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ABSTRACT. This paper presents a hybrid soft-computing modeling technique used to de-
velop a turbine cycle model for the Maanshan Nuclear Power Plant (NPP) in Taiwan.
The technique utilizes a neuro-fuzzy based approach to estimate turbine-generator output.
First, operating data above the 95% load level from the plant’s past three fuel cycles were
collected and validated to serve as a baseline performance data set. Signal errors in new
operating data were then detected and compared with the allowable range determined from
the baseline data set. Finally, the variables most strongly influence turbine-generator out-
put were selected as inputs for the neuro-fuzzy based turbine cycle model. After training
and validation of key parameters, including main steam pressure, condenser backpres-
sure, feedwater flow rate, and final feedwater temperature, the proposed model was used
to estimate turbine-generator output. The effectiveness of the proposed neuro-fuzzy based
turbine cycle model was demonstrated using plant operating data obtained from Manansan
NPP. In addition, to assess the performance of the neuro-fuzzy based turbine cycle model,
this study adopted a widely used commercial software program, PEPSE, for developing
the thermodynamic turbine cycle of Maanshan NPP. Results show that the neuro-fuzzy
based turbine cycle model is more reliable than the PEPSE turbine cycle model with the
good estimation and the trend. Furthermore, the results of this study provide an alterna-
tive approach to evaluate thermal performance in nuclear power plants.

Keywords: Adaptive neural-fuzzy inference system, Turbine cycle model, Turbine-
generator, Nuclear power plant

1. Introduction. Confronted with climate change, countries need to reduce carbon diox-
ide (COs) output, and existing nuclear power plants must respond by improving their op-
erating efficiency. It is therefore important for nuclear power plant operators to evaluate
the performance of plants. As competition increases in the power industry, power utilities
may be forced to reevaluate their operating status and optimize thermal performance to
reduce costs. In this regard, the Electric Power Research Institute (EPRI) has already
issued guidelines by which utilities can set up performance monitoring programs [1,2].
Nuclear power plants consist of very complex sets of component systems and interre-
lated thermodynamic processes, making it very difficult to accurately estimate turbine-
generator output. Fundamental steady-state mass and energy balance equations have been
used to develop turbine cycle models. Recently, several solutions have been proposed to
model the turbine cycle and evaluate plant performance. PEPSE® is a commercial soft-
ware application developed by Scientech Inc., widely used to develop turbine cycle models
for power plants under normal operation conditions, yielding performance analysis of the
major components [3]. Using PEPSE®, the evaluation of system modeling and perfor-
mance proceeds in a step by step process to construct a turbine cycle model based on
a thermal kit provided by the turbine vendor. Heo et al. [4] developed a need-oriented
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turbine cycle simulation toolbox, and Kim and Choi [5] developed a performance upgrade
system to aid on-line turbine cycle performance analysis for nuclear power plants in Korea.
In addition, an on-line thermal efficiency monitoring and analysis system was developed
for Kuosheng NPP in Taiwan to calculate turbine-generator output, heat rate, and com-
ponent operating conditions [6]. NaKao et al. [7] developed a general-purpose software
application to analyze the static thermal characteristics of power generation systems.

In developing the turbine cycle model, a number of researchers have used fundamental
steady-state mass and energy balance equations, while others have adopted commercial
tools to model the turbine cycle and analyze performance. However, these approaches all
have the same drawback. They depend on system models that may deviate from ideal
conditions, often involving empirical relationships, approximations of actual processes,
and linearization of nonlinear phenomena. Moreover, conventional models usually include
a large number of parameters supplied by turbine vendors for modeling the turbine cycle.

A practical alternative to overcome these problems is soft computing, which can be used
to solve computationally complex and mathematically intractable problems. The main
components of soft computing, fuzzy logic and neural networks, have shown the ability
to solve complex problems of identification in nonlinear systems [8]. These methods are
the basis of artificial intelligence, which has been widely applied in most fields involving
computational studies. The main features of these two methods are the ability to self-learn
and self-predict particular desired outputs.

An adaptive neuro-fuzzy inference system (ANFIS) combines these two methods, uti-
lizing the advantages of both [9,10]. Since Jang first proposed ANFIS [9], it has been
applied in numerous fields, including engineering, management, health, biology, and even
the social sciences. Specifically, the literature contains several articles on ANFIS applica-
tions in automatic control, robotics, nonlinear regression, nonlinear system identification,
adaptive signal processing, decision making, quality control, power systems, and pattern
recognition [11-13]. Many claim that ANFIS is a universal approximator capable of repre-
senting highly nonlinear functions more effectively than conventional statistical methods
[14]. Guo and Uhrig [15] proposed a 3-layer hybrid neural network approach to study the
heat rate and thermal performance of nuclear power plants. This hybrid neural network,
combining self-organization and back-propagation neural networks, analyzes plant data
and extracts some useful information to operate the plant more efficiently.

This study uses ANFIS to develop a turbine cycle model for Maanshan NPP in Taiwan
to estimate turbine-generator output using key parameters. The objective of the AN-
FIS based turbine cycle model is to estimate turbine-generator output without any prior
system knowledge of the exact structure of the mathematical model. To assess the perfor-
mance of the neuro-fuzzy based turbine cycle model, we adopted a commercial software
program, PEPSE, for developing the thermodynamic turbine cycle of Maanshan NPP.

Measurement data for the model were obtained from the operating data of Maanshan
NPP Units 1 and 2 above the 95% load level during the past three fuel cycles. Since
these data need to be validated and verified, a linear regression model was adopted as a
reference to detect sensor failure or degradation. Signal errors in the new operating data
were then detected and compared with the allowable range determined by the baseline
data set.

2. The Maanshan Nuclear Power Plant. The Maanshan NPP in Taiwan is a two-
unit pressurized water reactor (PWR) nuclear power plant owned by the Taiwan Power
Company (TPC). Each unit was provided with a three-loop nuclear steam supply system
(NSSS) from Westinghouse. Unit 1 began commercial operations in July 1984, and Unit 2
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began commercial operations in May 1985. Both units were licensed with an original ther-
mal power rating (OLTP) of 2775 MWt. After employing the measurement uncertainty
recapture power uprate (MUR PU) program, the core thermal power of each unit was
uprated to 2822 MWt (101.69% OLTP) in December 2008 and July 2009, respectively.
MUR PU was achieved using state-of-the-art feedwater flow measurement devices, i.e.,
ultrasonic flow meters (UFMs), to reduce the degree of uncertainty associated with feed-
water flow measurement and in turn, accurately calculate core thermal power. Increases
in turbine-generator output for Maanshan Unit 1 and Unit 2 due to the MUR PU are
approximately 11.9 MWe and 12.4 MWe, respectively [16].

Figure 1 shows a simplified schematic of the overall PWR NPP. The turbine-generator is
the primary component converting thermal energy produced by the reactor and primary
system into electrical power. The turbine-generator and its auxiliaries were provided
by General Electric, and the low pressure turbines were replaced by Asea Brown-Boveri
(ABB) in 1992 and 1991 in Units 1 and 2, respectively. The turbine for each Maanshan
unit consists of three sections; a double-flow high pressure (HP) section and two double-
flow low pressure (LP) sections. The generator is a directly driven, three-phase, 60 Hz, 25
KV, 1800 rpm, hydrogen and water inner cooled, synchronous generator. The generator
is rated at 1057 MVA for both units [17].
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FiGURE 1. Simplified schematic of the overall PWR nuclear power plant

3. Operating Data Acquisition and Processing System. The system used to ac-
quire and process operating data was designed to collect the signal data under actual
operating conditions for display and prediction purpose. 240 signal data were selected
from the plant Emergency Response Facility (ERF) computer. Normally, daily data is
acquired with 40 minutes in the morning and then treated on average to one data set and
stored as plant historical databases. Figure 2 shows the overall structure of the acquisition
and processing of the plant’s operating data.

The baseline performance of the turbine cycle is established according to specific key
parameters, adjusting for the seasonal effects of circulating water temperature at con-
denser inlet using the past three fuel cycles. Statistical analysis was performed where
signals lying outside the confidence interval were excluded (a 95% confidential level was
adopted, but this could be altered depending on other key parameters). Signal errors
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were then detected by comparing them with the allowable range determined by the ref-
erence baseline data. Signal data deviating from the allowable range were designated as
sensor failures and replaced by reference baseline data. In addition, all daily or monthly
processed signal data were documented and stored for user reference.
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After signal preprocessing, the signals not designated as failures were accepted and
the signal estimation step was performed. This procedure is quite useful to users and
designers wishing to develop performance analysis tools.

Linear regression was adopted due to its easy of use, clearly derived process, and ef-
fectiveness in estimating important signals such as main steam pressure, condenser back-
pressure pressure, or feedwater flow rate. The solid curve (red color) shown in Figure
3 displays the curve fitting regression model representing condenser backpressure as a
function of circulating water inlet temperature for the operating data (95% confidence
interval). The operating data of the plant in the turbine cycle required validation and
verification to create the data used to calculate the turbine-generator electrical output.

4. Adaptive Neuro-Fuzzy Inference System (ANFIS). Neural network models are
based on data, whereas fuzzy logic models are based on expert knowledge. In situations
in which both data and knowledge of the underlying system are available, a neuro-fuzzy
approach can exploit both sources of information. This study employs an adaptive neuro-
fuzzy system (ANFIS). The system is an adaptive network, functionally equivalent to a
first-order Sugeno fuzzy inference system [18]. The ANFIS uses a hybrid learning rule
combining backpropagation, gradient-descent, and a least-squares algorithm to identify
and optimize the parameters of the Sugeno system.

For simplicity, we assume that the fuzzy inference system under considerations has two
inputs, x and y, and one output, f. For a first-order Sugeno fuzzy model, a common rule
set with two fuzzy if-then rules is as follows [10]:

Rule 1: IF x is A; and y is By, then fi = pix + quy +
Rule 2: IF x is Ay and y is By, then fo = pox + quy + 19

Figure 4(a) illustrates the reasoning mechanism for this Sugeno model. The correspond-
ing ANFIS architecture is shown in Figure 4(b). The model has five layers and every node
in a given layer has a similar function. In the fuzzy if-then rule set, the outputs are linear
combinations of their inputs.

Layer 1 consists of adaptive nodes that generate linguistic-label membership grades
based on premise parameters, using any appropriate parameterized membership function,
such as the generalized bell function:

1
O1,; = pai(z) = oy (1)
Tr — G

a;

where Oy ; is the output of the ith node in the first layer, x is the input to node ¢, A; is a
linguistic label (such as small or large) from the fuzzy set A = {A;, As, By, By} associated
with the node, and {a;, b;, ¢;} is the premise parameter set used to adjust the shape of
the membership function.

The nodes in layer 2 are fixed nodes labeled II, which represent the firing strength of
each rule. The output of each node is the fuzzy AND (product or MIN) of all the input
signals:

Oai = Wi = pai(2) pgi(y), i=1,2. (2)

The outputs of layer 3 are the normalized firing strengths. Each node is a fixed rule
labeled N. The output of the ith node is the ratio of the sth rule’s firing strength to the
sum of all the rule’s firing strengths:

= Wi

Ogi:W

=i, 3
: W+ W, (3)
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FIGURE 4. (a) A two-input first-order Sugeno fuzzy model with two rules;
(b) equivalent ANFIS architecture [10]

The adaptive nodes in layer 4 calculate the rule outputs based upon consequent pa-
rameters using the following function:

Oy = W.f = Wi(pifv + qiy + 1) (4)

where W; is a normalized firing strength from layer 3, and {p;, ¢;, 7;} is the consequent
parameter set of the node.
The single node in layer 5, labeled >, calculates the overall ANFIS output from the
sum of the node inputs, as follows:
>_Wifi
ES V4 (3
05,1 XZ: szz Z VVZ (5)
(3
Training the ANFIS is a two-pass process over a number of epochs. During each epoch,
node outputs are calculated up to layer 4. At layer 5, the consequent parameters are
calculated using a least-squares regression method. The ANFIS output is calculated and
the errors are propagated back through the layers in order to determine the premise
parameter (layer 1) updates.
The MATLAB software package and its associated Fuzzy Logic Toolbox were used to
develop the ANFIS based turbine cycle model. MATLAB supports first order Sugeno
systems that have a single output and unity weights for each rule.
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5. System Development.

5.1. Determining the input and output variables. The operating limit of a nuclear
power plant is directly related to its core thermal power production. The energy balance
equation can be expressed as [19]:

Pt - wa(hs - hfw) + IDloss (6)
where P, is core thermal power, Wy, is feedwater flow rate, hy and hy, are enthalpies
of main steam and feedwater, respectively, and P, is system losses. The enthalpies,
hs and hy,, are influenced by the main steam pressure and final feedwater temperature,
respectively. In addition, the circulating water system of Manshan NPP takes water from
sea and the sea water temperature directly influences condenser backpressure. When the
circulating water inlet temperatures increase, condenser backpressure increases, which in
turn reduces generator output.

On this basis, the variables that most strongly influence turbine-generator output are
the input variables, including main steam pressure, condenser backpressure, feedwater
flow rate, and final feedwater temperature. The output variable is the turbine-generator
electrical output.

The operating data used in this study were obtained from Units 1 and 2 of the Maanshan
NPP and the method stated in Section 3 was applied to verify the data. The main steam
pressure, condenser backpressure, feedwater flow rate, final feedwater temperature, and
turbine-generator output data were collected for three fuel cycles between June 2006 and
March 2011 for Unit 1 and between May 2005 and March 2011 for Unit 2. As shown in
Table 1, 13 signal points were selected from each unit and their average values were used
in this study. The trends of selected operating parameters for both units are also shown
in Figure 5.

The results show that turbine-generator output is influenced mainly by condenser back-
pressure under normal operating conditions. The relationships among turbine-generator
output, feedwater flow rate, and condenser backpressure are shown in Figure 6. The
turbine-generator outputs are proportional to feedwater flow rate, and inversely propor-
tional to condenser backpressure.

TABLE 1. Selected operating parameters for each unit

ANFIS |Computer point| Unit | Plant ID Signal description

Input 1 ACP 014  |kg/cm®G| PT-28 Main steam pressure

Input 2 ADP 001 mmHgA PT-73 Condenser A backpressure
ADP 002 PT-86 Condenser B backpressure
AEF 013 FT-476
AEF 016 FT-477

Input 3 AEF 014 Mke /hr FT-486 Feedwater flow rate for the 3 loops
AEF 017 FT-487 (each loop equipped with 2 sensors)
AEF 015 FT-496
AEF 018 FT-497
AET 001 TE-60A | Final feedwater temperature for the 3

Input 4] AET 002 °C TE-66A |loops (each loop equipped with 1 sensor)
AET 003 TE-72A

Output BBQ 001 MWe |MAQ-001 Generator electrical output
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FIGURE 5. Trending data for generator output, main steam pressure, con-
denser backpressure, feedwater flow rate, and final feedwater temperature:

(a) unit 1; (b) unit 2

5.2. ANFIS structure. To simulate the nonlinear relationship between input and out-
put variables, we use four inputs and three membership functions for each input, resulting
in 3*4 = 81 rules.

Linguistic values may be viewed as the labels of fuzzy sets. In this paper, three linguistic
variables, low, medium, and high, were used for each input variables. The membership
functions of all input variables were designated as Gaussian to provide smoothness and
conciseness. The structure of the ANFIS model developed in this study consists of 4
inputs and 81 rules, as shown in Figure 7. We used the Fuzzy logic Toolbox of MATLAB
to develop the ANFIS based turbine cycle model in this study [20].

5.3. Training, validation, and testing data. The operating data used in this study
were obtained from Maanshan NPP. Plant operating data comprising the 5 parameters
(including the 13 signal points) listed in Table 1 were obtained between June 2006 and
March 2011 for Unit 1, and between May 2005 and March 2011 for Unit 2, as shown in
Figure 5.

The 1,576 (1,879) available input patterns for Unit 1 (Unit 2) were subdivided into
three sets: a training set of 1,074 (1,296) patterns, a validation set of 444 (504) patterns,
and a test set of 58 (79) patterns. Each pattern contained values of main steam pressure,
condenser backpressure, feedwater flow rate, feedwater temperature, and the target value
(turbine-generator electrical output).

Training and validation sets were used to construct the ANFIS model. Validation set
was used to prevent overtraining and overfitting problems on the training set, and then,
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the generated model was applied to the test set. Figure 8 shows the final membership
functions of the ANFIS model for Unit 1.

6. Results. The following results were obtained by modeling the turbine cycle on the
ANFIS based approach. Figure 9 shows the training results, which demonstrate that
the ANFIS based turbine model performed well and the mismatch between the measured
turbine-generator output and the ANFIS model output is small. The ANFIS based turbine
cycle model for the nuclear power plant was then validated with measured data not
included in the training procedure.

Figure 10 shows the results of validation between the measured and estimated out-
put of the ANFIS model, demonstrating that the output of the ANFIS model accurately
matches the measured turbine-generator output. After the ANFIS model was trained and
validated, it was used to estimate turbine-generator output. In addition, to compare the
performance of the ANFIS based turbine cycle model, a widely used commercial software



6214 Y.-K. CHAN AND J.-C. GU

input inputmf 5 outpu autput

e
=

Logical Operations
and

e -

nat

F1GURE 7. Structure of the ANFIS model with four inputs and 81 rules

Membership grades
f=]
h
T
Membership grades
(=]
i

(=]
T

66 66.5 67 67.5 50 55 60 65 70 75 80
Main steam pressure (Input 1) Condenser backpressure (Input 2)

0.5F

Membership grades
Membership grades
(=]

N

0 -
566 568 57 572 574 576 578 58 225 2252 2254 2256 2258 226 226.2
Feedwater flow rate (Input 3) Feedwater temperature (Input 4)

FI1GURE 8. Final membership functions for the ANFIS based turbine cycle
model for unit 1

program, PEPSE, was adopted for developing the thermodynamic turbine cycle of Maan-
shan NPP. A comparison between the measured values of the turbine-generator output
and the data estimated using the ANFIS and PEPSE based models is shown in Figure 11.
The results show that the ANFIS based turbine cycle model can be used to accurately
estimate the turbine-generator output. Furthermore, the results also demonstrate that
the neuro-fuzzy based turbine cycle model is more reliable than the PEPSE turbine cycle
model with the good estimation and the trend.
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TABLE 2. Statistical parameters of the ANFIS based turbine cycle model

Parameters Unit 1 | Unit 2
NAE (%)
Training set 0.076 | 0.069
Validation set | 0.067 | 0.072
Testing set 0.062 | 0.063
RMSE (MWe)
Training set 0.94 0.88
Validation set | 0.82 0.86
Testing set 0.77 0.73

In this study, model performance was measured by using the mean relative error (MRE)
and root mean square error (RMSE) and is defined as [21]

n

1 Yi — Yi
MRE = — AN A 7
- ; ” (7)
1 n
RMSE = - Z (i — y7)? (8)
=1

where y; and y; represent the measured and the estimated values of the turbine-generator
output, respectively, and n is the number of values provided. The calculated results of
MRE and RMSE for both Units of Maanshan NPP are summarized in Table 2, showing
that the proposed ANFIS based turbine cycle model is capable of estimating turbine-
generator output very accurately.

In using PEPSE software to estimate the turbine-generator output of Maanshan NPP,
the calculated MRESs for both Units are 0.143 and 0.147%, respectively, and the calculated
RMSEs for both Units are 1.618 and 1.642 MWe, respectively. Compared with the MRE
and RMSE calculated using the ANFIS and PEPSE models, it can be concluded that the
ANFIS based turbine cycle model resulted in more accurate estimates.

Nuclear power plants are almost always operated at full load to supply the demanded
load and to operate economically. Under this condition, we are unable to obtain partial
load data, i.e., below the 95% load level. Therefore, the present ANFIS based turbine
cycle model was used to estimate the turbine-generator output above the 95% load level
with higher accuracy. Fossil-fired, combined cycle, or power generation plants of other
types may continually operate at partial load conditions. We anticipate that the ANFIS
based turbine cycle model can also be used in those power plants to predict the turbine-
generator output.

7. Conclusion. This study successfully developed an ANFIS based turbine cycle model
for the Maanshan NPP to estimate turbine-generator output using the operating data
of the plant. Operating data was verified using a linear regression model with a corre-
sponding 95% confidence interval. The variables most strongly influence turbine-generator
output were selected as the input variables of the ANFIS model, which was then used to
estimate the turbine-generator output above the 95% load level under normal operating
conditions.

A comparison of measured data with estimated results shows that the ANFIS based
turbine cycle model is reliable and effective. In addition, to assess the performance of the
ANFIS based turbine cycle model, a widely used commercial software program, PEPSE,
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was adopted for developing the thermodynamic turbine cycle of Maanshan NPP. The
results show that the ANFIS based turbine cycle model is more reliable than the PEPSE
turbine cycle model with the good estimation and the trend. The main advantage of
the proposed neuro-fuzzy based turbine cycle model is the requirement that only key
parameters be used as inputs, which enable the rapid development of a turbine cycle
model. Thus, the ANFIS based turbine cycle model is an appropriate model for the
development of turbine cycle models for nuclear power plants. Furthermore, this study
provides an alternative approach to evaluate the thermal performance of nuclear power
plants. We anticipate that the ANFIS based turbine cycle model may also be used in
fossil-fired and combined cycle power plants.
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