimization performance of the CA heavily depends on its param-
eters, such as 3. Different CA coefficient values applied can result in significant differences
in the optimal solutions ultimately acquired. Figure 22 shows the relationship between
the optimal costs obtained by the HS-CA (N, + N4) and varying 3, when J grows from
0.1 to 1. Unfortunately, 8 is usually an application dependent parameter, and there is
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FIGURE 18. Average convergence procedures of HS and HS-CA within
10,000 NFE (thick line: HS, solid line: HS-CA (Nj), dotted line: HS-CA
(Sq), dash-dot line: HS-CA (N, + Sy), dashed line: HS-CA (N + Ny))

Optimal Cost [€]

x 10°
8_

FIGURE 19. Optimal costs acquired by HS and HS-CA within 1,000 NFE.
(‘circle’: HS, ‘x-mark’ HS-CA (Nj), ‘star’: HS-CA (Sy), ‘plus> HS-CA
(Ns + Sqg), ‘square’: HS-CA (N, + Ny)).
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TABLE 13. Optimal parameters and costs acquired by HS and HS-CA
within 1,000 NFE

HS HS-CA HS-CA HS-CA HS-CA
(N, (S | (No+S) | (N, + N

[ 0.4548 0.5288 0.5471 0.4687 0.4721

hys 0.0666 0.0539 0.0343 0.0416 0.0334

Dy, 8.1120 7.9314 8.4834 8.1119 8.1357

Rglot 0.1137 0.0965 0.0991 0.1189 0.0920

Bihax 0.7057 0.7079 0.6188 0.6914 0.6613
Zs 22 22 22 20 22

gy 0.0351 0.0225 0.0248 0.0294 0.0455
P 70 82 95 76 75

ba 0.0153 0.0102 0.0110 0.0123 0.0144

Costs | 6.6350 x 10° | 6.6869 x 10° | 6.6243 x 10° | 6.5630 x 10° | 6.5917 x 10°

TABLE 14. Optimal parameters and costs acquired by HS and HS-CA
within 10,000 NFE

HS HS-CA HS-CA HS-CA HS-CA
(V,) (S) | (No+S) | (N, +Ny)

[ 0.4691 0.4436 0.4569 0.4719 0.4785

hys 0.0386 0.0455 0.0396 0.0387 0.0380

Dy, 8.1802 8.6117 8.6409 8.3130 8.2067

Rslot 0.1021 0.1034 0.0990 0.1002 0.0999

Bihax 0.6900 0.6606 0.6722 0.6735 0.6779
Zs 22 22 22 22 22

gy 0.0288 0.0306 0.0221 0.0260 0.0260
P 75 72 95 78 77

ba 0.0134 0.0139 0.0113 0.0133 0.0134

Costs | 6.5029 x 10° | 6.5366 x 10° | 6.5286 x 10° | 6.4993 x 10° | 6.4988 x 10°

TABLE 15. Best, worst, and average costs acquired by HS and HS-CA
within 1,000 NFE

4369

HS HS-CA HS-CA HS-CA HS-CA
(Ns) (Sd) (Ns -+ Sd) (Ns + Nd)
Best Costs | 6.6350 x 10° | 6.6869 x 10° | 6.6243 x 10° | 6.5630 x 10° | 6.5917 x 10°
Worst Costs | 7.2213 x 10° | 7.9717 x 10° | 7.4591 x 10° | 7.1400 x 10° | 7.1417 x 10°
Average Costs | 6.9266 x 10° | 7.4301 x 10° | 6.9166 x 10° | 6.7784 x 10° | 6.7574 x 10°

TABLE 16. Best, worst, and average costs acquired by HS and HS-CA
within 10,000 NFE

S HS-CA HS-CA HS-CA HS-CA
(Ns) (Sq) (Ns 4+ Sq) | (N5 + Ng)
Best Cost | 6.5029 x 10° | 6.5366 x 10° | 6.5286 x 10° | 6.4993 x 10° | 6.4988 x 10°
Worst Cost | 6.7621 x 10° | 6.8656 x 10° | 6.6497 x 10° | 6.5182 x 10° | 6.5418 x 10°
Average Costs | 6.5947 x 10° | 6.6862 x 105 | 6.5733 x 10° | 6.5065 x 10° | 6.5052 x 10°
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no analytic way yet to choose its best value for a specific problem. Thus, it is gener-
ally determined based on a trial and error procedure, which might be time-consuming in
practice.

Apparently, compared with the original HS method, the three variants of our HS-CA
(HS-CA (S;), HS-CA (Ns + Sg), and HS-CA (N, + Ny)) can achieve moderately better
average optimization results within the same NFE, because of the CA-based utilization
of the search knowledge extracted from the HS. For example, HS-CA (N; + Ny) offers
improvements of about 2.4% and 1.4% in the average optimized cost in Tables 15 and 16,
respectively. Nevertheless, the HS-CA has a higher computation complexity than that
of the HS algorithm, due to the incorporated CA operations. Furthermore, as aforemen-
tioned, the performance of the HS-CA is indeed affected by the Influence function used,
which plays a pivotal role in its optimization capability. As a matter of fact, from Tables
15 and 16, we can find out that HS-CA (Nj) is even worse than the original HS method.
To summarize, in this optimal design of wind generator problem, the optimization capa-
bilities of the four HS-CA variants can be ranked as follows: HS-CA (Ns + N,) >HS-CA
(Ns + Sd) >HS-CA (Sd) >HS-CA (Ns)

8. Conclusions. In this paper, we propose a new hybrid optimization approach by merg-
ing the HS method and CA together. The belief space of the CA is updated based on the
information provided by the HS. On the other hand, the mutation operation of the HS
is efficiently controlled by the situational knowledge and normative knowledge from the
CA. Some simulation examples of nonlinear functions and engineering optimization using
the HS-CA have been demonstrated. An optimal wind generator design problem is also
deployed to further verify the effectiveness of the proposed method. It can be observed
that the employment of the CA in the HS-CA indeed yields an improved convergence
performance. Compared with the original HS, better optimization results are obtained by



4372 X.-Z. GAO, X. WANG, T. JOKINEN, S. J. OVASKA, A. ARKKIO AND K. ZENGER

the HS-CA. Therefore, our HS-CA has promising potentials in coping with a large variety
of engineering optimization problems.

Actually, the ‘No Free Lunch’ theorem is a fundamental barrier to the exaggerated
claims of the power and efficiency of any specific optimization algorithm [33]. In other
words, there is no single optimization method that can be the best for all kinds of engi-
neering problems. One possible way to handle the negative implication of this ‘No Free
Lunch’ theorem is to restrict the applications of a given algorithm to only a particular
type of tasks. Therefore, we are going to further study the feasibility and applicability
of the HS-CA. In addition, the CA parameters and Influence function have been proved
to have a critical effect on the behavior of our HS-CA. The appropriate selection of these
factors to deal with more real-world problems can be another investigation topic for the
future work.
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