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Abstract. This paper presents an approach to compute the neighboring extremal solu-
tion for an optimal switched impulsive control problem with a pre-specified sequence of
modes and a large perturbation in the initial state. The decision variables – the subsys-
tem switching times and the control parameters – are subject to inequality constraints.
Since the active status of these inequality constraints may change under the large pertur-
bation, we add fractions of the initial perturbation separately such that the active status
of the inequality constraints is invariant during each step, and compute the neighboring
extremal solution iteratively by solving a sequence of quadratic programming problems.
First, we compute a correction direction for the control in the perturbed system through
an extended backward sweep technique. Then, we compute the maximal step size in this
direction and derive the solution iteratively by using a revised active set strategy. An
example problem involving a shrimp harvesting operation demonstrates that our solution
approach is faster than the sequential quadratic programming approach.
Keywords: Optimal control, Neighboring extremal, Impulsive control, Switched sys-
tem, Sequential quadratic programming, Active set strategy

1. Introduction. Real-world optimal control problems are often nonlinear and far too
complex to be solved analytically. Thus, numerical methods are indispensable for solving
such problems. However, existing numerical solution methods (see, for example, [1, 2])
only compute open-loop optimal controls, which are sensitive to disturbances and mod-
elling uncertainties. The neighboring extremal (NE) method was proposed in the 1960s
[3] to construct a NE control in a feedback form for an unconstrained optimal control
problem involving nonlinear dynamics. Assuming that a nominal optimal solution has
been calculated offline, this method constructs an approximate optimal control online
when the initial state and terminal condition are slightly perturbed. In this way, it gains
robustness and computational efficiency. This NE method was extended in [4-8] to op-
timal control problems involving nonlinear continuous dynamics subject to continuous
inequality constraints. This method was further extended in [9, 10] to singular control
problems, and in [11] to constrained discrete-time optimal control problems. However,
most of these NE methods [4-11] assume that the perturbations are small enough such that
the solution’s structure (i.e., the active status of inequality constraints) is unchanged after
the perturbations, which limits the practical applications of these methods. In [12, 13],
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this assumption was dropped, and the NE method was integrated with the model predic-
tive control (MPC) to construct open-loop optimal control during each sampling interval.
Thus, the online computational time was reduced a lot.
In this paper, we consider an optimal control problem for a class of switched impulsive

systems subject to a large perturbation of the initial state. Switched impulsive systems
are operated by switching between different subsystems or modes, and may exhibit in-
stantaneous state jumps during the mode switching. Switched impulsive systems arise in
areas such as circuits [14, 15]. Impulsive systems [16-20] are a special class of them, which
have one mode. The optimal control problem for switched impulsive systems is to choose
the sequence of the modes, the times to switch between the modes, and the parameters
controlling the state jumps to minimize a given cost function subject to constraints. This
paper assumes that the sequence of the modes is pre-specified. Furthermore, the structure
of the solution – that is, the active status of the inequality constraints – may change with
the perturbation. Hence, differentiating the active inequality constraints cannot be used
directly, which hinders us from using the techniques in [4, 6] to derive the NE solution.
One method for avoiding this difficulty is to solve a quadratic programming (QP) problem
with linear inequality constraints directly [21-23], instead of a QP problem with linear
equality constraints. However, if the perturbation is large, the approximation error in this
formulation is also large. Hence, solving the original optimal control problem is needed
when the accumulated approximation error is larger than a threshold. Another idea is
using homotopy [12, 13]. Specifically, this idea is to perturb the system by fractions of
the initial perturbation step-by-step such that, with respect to the current nominal solu-
tion and the fraction of the perturbation, the active status of the inequality constraints
is invariant during each step [12, 13]. Then, the active set strategy [24] can be used,
and the NE solution can be computed iteratively by solving a sequence of QP problems.
In this paper, we follow the second idea. Note that the discrete system description in
[12, 13] is not appropriate for the switched impulsive systems considered here. Further,
interior point constraints must be considered for the switched impulsive control problem,
the solution of which is much more involved than those in [12, 13]. To our knowledge,
there are no NE solutions available for the switched impulsive control problem without
requiring that the active status of the inequality constraints is unchanged after pertur-
bations. Our solution procedure consists of two steps. In the first step, we compute
a correction direction of the control for the perturbed system by solving an accessory
minimum problem [3]. From the first-order necessary conditions for optimality (NCO), a
multiple-point boundary-value problem (MPBVP) can be derived, which is more involved
than the two-point boundary-value problem (TPBVP) considered in [3]. Then, if the re-
lated functions are differentiable and a symmetric matrix is invertible, this MPBVP can
be solved using an extended backward sweep technique. In the second step, we compute
the maximal step size in this correction direction to ensure that the active status of the
inequality constraints is invariant, and derive the solution iteratively with a fraction of
the initial perturbation added at each time by using the active set strategy. In order to
accelerate the computation, we revise the standard active set strategy [24] in the iterative
computation of the second step. Specifically, we allow an active inequality constraint to
be dropped from the active set before the computation converges, and use simple infer-
ential logics to avoid the active status of some inequality constraints from changing back
and forth in successive steps. In summary, our algorithm starts from the known extremal
solution associated with a nominal initial state and tries to approximate the optimal so-
lution for another initial state by perturbing the initial state step-by-step. Since only a
small fraction of the perturbation is introduced in each step, the computational procedure
of our algorithm is more stable than that of the sequential quadratic programming (SQP)
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algorithm. Therefore, our algorithm converges faster and is not liable to be trapped in a
suboptimal solution prematurely. Our numerical simulations also demonstrate that our
algorithm performs better than the SQP algorithm, especially when the perturbation is
large. Similar to [12, 13], our NE solution can find applications in constructing the MPC
for the switched impulsive systems, once the time to compute the open-loop optimal
control is longer than the switching interval.

The rest of this paper is organized as follows. In Section 2, after introducing the
optimal control problem for the switched impulsive system, we present its NE problem
with respect to the perturbation of the initial state. Then, we present our main result on
the solution of this NE problem in Section 3. After that, we verify our NE solution by
solving an example problem on the optimal shrimp harvesting in Section 4. Finally, in
Section 5 we conclude the paper.

2. Problem Formulation. Consider the following switched impulsive system with N+1
subsystems:

ẋ(t) = f i(x(t), t), t ∈ (ti−1, ti), i = 1, . . . , N + 1, (1)

where x(t) ∈ Rn is the system’s state at time t; f i : Rn× (ti−1, ti) → Rn, i = 1, . . . , N +1,
are given functions; ti > 0, i = 1, . . . , N , are the subsystem switching times, and t0 , 0
and tN+1 , tf > 0. The subsystems are switched in a pre-specified sequence with index
i from 1 to N + 1, and these switchings are accompanied by instantaneous state jumps
which are determined by

x(t+i ) =

{
x0, i = 0, (2a)

gi
(
x(t−i ), si, ti

)
, i = 1, . . . , N , (2b)

where x0 ∈ Rn is a given initial state, and gi : Rn+m × R+ → Rn, i = 1, . . . , N , are given
functions that determine the state jumps at t = ti with si ∈ Rm, i = 1, . . . , N , being
the parameters controlling the jumps. In (2), x(t+i ) and x(t−i ), i = 1, . . . , N , denote,
respectively, the limits of x(t) from the right and left at t = ti. Let

ψi
(
x(t+i ), x(t

−
i ), si, ti

)
, x(t+i )− gi

(
x(t−i ), si, ti

)
= 0, i = 1, . . . , N. (3)

In system (1)-(2), the terminal time tf is fixed. The switching times ti and parameters
si, i = 1, . . . , N , are decision variables, and they must satisfy the following constraints:{

aji ≤ sji ≤ bji , j = 1, . . . ,m, i = 1, . . . , N , (4a)

ti − ti−1 ≥ c, i = 1, . . . , N + 1, (4b)

where sji is the jth element of the vector si, a
j
i < bji are given lower and upper bounds,

and c > 0 is given minimum duration of a subsystem. For convenience, we write the linear
constraints (4a) and (4b), respectively, as

ψ̂i(si) ,


a1i − s1i
s1i − b1i

...
ami − smi
smi − bmi

 ≤ 0, i = 1, . . . , N, (5a)

η (t1, . . . , tN) ,


t0 − t1 + c
t1 − t2 + c

...
tN−1 − tN + c
tN − tf + c

 ≤ 0, (5b)
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where the inequalities are componentwise.
Let

σ ,
[
s>1 , . . . , s

>
N

]>
and τ , [t1, . . . , tN ]

> .

Let ∆ be the set of all such σ satisfying (5a), and T be the set of all τ satisfying (5b).
For this switched impulsive system, a nominal optimal control problem can be formu-

lated as follows.

Problem 2.1. For the given system (1)-(2), find a control pair (σ, τ) ∈ ∆× T such that
the cost function

J(σ, τ) , Φ (x(tf ), tf ) +
N∑
i=1

φi
(
x(t+i ), x(t

−
i ), ti

)
(6)

is minimized over ∆× T , where Φ : Rn ×R+ → R, and φi : R2n ×R+ → R, i = 1, . . . , N ,
are given functions.

Remark 2.1. We can easily incorporate an integral term into (6) by introducing a dummy

state variable. For example, consider the integral term,
∑N+1

i=1

∫ ti
ti−1

Li (x(t), t) dt. It is

clear that this term can be replaced by y(tf ), where y(t) satisfies the dynamics

ẏ(t) = Li (x(t), t) , t ∈ (ti−1, ti), i = 1, . . . , N + 1,

and

y(t+i ) =

{
0, i = 0,

y(t−i ), i = 1, . . . , N .

For Problem 2.1, we need the following assumption.

Assumption 2.1. f i, i = 1, . . . , N+1, Φ, and gi, φi, i = 1, . . . , N are twice continuously
differentiable with respect to each of their arguments. Furthermore, gi, i = 1, . . . , N , are
bounded.

Let νi ∈ Rn, ν̂i ∈ R2m, i = 1, . . . , N , and π ∈ RN+1 be, respectively, the Lagrange
multipliers associated with the constraints (3), (5a) and (5b). Let λ(t) ∈ Rn be the
costate. We define

Φ̄i(x(t+i ), x(t
−
i ), si, νi, ν̂i, ti) , φi

(
x(t+i ), x(t

−
i ), ti

)
+ ν>i ψ

i
(
x(t+i ), x(t

−
i ), si, ti

)
+ ν̂>i ψ̂

i (si) , i = 1, . . . , N,

H i (x(t), λ(t), t) , λ>(t)f i (x(t), t) , i = 1, . . . , N + 1,

and the augmented cost function

J̄(σ, τ) , Φ (x(tf ), tf ) +
N∑
i=1

Φ̄i
(
x(t+i ), x(t

−
i ), si, νi, ν̂i, ti

)
+ π>η(τ)

+
N+1∑
i=1

∫ ti

ti−1

[
H i (x(t), λ(t), t)− λ>(t)ẋ(t)

]
dt. (8)

Let (σ∗, τ ∗) ∈ ∆×T , where σ∗ , [s∗>1 , . . . , s∗>N ]> and τ ∗ , [t∗1, . . . , t
∗
N ]

>, be an extremal
solution to Problem 2.1 with respect to the initial state x0. Furthermore, let x∗(t) and
λ∗(t) be the corresponding state and costate, and let ν∗i , ν̂

∗
i , i = 1, . . . , N , and π∗ be,

respectively, the Lagrange multipliers associated with the constraints (3), (5a) and (5b).
We call this solution the nominal solution of Problem 2.1.
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Let δx(0) ∈ Rn denote an arbitrary perturbation of the initial state. Specifically, the
initial state after the perturbation becomes

x(0) = x0 + δx(0). (9)

Let (σ, τ) ∈ ∆× T , x(t), λ(t), νi, ν̂i, i = 1, . . . , N and π be a locally extremal solution to
Problem 2.1 with the initial state perturbed according to (9). In what follows, we call this
solution the perturbed solution. Assume that the nominal extremal control pair (σ∗, τ ∗)
is obtained by some computational software. The problem to be solved in this paper, i.e.,
the NE problem for the perturbed system, is defined as follows.

Problem 2.2. Given the nominal extremal control pair (σ∗, τ ∗) ∈ ∆ × T of Problem
2.1 with respect to the initial state x0, together with the corresponding state, costate and
Lagrange multipliers, find the first-order approximation to the locally extremal solution
(σ, τ) ∈ ∆× T of Problem 2.1 when the initial state is perturbed according to (9).

For the rest of the paper, the objective is to present a method to solve this NE problem
with respect to the initial perturbation, which may be considerably large.

3. NE Solution for the Optimal Switched Impulsive Control Problem. Before
solving Problem 2.2, define

C(σ, τ) ,
[
ψ̂1>(s1) · · · ψ̂N>(sN) η>(τ)

]> ≤ 0

and its associated Lagrange multiplier vector,

µ ,
[
ν̂>1 · · · ν̂>N π> ]>

.

Then, C(σ, τ) ≤ 0 contains all the inequality constraints involved in Problem 2.1. Let
I , {1, 2, . . . , (2m+ 1)N + 1} be the index set of the inequality constraints C(σ, τ) ≤ 0,
and let C i and µi, i ∈ I, be, respectively, the ith element of the vector C and the ith
element of the vector µ. For these inequality constraints, we define the following active
set:

A(σ, τ) , {i ∈ I | C i(σ, τ) = 0}. (10)

If the initial state perturbation is not small, the set A(σ, τ) may be different from
A(σ∗, τ ∗).

Since the active status of the inequality constraints may change after the initial pertur-
bation, we cannot assume that all the differentials of the active inequality constraints are
equal to zero, and the commonly used techniques in [4, 6] will fail. As a remedy, we first
assume that the initial state perturbation is small such that the active set A is unchanged
after the perturbation. This will enable us to compute a NE solution based on sensitivity
analysis [3, 25], which serves as a correction direction for the control. Then, we will drop
this assumption and design an algorithm to compute the NE solution when the active set
changes by using this correction direction.

3.1. Sensitivity analysis for small perturbations. At the first step to solve Problem
2.2, we need the following assumption.

Assumption 3.1. The perturbation δx(0) is small enough such that the active set A(σ, τ)
is the same as A(σ∗, τ ∗).

The following procedure is based on the idea of computing the NE solution by solving an
accessory minimum problem [3], i.e., expanding the augmented cost function J̄(σ, τ) in (8)
to the second-order and the constraints to the first-order, and then solving the resulting
QP problem. Before proceeding, we note that, for a continuously differentiable function
g(x, y) : Rnx×Rny → R, the partial derivative gx , ∂g/∂x is taken as a row vector, and the
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second-order partial derivative of gxy is defined as gxy , (∂2g)/(∂x∂y) = ∂(∂g/∂y)>/∂x.
We now formulate the accessory minimum problem.
Expanding the augmented cost J̄(σ, τ) along the nominal solution (σ∗, τ ∗), x∗(t), λ∗(t),

ν∗i , ν̂
∗
i , i = 1, . . . , N , and π∗, we have the following first-order term,

δJ̄ =
[
λ∗>(tf )− Φx

]
δx(tf )

+
N∑
i=1

[(
λ∗>(t∗+i ) + Φ̄i

x+
i

)
dx(t∗+i ) +

(
−λ∗>(t∗−i ) + Φ̄i

x−
i

)
dx(t∗−i ) + Φ̄i

si
dsi

]
+

N∑
i=1

[
Φ̄i

ti
+H i

(
x∗(t∗−i ), λ∗(t∗−i ), t∗i

)
−H i+1

(
x∗(t∗+i ), λ∗(t∗+i ), t∗i

)
+ π∗>ηti

]
dti

+
N+1∑
i=1

∫ t∗i

t∗i−1

[(
λ̇∗>(t) +H i

x

)
δx(t)

]
dt, (11)

where the subscripts x+i and x−i denote, respectively, partial derivatives with respect to
x(t+i ) and x(t

−
i ); δx(t) denotes the first-order variation of x(t) at time t; and all variables

with prefix ‘d’ denote the corresponding differentials. In this section, the nominal control
(σ∗, τ ∗) is not required to be locally extremal. Then, δJ̄ = 0 if (σ∗, τ ∗) is locally extremal,
and δJ̄ 6= 0 otherwise. In the latter case, let the corresponding costate λ∗(t) and the
Lagrange multipliers ν∗i and ν̂∗i , i = 1, . . . , N , satisfy the following equations:

λ̇∗(t) = −H i>
x (x∗(t), λ∗(t), t) , t ∈ (t∗i−1, t

∗
i ), i = 1, . . . , N + 1, (12a)

λ∗(tf ) = Φ>
x (x

∗(tf ), tf ), (12b)

λ∗(t∗+i ) = −Φ̄i>
x+
i

(
x∗(t∗+i ), x∗(t∗−i ), s∗i , ν

∗
i , ν̂

∗
i , t

∗
i

)
, i = 1, . . . , N, (12c)

λ∗(t∗−i ) = Φ̄i>
x−
i

(
x∗(t∗+i ), x∗(t∗−i ), s∗i , ν

∗
i , ν̂

∗
i , t

∗
i

)
, i = 1, . . . , N, (12d)

where x∗(t) is the state of the system (1)-(2) corresponding to the control (σ∗, τ ∗). With
(12), we have

δJ̄ =
N∑
i=1

Φ̄i
si
dsi +

N∑
i=1

[
Φ̄i

ti
+H i

(
x∗(t∗−i ), λ∗(t∗−i ), t∗i

)
−H i+1

(
x∗(t∗+i ), λ∗(t∗+i ), t∗i

)
+ π∗>ηti

]
dti. (13)

Furthermore, by expanding the augmented cost function J̄ to the second-order, we
obtain the second-order variation

δ2J̄ =
1

2
δx>(tf )Φxxδx(tf ) +

N∑
i=1

Qi(δx(t∗+i ), δx(t∗−i ), dsi, dti)

+
N+1∑
i=1

∫ t∗i

t∗i−1

1

2
δx>H i

xxδxdt. (14)

In (14),

Qi(δx(t∗+i ), δx(t∗−i ), dsi, dti)

, 1

2


dx(t∗+i )
dx(t∗−i )
dsi
dti


>


Φ̄i
x+
i x+

i

Φ̄i
x−
i x+

i

Φ̄i
six

+
i

Φ̄i
tix

+
i

∗ Φ̄i
x−
i x−

i

Φ̄i
six

−
i

Φ̄i
tix

−
i

∗ ∗ Φ̄i
sisi

Φ̄i
tisi

∗ ∗ ∗ Φ̄i
titi




dx(t∗+i )
dx(t∗−i )
dsi
dti


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+ δx>(t∗−i )(H i
x)

>dti − δx>(t∗+i )(H i+1
x )>dti +

1

2
ẋ>(t∗−i )(H i

x)
>dt2i

− 1

2
ẋ>(t∗+i )(H i+1

x )>dt2i +
1

2

(
H i

t −H i+1
t

)
dt2i , (15)

where ‘∗’ denotes the symmetric term in a symmetric matrix. Here, note that

dx(t∗±i ) = δx(t∗±i ) + ẋ(t∗±i )dti

d

dt

(
Φ̄i

x±
i

)>
= Φ̄i

x+
i x±

i
ẋ∗(t∗+i ) + Φ̄i

x−
i x±

i
ẋ∗(t∗−i ) + Φ̄i

tix
±
i

d

dt

(
Φ̄i

si

)>
= Φ̄i

x+
i si
ẋ∗(t∗+i ) + Φ̄i

x−
i si
ẋ∗(t∗−i ) + Φ̄i

tisi

d

dt

(
Φ̄i

ti

)
= Φ̄i

x+
i ti
ẋ∗(t∗+i ) + Φ̄i

x−
i ti
ẋ∗(t∗−i ) + Φ̄i

titi
.

Then, by using Equations (12a), (12c) and (12d), Qi can be rearranged as

Qi(δx(t∗+i ), δx(t∗−i ), dsi, dti)

=
1

2


δx(t∗+i )
δx(t∗−i )
dsi
dti


>


Φ̄i
x+
i x+

i

Φ̄i
x−
i x+

i

Φ̄i
six

+
i

0

∗ Φ̄i
x−
i x−

i

Φ̄i
six

−
i

0

∗ ∗ Φ̄i
sisi

θi
∗ ∗ ∗ κi



δx(t∗+i )
δx(t∗−i )
dsi
dti

 (16)

with

θi ,
d

dt

(
Φ̄i

si

)>
,

κi ,
d

dt

(
Φ̄i

ti

)
+H i

ti

(
x∗(t∗−i ), λ∗(t∗−i ), t∗i

)
−H i+1

ti

(
x∗(t∗+i ), λ∗(t∗+i ), t∗i

)
.

Let ψ̃i (s∗i ) = 0, i = 1, . . . , N , and η̃ (τ ∗) = 0 denote, respectively, the active parts of the
constraints (5a) and (5b) for the nominal control (σ∗, τ ∗). Let ν̃∗i and π̃∗ be, respectively,

the Lagrange multipliers associated with ψ̃i (s∗i ) = 0 and η̃ (τ ∗) = 0. From Assumption

3.1, equations ψ̃i (si) = 0, i = 1, . . . , N , and η̃ (τ) = 0 hold at the control (σ, τ) for the
perturbed problem, and none of the other inequality constraints are active. Considering
that both the nominal solution and the perturbed solution satisfy the dynamics (1) and
the constraints (3), and

ψ̇i = ψi
x+
i
ẋ(t∗+i ) + ψi

x−
i
ẋ(t∗−i ) + ψi

ti
dti,

we can derive the following first-order approximations to the dynamics (1), and the con-
straints (3), (5a) and (5b) with respect to the nominal solution:

δẋ(t) = f i
xδx(t), t ∈ (t∗i−1, t

∗
i ), i = 1, . . . , N + 1 (17a)

0 = ψi
x+
i
δx(t∗+i ) + ψi

x−
i
δx(t∗−i ) + ψi

si
dsi + ψ̇idti, i = 1, . . . , N, (17b)

0 = ψ̃i
si
dsi, i = 1, . . . , N, (17c)

0 =
N∑
i=1

η̃tidti. (17d)

Let dσ ,
[
ds>1 , . . . , ds

>
N

]>
and dτ , [dt1, . . . , dtN ]

>. Define

∆J̄(dσ, dτ) , δJ̄ + δ2J̄ . (18)
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The quadratic cost function (18) and linear constraints (17a)-(17d) form the following
accessory minimum problem.

Problem 3.1. Given a nominal control pair (σ∗, τ ∗) ∈ ∆×T of Problem 2.1 with respect to
the initial state x0, together with the corresponding state, costate and Lagrange multipliers,
where (σ∗, τ ∗) may not be locally extremal and the costate satisfies (12), find the optimal
control pair (dσ, dτ) such that the cost function (18) is minimized subject to the constraints
(17a)-(17d) with δx(0) being the initial state of (17a).

Remark 3.1. We incorporate some first-order terms (13) into the cost function (18) of
the accessory minimum problem to force the corrected control (σ, τ) = (σ∗ + dσ, τ ∗ + dτ)
to be locally extremal. In this way, the accumulated approximation error in the iterative
computation in Section 3.2 can be reduced.

For this problem, we have the following NCO in addition to (17a)-(17d):

δλ̇(t) = −H i
xxδx(t)− f i>

x δλ(t), t ∈ (t∗i−1, t
∗
i ), i = 1, . . . , N + 1, (19a)

δλ(tf ) = Φxxδx(tf ), (19b)

δλ(t∗+i ) = − Φ̄i
x+
i x+

i
δx(t∗+i )− Φ̄i

x−
i x+

i
δx(t∗−i )− Φ̄i

six
+
i
dsi − ψi>

x+
i
dνi,

i = 1, . . . , N, (19c)

δλ(t∗−i ) = Φ̄i
x+
i x−

i
δx(t∗+i ) + Φ̄i

x−
i x−

i
δx(t∗−i ) + Φ̄i

six
−
i
dsi + ψi>

x−
i
dνi,

i = 1, . . . , N, (19d)

0 = Φ̄i
x+
i si
δx(t∗+i ) + Φ̄i

x−
i si
δx(t∗−i ) + Φ̄i

sisi
dsi + ψi>

si
dνi

+ ψ̃i>
si
dν̃i + θidti + Φ̄i>

si
, i = 1, . . . , N, (19e)

0 = θ>i dsi + ψ̇i>dνi + κidti + η̃>tidπ̃ + qi, i = 1, . . . , N, (19f)

where δλ(t) is the costate associated with δx(t), and dνi, dν̃i, i = 1, . . . , N , and dπ̃ are,
respectively, the Lagrange multipliers associated with the constraints (17b)-(17d), and

qi , Φ̄i
ti
+H i

(
x∗(t∗−i ), λ∗(t∗−i ), t∗i

)
−H i+1

(
x∗(t∗+i ), λ∗(t∗+i ), t∗i

)
+ π∗>ηti

for i = 1, . . . , N .
Rearranging (17a) and (19a), we have, for t ∈ (t∗i−1, t

∗
i ), i = 1, . . . , N + 1,[

δẋ(t)

δλ̇(t)

]
=

[
f i
x 0

−H i
xx −f i>

x

] [
δx(t)
δλ(t)

]
=

[
Ai 0
Ci −Ai>

] [
δx(t)
δλ(t)

]
(20)

where Ai and Ci are evaluated along the nominal solution.
Now, we will solve Problem 3.1. Equations (17a)-(17d) and (19a)-(19f) form a linear

MPBVP, which is more complicated than the TPBVP considered in [3]. In this section,
we will extend the backward sweep technique in [3] to solve this MPBVP. First, define
along the nominal solution

Θi ,
[
ds>N dν̃>N dtN · · · ds>i dν̃>i dti

]>
,

Ψi ,
[
−Φ̄N

sN
0 −qN − η̃>tNdπ̃ · · · −Φ̄i

si
0 −qi − η̃>tidπ̃

]>
,

Λi ,
[
Φ̄N

sN
0 qN · · · Φ̄i

si
0 qi

]>
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for i = N, . . . , 1. Next, consider the following group of auxiliary systems governed by
switched impulsive differential equations:

Ṡ1,1(t) = −S1,1(t)A
i − Ai>S1,1(t) + Ci, t ∈ (t∗i−1, t

∗
i ), i = N + 1, . . . , 1,

S1,1(t
∗−
i ) = Φxx, i = N + 1,

S1,1(t
∗−
i ) = ψi>

x−
i

S1,1(t
∗+
i )ψi

x−
i

+ Φ̄i
x−
i x−

i

, i = N, . . . , 1,
(21a)


Ṡ1,3j−1(t) = −Ai>S1,3j−1(t), t ∈ (t∗i−1, t

∗
i ), i = N − j + 1, . . . , 1,

S1,3j−1(t
∗−
i ) = ψi>

x−
i

S1,1(t
∗+
i )ψi

si
+ Φ̄i

six
−
i

, i = N − j + 1,

S1,3j−1(t
∗−
i ) = −ψi>

x−
i

S1,3j−1(t
∗+
i ), i = N − j, . . . , 1,

(21b)


Ṡ1,3j(t) = −Ai>S1,3j(t), t ∈ (t∗i−1, t

∗
i ), i = N − j + 1, . . . , 1,

S1,3j(t
∗−
i ) = 0, i = N − j + 1,

S1,3j(t
∗−
i ) = −ψi>

x−
i

S1,3j(t
∗+
i ), i = N − j, . . . , 1,

(21c)


Ṡ1,3j+1(t) = −Ai>S1,3j+1(t), t ∈ (t∗i−1, t

∗
i ), i = N − j + 1, . . . , 1,

S1,3j+1(t
∗−
i ) = ψi>

x−
i

S1,1(t
∗+
i )ψ̇i, i = N − j + 1,

S1,3j+1(t
∗−
i ) = −ψi>

x−
i

S1,3j+1(t
∗+
i ), i = N − j, . . . , 1,

(21d)

where j = 1, . . . , N , and all the coefficient matrices are evaluated along the nominal
solution. Let Υ be a symmetric matrix defined by

Υ ,
[
Υ1,1 Υ1,2

Υ>
1,2 0

]
, (22)

Υ1,1 ,

 S2,2(0) . . . S2,3N+1(0)

∗ . . .
...

∗ ∗ S3N+1,3N+1(0)

 ,
Υ>

1,2 ,
[
0 0 η̃tN . . . 0 0 η̃t1

]
,

where Sα,β(0), α = 2, . . . , 3N + 1, β = α, . . . , 3N + 1, are defined along the nominal
solution by

S3j−1,3j−1(0) =
(
ψN−j+1
sN−j+1

)>
S1,1(t

∗+
N−j+1)ψ

N−j+1
sN−j+1

+ Φ̄N−j+1
sN−j+1sN−j+1

,

S3j−1,3j(0) =
(
ψ̃N−j+1
sN−j+1

)>
,

S3j−1,3j+1(0) = θN−j+1 +
(
ψN−j+1
sN−j+1

)>
S1,1(t

∗+
N−j+1)ψ̇

N−j+1,

S3j,3j(0) = 0, S3j,3j+1(0) = 0,

S3j+1,3j+1(0) = κN−j+1 +
(
ψ̇N−j+1

)>
S1,1(t

∗+
N−j+1)ψ̇

N−j+1,

S3k+r,3l−1(0) = −S>
1,3k+r(t

∗+
N−l+1)ψ

N−l+1
sN−l+1

, S3k+r,3l(0) = 0,

S3k+r,3l+1(0) = −S>
1,3k+r(t

∗+
N−l+1)ψ̇

N−l+1

(23)

for j = 1, . . . , N , k = 1, . . . , N − 1, l = k + 1, . . . , N and r = −1, 0, 1.
For Problem 3.1, we now have the following theorem.

Theorem 3.1. Suppose that Assumptions 2.1 and 3.1 are satisfied, and the symmetric
matrix Υ defined in (22) is invertible. Then, the solution to Problem 3.1, (dσ, dτ), and
the multipliers dν̃i, i = 1, . . . , N , and dπ̃ associated with the active inequality constraints
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are obtained by solving (Θ1, dπ̃) from equation

Υ

[
Θ1

dπ̃

]
= −

[
Λ1

0

]
−


S>
1,2(0)
...

S>
1,3N+1(0)

0

 δx(0). (24)

Proof: We extend the backward sweep technique in [3] to solve the linear MPBVP
(17a)-(17d) and (19a)-(19f). This is done by using the boundary conditions at t = tf and
at t = t∗i , i = N, . . . , 1.
1) Boundary condition at t = tf
Let

δλ(t) = S1,1(t)δx(t), t ∈ (t∗N , tf ). (25)

Then, (20) can be written as[
δẋ(t)

δλ̇(t)

]
=

[
AN+1

CN+1 − (AN+1)>S1,1

]
δx(t). (26)

Now, differentiating (25) with respect to t yields

δλ̇(t) = Ṡ1,1(t)δx(t) + S1,1(t)δẋ(t). (27)

Then, by substituting δẋ and δλ̇ from (26) into (27), we obtain[
Ṡ1,1 + S1,1A

N+1 + (AN+1)>S1,1 − CN+1
]
δx(t) = 0. (28)

To ensure that this identity is valid for arbitrary δx(t), we must have

Ṡ1,1 = −S1,1A
N+1 − (AN+1)>S1,1 + CN+1, t ∈ (t∗N , tf ), (29)

and

S1,1(tf ) = Φxx. (30)

2) Boundary conditions at t = t∗i , i = N, . . . , 1
From (3), it is known that

ψi
x+
i
= In, Φ̄i

x+
i x+

i
= 0, Φ̄i

x+
i x−

i
= Φ̄i>

x−
i x+

i
= 0, Φ̄i

x+
i si

= Φ̄i>
six

+
i
= 0

hold for i = N, . . . , 1. Then, we can rearrange Equations (19c)-(19e), (17b), (17c) and
(19f) as


0

δλ(t∗−i )
0
0
0

−η̃>tidπ̃

 =



In 0 0 0 In 0 0
0 0 Φ̄i

x−
i x−

i

Φ̄i
sixi− ψi>

x−
i

0 0

0 0 Φ̄i
x−
i si

Φ̄i
sisi

ψi>
si

ψ̃i>
si

θi

0 In ψi
x−
i

ψi
si

0 0 ψ̇i

0 0 0 ψ̃i
si

0 0 0

0 0 0 θ>i ψ̇i> 0 κi





δλ(t∗+i )
δx(t∗+i )
δx(t∗−i )
dsi
dνi
dν̃i
dti


. (31)

From the fourth block row of (31), we have

δx(t∗+i ) = −ψi
x−
i
δx(t∗−i )− ψi

si
dsi − ψ̇idti. (32)
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Note that, as time increases, the next boundary point is at t = t∗i+1. Let

δλ(t∗+i ) , S1,1

(
t∗+i

)
δx(t∗+i )

+
N−i∑
j=1

[
S1,3j−1

(
t∗+i

)
dsN−j+1 + S1,3j

(
t∗+i

)
dν̃N−j+1 + S1,3j+1

(
t∗+i

)
dtN−j+1

]
,

= − S1,1

(
t∗+i

)
ψi
x−
i
δx(t∗−i )− S1,1

(
t∗+i

)
ψi
si
dsi − S1,1

(
t∗+i

)
ψ̇idti

+
N−i∑
j=1

[
S1,3j−1

(
t∗+i

)
dsN−j+1 + S1,3j

(
t∗+i

)
dν̃N−j+1 + S1,3j+1

(
t∗+i

)
dtN−j+1

]
.

(33)

It is clear from the first block row of (31) that

dνi = S1,1

(
t∗+i

)
ψi
x−
i
δx(t∗−i ) + S1,1

(
t∗+i

)
ψi
si
dsi + S1,1

(
t∗+i

)
ψ̇idti

−
N−i∑
j=1

[
S1,3j−1

(
t∗+i

)
dsN−j+1 + S1,3j

(
t∗+i

)
dν̃N−j+1 + S1,3j+1

(
t∗+i

)
dtN−j+1

]
. (34)

In (33) and (34), summations with upper limits less than lower limits are defined to be
zero. Now, incorporate the following equation into (31),

Ψi+1 =

 S2,1(t
∗+
i ) . . . S2,3(N−i)+1(t

∗+
i )

...
. . .

...
S3(N−i)+1,1(t

∗+
i ) . . . S3(N−i)+1,3(N−i)+1(t

∗+
i )

[
δx(t∗+i )
Θi+1

]
(35)

for i = N−1, . . . , 1. After eliminating δx(t∗+i ), δλ(t∗+i ) and dνi by, respectively, (32), (33)
and (34), the expanded equation (31) becomes[

δλ(t∗−i )
Ψi

]
= Γi

[
δx(t∗−i )

Θi

]
, (36)

where Γi is a block symmetric matrix with (3(N − i) + 4) × (3(N − i) + 4) blocks. The
blocks of Γi are defined in Appendix A.

Similar to (25), we assume that[
δλ(t)
Ψi

]
= Si(t)

[
δx(t)
Θi

]
, t ∈ (t∗i−1, t

∗
i ), (37)

where Si(t) is a (3(N − i) + 4) × (3(N − i) + 4) block symmetric matrix with its (α, β)
term, α, β ∈ {1, . . . , 3(N − i) + 4}, denoted by Sα,β. Then, (20) can be written as[

δẋ(t)

δλ̇(t)

]
=

[
Ai 0 · · · 0

C i − Ai>S1,1 −Ai>S1,2 · · · −Ai>S1,3(N−i)+4

] [
δx(t)
Θi

]
. (38)

Now, differentiate (37) with respect to t, treating Ψi and Θi as constants. It follows that[
δλ̇
0

]
=

 Ṡ1,1 · · · Ṡ1,3(N−i)+4

∗ . . .
...

∗ ∗ Ṡ3(N−i)+4,3(N−i)+4

[
δx
Θi

]

+

 S1,1 · · · S1,3(N−i)+4

∗ . . .
...

∗ ∗ S3(N−i)+4,3(N−i)+4

[
δẋ
0

]
. (39)
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Then, by substituting δẋ and δλ̇, expressed by (38), into (39), we obtain that
Ṡ1,1 + S1,1A

i + Ai>S1,1 − Ci Ṡ1,2 + Ai>S1,2 · · ·
∗ Ṡ2,2 · · ·
∗ ∗ . . .
∗ ∗ ∗

Ṡ1,3(N−i)+4 + Ai>S1,3(N−i)+4

Ṡ2,3(N−i)+4
...

Ṡ3(N−i)+4,3(N−i)+4


[
δx(t)
Θi

]
= 0. (40)

To ensure that this identity is valid for arbitrary δx(t) and Θi, the following differential
equations must be valid for t ∈ (t∗i−1, t

∗
i ):

Ṡ1,1 = −S1,1A
i − Ai>S1,1 + Ci, Ṡ1,j = −Ai>S1,j, Ṡj,k = 0, (41)

where i = N, . . . , 1, j = 2, . . . , 3(N − i) + 4, and k = j, . . . , 3(N − i) + 4, with boundary
conditions

Sα,β(t
∗−
i ) = Γi

α,β, α = 1, . . . , 3(N − i) + 4, β = α, . . . , 3(N − i) + 4. (42)

Now, (29) and (41) with boundary conditions (30) and (42), i = N, . . . , 1, form the
group of switched impulsive systems (21a)-(21d), which can be integrated backwards
with time from t = t∗f to t = t0 and subsystem index i from N +1 to 1 to obtain S1,α(t0),
α = 1, . . . , 3N + 1. The other terms Sα,β(t0), α = 2, . . . , 3N + 1, β = α, . . . , 3N + 1, can
be obtained by equations in (23) at t = t∗i , i = N, . . . , 1. Then, it follows from (37) (with
i = 1 and t∗0 = t0 = 0) and (17d) that (Θ1, dπ̃) can be solved from (24) for a given δx(0)
if the symmetric matrix Υ is invertible. �

Remark 3.2. The results in [7, 8] demonstrate that the invertibility of Υ is equivalent
to certain controllability of the linear system (17a) with perturbed boundary conditions
(17b)-(17d). In practice, this NE solution can be computed in a numerically stable manner
without explicitly inverting matrix Υ by using the triangular or orthogonal decomposition
of Υ.

Corollary 3.1. Suppose that Assumptions 2.1 and 3.1 are satisfied, and the symmetric
matrix Υ defined in (22) is invertible. Then, the solution of Problem 2.2 is given by

σ ≈ σ∗ + dσ and τ ≈ τ ∗ + dτ, (43)

where (dσ, dτ) is obtained by solving Θ1 from Equation (24) with Λ1 = 0.

Corollary 3.1 presents a solution of the NE problem, Problem 2.2, with a small initial
perturbation satisfying Assumption 3.1.

Remark 3.3. When δx(0) = 0, the solution (dσ, dτ), dν̃i, i = 1, . . . , N , and dπ̃ derived
from Theorem 3.1 will force the following equations to be satisfied:

Φ̄i
si
= 0 and qi = 0, i = 1, . . . , N. (44)

If the perturbation is large, Assumption 3.1 may not be satisfied. In this situation,
(dσ, dτ) computed in Theorem 3.1 presents a direction for the control correction after
the perturbation. In the following subsection, Assumption 3.1 will be dropped. We first
compute a step size in this correction direction, and then present an algorithm to compute
the solution of Problem 2.2 iteratively.
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3.2. Sensitivity analysis for large perturbations. Before presenting the method to
compute the step size, we need some more notations. Define

dC(dσ, dτ) ,
[
dψ̂1>(ds1) · · · dψ̂N>(dsN) dη>(dτ)

]>
,

where (dσ, dτ) is computed by Theorem 3.1 with respect to the nominal control (σ∗, τ ∗),
and

dψ̂i(dsi) , ψ̂i
si
dsi, i = 1, . . . , N, and dη(dτ) ,

N∑
i=1

ηtidti.

Let dC i, i ∈ I, be the ith element of the vector dC. Define

dµ ,
[
dν̂>1 · · · dν̂>N dπ> ]>

as the vector of the differentials of the associated multipliers, where the ith element of
dµ, dµi, can be obtained from Theorem 3.1 if i ∈ A or is equal to zero if i ∈ I\A.
Then, set k̄ as the maximal number of iterations, and let a variable with a superscript
‘(k)’, k = 0, 1, . . . , k̄, denote the value of the corresponding variable computed in the kth
iterative. Now, we will present a formula to compute the maximal step size for the control
correction.

If the ith constraint Ci(k) ≤ 0 at the kth iteration is treated as inactive, i.e., i ∈ I\A(k),
then define

ᾱi(k) ,


−C i(k)/dC i(k), if C i(k) < 0 and dC i(k) > 0, (45a)

∞, if C i(k) < 0 and dC i(k) < 0, (45b)

0, if C i(k) = 0 and dC i(k) > 0, (45c)

∞, if C i(k) = 0 and dC i(k) < 0. (45d)

On the other hand, if C i(k) ≤ 0 is treated as active, i.e., i ∈ A(k), then define

ᾱi(k) ,



−µi(k)/dµi(k), if µi(k) > 0, dµi(k) < 0 and γ(k−1) = 0, (46a)

∞, if µi(k) > 0, dµi(k) < 0 and γ(k−1) = 1, (46b)

∞, if µi(k) > 0 and dµi(k) > 0, (46c)

µi(k), if µi(k) ≤ 0 and α(k−1) > 0, (46d)

∞, if µi(k) ≤ 0 and α(k−1) = 0, (46e)

where µi(k) is the ith element of the multiplier vector µ(k). The variable α(k) in (46) is the
maximal step size in the correction direction (dσ(k), dτ (k)), which is defined by

α(k) ,


0, if ᾱ(k) ≤ 0, (47a)

ᾱ(k), if 0 < ᾱ(k) < 1, (47b)

1, if 1 ≤ ᾱ(k) (47c)

with ᾱ(k) , min{ᾱi(k)| i ∈ I}. The purpose of incorporating the variable γ(k) ∈ {0, 1} in
(46) will be explained after presenting our algorithm.

Based on the step size (47), our algorithm to compute the solution of Problem 2.2
(without Assumption 3.1) is presented as follows:

Algorithm 3.1.

1. Set k = 0. Let x(0)(k) = x0, δx(0)(k) = δx(0) and (σ(k), τ (k)) = (σ∗, τ ∗), where

(σ∗, τ ∗) is the nominal extremal solution corresponding to x0. Set γ(k−1) = γ
(k−1)
n = 0

and α(k−1) = 1.
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2. Compute x(k)(t) corresponding to the nominal control (σ(k), τ (k)) by solving Equations

(1) and (2). With the x(k)(t) computed, λ(k)(t) and multipliers ν
(k)
i , i = 1, . . . , N ,

and µ(k) can be computed by Equation (12) with (44) and µi(k) = 0 for i ∈ I\A(k).
Then, with respect to this nominal solution, solve (dσ(k), dτ (k)) and dµi(k), i ∈ A(k),
by Theorem 3.1. Let dµi(k) = 0 for i ∈ I\A(k).

3. If dσ(k) = 0 and dτ (k) = 0, go to the next step. Otherwise, go to Step 7.
4. Compute β(k) , min{µi(k)| i ∈ A(k)}. If β(k) ≥ 0, terminate with σ = σ(k) and
τ = τ (k). Otherwise, go to the next step.

5. Set α(k) = 0. Let A(k+1) = A(k)\{l(k)}, where l(k) = {i ∈ I| µi(k) = β(k)}.
6. Let γ

(k)
n = γ

(k−1)
n + 1. If γ

(k)
n = 2 and l(k) = l(k−1), let γ(k) = 1. Otherwise, let

γ(k) = 0. Set k = k + 1, and go to Step 2.

7. Compute α(k) by (47) and l(k) = {i ∈ I| ᾱi(k) = ᾱ(k)}. If α(k) = 1, let γ(k) = γ
(k)
n = 0

and go to Step 11. Otherwise, go to the next step.
8. Change the active status of the l(k)th inequality constraint. That is, let A(k+1) =

A(k) ∪ {l(k)} if l(k) ∈ I\A(k), and let A(k+1) = A(k)\{l(k)} if l(k) ∈ A(k).

9. If α(k) > 0, let γ(k) = γ
(k)
n = 0 and go to Step 11. If α(k) = 0, let γ

(k)
n = γ

(k−1)
n + 1.

10. If γ
(k)
n = 2 and l(k) = l(k−1), let γ(k) = 1. Otherwise, let γ(k) = 0.

11. Let {
σ(k+1) = σ(k) + α(k)dσ(k),
τ (k+1) = τ (k) + α(k)dτ (k),

(48a){
x(0)(k+1) = x(0)(k) + α(k)δx(0)(k),
δx(0)(k+1) = δx(0)(k) − α(k)δx(0)(k).

(48b)

Set k = k + 1, and go to Step 2.

Remark 3.4. The basic idea of the modification in (48a) is that there is at most one
inequality constraint that will change its active status if the control (σ(k), τ (k)) is modified
by a step size α(k) along the direction (dσ(k), dτ (k)). From Equation (24), the initial state
x(0)(k) and the initial perturbation δx(0)(k) should be, correspondingly, modified by (48b)
if Λ1 is small enough that can be neglected.

Remark 3.5. In order to accelerate the computation, we allow an active inequality con-
straint to be dropped from the active set before the computation converges. This will incur
the zigzagging phenomenon. Specifically, the active status of an inequality constraint may
oscillate back and forth in successive steps, which will slow down the computational pro-

cedure. Thus, we incorporate the variables γ(k) and γ
(k)
n , and simple inferential logics into

Algorithm 3.1. If the active status of one inequality constraint changes twice in two suc-
cessive steps, we will prevent this change from continuing by setting γ(k) = 1 and allowing
the Lagrange multiplier associated with this constraint to become negative.

Remark 3.6. This algorithm will be reduced to an SQP algorithm [26] based on the active
set strategy if we let x(0)(k) = x0+δx(0) and δx(0)(k) = 0 for k = 0, and select an arbitrary
feasible control as the initial nominal control.

Remark 3.7. Since constraints (5a) and (5b) are both linear, each intermediate solu-
tion (σ(k+1), τ (k+1)) computed by (48a) with α(k) determined by (47) is feasible. Thus, in
situation where computational efficiency is a critical consideration [12, 13], Steps 3-7 in
Algorithm 3.1 can be replaced by “Compute α(k) by (47) and l(k) = {i ∈ I| ᾱi(k) = ᾱ(k)}.
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If α(k) = 1, terminate with {
σ = σ(k) + α(k)dσ(k),
τ = τ (k) + α(k)dτ (k),{
x(0) = x(0)(k) + α(k)δx(0)(k),
δx(0) = δx(0)(k) − α(k)δx(0)(k),

and k = k + 1. Otherwise, go to the next step”. In this way, less iterations are needed
to compute the perturbed solution, which is guaranteed to be feasible although not locally
extremal.

4. A Numerical Example. To verify our NE solution method, consider the optimal
shrimp harvesting problem discussed in [20]. In this problem, x(t) is the number of
shrimp at time t and y(t) is the average weight of shrimp (in grams) at time t, where t is
measured in weeks. The shrimp population growth is modeled by the dynamics,{

ẋ(t) = −0.03x(t), x(0) = 40000,
ẏ(t) = 3.5− 0.00001x(t)y(t), y(0) = 1.

(49)

Suppose that shrimp are harvested at times t = ti, i = 1, . . . , N , and si is the fraction of
the total shrimp stock harvested at t = ti. Then, we have the following jump conditions
at each time t = ti: {

x(t+i ) = (1− si)x(t
−
i ),

y(t+i ) = y(t−i ),
i = 1, . . . , N. (50)

The revenue obtained by harvesting a fraction si of the shrimp stock is given by

py(t−i )six(t
−
i )− h,

where p , $0.008 is the price per gram of shrimp and h = $50 is the fixed cost of
harvesting. At the specified final time t = tf = 13.2, all of the remaining shrimp are

harvested. The harvesting times τ , [t1, . . . , tN ] and fractions σ , [s1, . . . , sN ] are subject
to the following constraints:{

0.01 ≤ si ≤ 1, i = 1, . . . , N,
ti − ti−1 ≥ 0.01, i = 1, . . . , N + 1, t0 = 0, tN+1 = tf .

(51)

The problem is to choose τ and σ to maximize the total revenue

R(σ, τ) ,
N∑
i=1

[
py(t−i )six(t

−
i )− h

]
+ py(tf )x(tf )− h (52)

subject to constraints (51).
To verify the effectiveness of Algorithm 3.1, we increase the lower bound of si in (51)

to 0.3 and set N = 2 in the following two simulation cases. The indices of the different
constraints are assigned as Table 1.

Table 1. The indices of the constraints

index constraint index constraint
1 s1 ≥ 0.3 5 t0 − t1 + 0.01 ≤ 0
2 s1 ≤ 1.0 6 t1 − t2 + 0.01 ≤ 0
3 s2 ≥ 0.3 7 t2 − t3 + 0.01 ≤ 0
4 s2 ≤ 1.0
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4.1. Computation from an interior point to a boundary point. In this case, we
set the initial state for k = 0 as

[x(k)(0), y(k)(0)]> = [40000, 1]>,

and let the initial state perturbation for k = 0 be

[δx(k)(0), δy(k)(0)]> = −75%[40000, 1]>.

We solve Problem 2.2 iteratively by Algorithm 3.1, and the results are presented in Table
2. In Table 2, each row presents the intermediate result at iteration k, i.e., the step size

α(k), the current initial states x(k)(0) and y(k)(0), the controls s
(k)
i and t

(k)
i , i = 1, 2, and

the revenue R(k). R(k) is computed by (52) with the initial state [x(k)(0), y(k)(0)]> and the

controls s
(k)
i and t

(k)
i .

We begin Algorithm 3.1 with k = 0 and the nominal control corresponding to the
initial state [40000, 1]>, i.e., σ∗ = [0.388, 0.454]> and τ ∗ = [4.270, 7.810]> with revenue
R∗ = 3189, which is derived by the method in [20]. It is clear that this solution has no
active inequality constraints. Hence, it is an interior point in the feasible set. After 8
iterations, the initial state is perturbed to [10000, 0.25]>, and the corresponding control
and revenue computed by Algorithm 3.1 coincide with the result derived by [20], i.e.,
σ = [0.300, 0.300]> and τ = [10.123, 13.190]> with R = 1442. This solution satisfies that

0.3− s1 = 0.3− s2 = 0 and t2 − t3 + 0.01 = 0,

i.e., three inequality constraints are active. The active status of the inequality constraints
at each iteration is illustrated in Figure 1, where, for example, the three horizontal lines
with coordinates 1, 3 and 7 in the interval [8, 9] denote that the 1st, 3rd and 7th constraints
(defined in Table 1) are active at iteration k = 8.
So, starting from a nominal control corresponding to an interior point in the feasible set,

Algorithm 3.1 computes the NE control for the perturbed problem quickly, which is on
the boundary of the feasible set. Furthermore, the computational procedure terminates
at iteration k = 9.

Table 2. Simulation results for Case 4.1 using Algorithm 3.1

k α(k) x(k)(0) y(k)(0) s
(k)
1 s

(k)
2 t

(k)
1 t

(k)
2 R(k)

0 0.8013 40000 1.000 0.388 0.454 4.270 7.810 3189
1 0.3992 15962 0.399 0.300 0.350 5.906 9.117 1943
2 1.0000 13582 0.340 0.300 0.300 6.864 9.908 1761
3 0.5915 10000 0.250 0.300 0.300 9.035 12.454 1438
4 0.0000 10000 0.250 0.300 0.300 9.671 13.152 1442
5 0.0714 10000 0.250 0.300 0.300 9.671 13.152 1442
6 1.0000 10000 0.250 0.300 0.300 9.707 13.190 1442
7 1.0000 10000 0.250 0.300 0.300 10.115 13.190 1442
8 1.0000 10000 0.250 0.300 0.300 10.123 13.190 1442
9 — 10000 0.250 0.300 0.300 10.123 13.190 1442

In order to evaluate the computational speed of Algorithm 3.1, we run the simulation
again using the SQP algorithm. In this simulation, we let

[x(k)(0), y(k)(0)]> = [10000, 0.25]> and [δx(k)(0), δy(k)(0)]> = [0, 0]>

at iteration k = 0, and set the initial nominal control as the same as that in the previous
simulation. As stated in Remark 3.6, Algorithm 3.1 is now reduced to an SQP algorithm.
The results are listed in Table 3 and Figure 2. After 20 iterations, the control obtained by
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Figure 1. The active status of the constraints in Case 4.1 using Algorithm 3.1
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Figure 2. The active status of the constraints in Case 4.1 using the SQP algorithm

this SQP algorithm is trapped into a solution inferior to the NE solution for the perturbed
system. Compared with Algorithm 3.1, the SQP algorithm converges much more slowly
and seems unable to reach the correct NE solution.
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Table 3. Simulation results for Case 4.1 using the SQP algorithm

k α(k) x(k)(0) y(k)(0) s
(k)
1 s

(k)
2 t

(k)
1 t

(k)
2 R(k)

0 0.6935 10000 0.250 0.388 0.454 4.270 7.810 1239
1 0.2869 10000 0.250 0.467 0.300 8.065 9.662 1379
2 0.6323 10000 0.250 0.875 0.300 12.635 12.645 1409
3 0.0404 10000 0.250 0.694 0.300 12.868 12.878 1420
4 1.0000 10000 0.250 0.694 0.300 12.920 13.190 1423
5 0.1630 10000 0.250 0.666 0.300 13.176 13.190 1423
6 0.0034 10000 0.250 0.666 0.300 13.180 13.190 1423
7 0.0000 10000 0.250 0.665 0.300 13.180 13.190 1423
8 0.0000 10000 0.250 0.665 0.300 13.180 13.190 1423
9 0.0000 10000 0.250 0.665 0.300 13.180 13.190 1423
10 0.2978 10000 0.250 0.665 0.300 13.180 13.190 1423
11 0.0000 10000 0.250 0.538 0.300 13.180 13.190 1424
12 0.0000 10000 0.250 0.538 0.300 13.180 13.190 1424
13 0.0000 10000 0.250 0.538 0.300 13.180 13.190 1424
14 0.0547 10000 0.250 0.538 0.300 13.180 13.190 1424
15 0.0000 10000 0.250 0.522 0.300 13.180 13.190 1424
16 0.0000 10000 0.250 0.522 0.300 13.180 13.190 1424
17 0.0000 10000 0.250 0.522 0.300 13.180 13.190 1424
18 0.0010 10000 0.250 0.522 0.300 13.180 13.190 1424
19 0.0000 10000 0.250 0.521 0.300 13.180 13.190 1424
20 — 10000 0.250 0.521 0.300 13.180 13.190 1424

In this case, the initial nominal control corresponds to an interior point in the feasible
set, while the NE control for the perturbed problem corresponds to a boundary point.
The active set during the entire computational procedure is enlarged. To further ex-
amine Algorithm 3.1, we consider an inverse problem in the next simulation, where the
computation starts from a boundary point and ends at an interior point.

4.2. Computation from a boundary point to an interior point. In this case, we
set the initial state and the initial state perturbation at step k = 0 as

[x(k)(0), y(k)(0)]> = [10000, 0.25]> and [δx(k)(0), δy(k)(0)]> = [30000, 0.75]>,

and select the NE solution σ∗ = [0.300, 0.300]> and τ ∗ = [10.123, 13.190]> derived in the
previous case as the initial nominal control. That is, we exchange the start point and
end point in the previous case. The desired NE control in this case should be the initial
nominal one in Case 4.1. The simulation results are shown in Table 4 and Figure 3.
From Table 4 and Figure 3, we find that the computation is not straightforward. The

active status of the 4th constraint changes repeatedly from iteration k = 5 to iteration
k = 7. However, the algorithm obtains a solution in the 19th step, which is very close
to the locally extremal one corresponding to the initial state [40000, 1]>. So, in the case
when the computation is from a boundary point to an interior point, Algorithm 3.1 also
has a good performance.
Similar to Case 4.1, we run the simulation again using the SQP algorithm. In this

simulation, we set

[x(k)(0), y(k)(0)]> = [40000, 1]> and [δx(k)(0), δy(k)(0)]> = [0, 0]>

for k = 0, and select σ∗ = [0.300, 0.300]> and τ ∗ = [10.123, 13.190]> as the initial nominal
control. The computation converges more slowly than the previous simulation using
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Table 4. Simulation results for Case 4.2 using Algorithm 3.1

k α(k) x(k)(0) y(k)(0) s
(k)
1 s

(k)
2 t

(k)
1 t

(k)
2 R(k)

0 0.0251 10000 0.250 0.300 0.300 10.123 13.190 1442
1 0.5602 10752 0.269 0.300 0.300 9.692 13.190 1517
2 0.0000 27137 0.678 0.300 0.300 0.010 1.993 2000
3 0.2285 27137 0.678 0.300 0.300 0.010 1.993 2000
4 0.3029 30075 0.752 0.300 0.300 0.831 2.954 2360
5 0.0000 33082 0.827 0.300 1.000 1.545 10.343 2405
6 0.0000 33082 0.827 0.300 1.000 1.545 10.343 2405
7 0.9167 33082 0.827 0.300 1.000 1.545 10.343 2405
8 0.0000 39424 0.986 0.300 1.000 3.769 13.190 2821
9 1.0000 39424 0.986 0.300 1.000 3.769 13.190 2821
10 0.0000 40000 1.000 0.911 1.000 7.567 13.190 2595
11 0.0013 40000 1.000 0.911 1.000 7.567 13.190 2595
12 1.0000 40000 1.000 0.881 0.300 6.790 13.190 2687
13 0.0000 40000 1.000 0.491 0.300 0.482 13.190 2402
14 1.0000 40000 1.000 0.491 0.300 0.482 13.190 2402
15 0.0000 40000 1.000 0.628 0.300 3.113 9.441 3021
16 1.0000 40000 1.000 0.628 0.300 3.113 9.441 3021
17 1.0000 40000 1.000 0.455 0.500 3.882 7.323 3163
18 1.0000 40000 1.000 0.390 0.453 4.193 7.748 3189
19 1.0000 40000 1.000 0.388 0.454 4.270 7.809 3189
20 — 40000 1.000 0.388 0.454 4.272 7.809 3189
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Figure 3. The active status of the constraints in Case 4.2 using Algorithm 3.1
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Table 5. Simulation results for Case 4.2 using the SQP algorithm

k α(k) x(k)(0) y(k)(0) s
(k)
1 s

(k)
2 t

(k)
1 t

(k)
2 R(k)

0 0.0000 40000 1.000 0.300 0.300 10.123 13.190 2698
1 0.1337 40000 1.000 0.300 0.300 10.123 13.190 2698
2 0.0000 40000 1.000 1.000 0.300 1.711 13.190 1338
3 1.0000 40000 1.000 1.000 0.300 1.711 13.190 1338
4 0.0000 40000 1.000 0.816 0.300 3.188 13.190 2687
5 1.0000 40000 1.000 0.816 0.300 3.188 13.190 2687
6 0.3646 40000 1.000 0.619 0.300 4.072 5.747 3033
7 0.9913 40000 1.000 0.562 0.300 4.203 6.866 3118
8 0.0000 40000 1.000 0.300 0.817 3.729 10.747 2940
9 1.0000 40000 1.000 0.300 0.817 3.729 10.747 2940
10 0.7266 40000 1.000 0.615 0.694 5.572 11.249 3061
11 0.1179 40000 1.000 0.606 0.796 5.550 13.190 3075
12 0.0000 40000 1.000 0.604 0.743 5.522 13.190 3076
13 0.0080 40000 1.000 0.604 0.743 5.522 13.190 3076
14 0.0000 40000 1.000 0.604 0.740 5.521 13.190 3076
15 0.0001 40000 1.000 0.604 0.740 5.521 13.190 3076
16 0.0000 40000 1.000 0.604 0.740 5.521 13.190 3076
17 1.0000 40000 1.000 0.604 0.740 5.521 13.190 3076
18 0.0000 40000 1.000 0.584 0.359 5.320 13.190 3078
19 0.0000 40000 1.000 0.584 0.359 5.320 13.190 3078
20 — 40000 1.000 0.584 0.359 5.320 13.190 3078
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Figure 4. The active status of the constraints in Case 4.2 using the SQP algorithm

Algorithm 3.1. In fact, it yields the correct NE solution after 30 iterations. Table 5 and
Figure 4 present the computational results of the first 20 iterations.
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From the previous two simulation cases, we find that Algorithm 3.1 is better than the
SQP algorithm in terms of convergence. In Algorithm 3.1, the initial state is perturbed
step-by-step. So, the computational procedure is more stable and is less liable to be
trapped into a suboptimal solution. In our other simulations, e.g., in the cases where
the initial state is perturbed by [δx(0), δy(0)]> = ±65%[40000, 1]>, Algorithm 3.1 also
does better. In the case with a perturbation [δx(0), δy(0)]> = −65%[40000, 1]>, where
the active set is enlarged, both algorithms yield the NE solution after 5 iterations; while
in the case with a perturbation [δx(0), δy(0)]> = 65%[40000, 1]>, where the active set is
reduced, Algorithm 3.1 and the SQP algorithm obtain the NE solution after 11 iterations
and 16 iterations, respectively. So, the convergence of Algorithm 3.1 is still faster.

In order to accelerate the computation, we can also terminate the iterative when α(k) =
1. As stated in Remark 3.7, the solution will be feasible although not locally extremal.

5. Conclusions. In this paper, we have developed an iterative approach by using a
homotopy to compute the NE solution for a class of optimal switched impulsive control
problems with a large initial perturbation and inequality constraints on the switching
times and parameters. The example in Section 4 demonstrates that, compared with the
SQP, our approach can obtain the NE solutions more quickly even when the active set
changes. Further work would be of considerable importance if the iterative procedure can
be optimized and the computational efficiency can be increased accordingly.
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Appendix A. Definition of the matrix Γi. The block terms of the symmetric matrix
Γi are defined as follows:

Γi
1,1 , ψi>

x−
i
S1,1(t

∗+
i )ψi

x−
i
+ Φ̄i

x−
i x−

i
,

Γi
1,3j−1 ,

{
ψi>
x−
i

S1,1(t
∗+
i )ψi

si
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six
−
i

, if i = N − j + 1,

−ψi>
x−
i

S1,3j−1(t
∗+
i ), if i = N − j, . . . , 1,

Γi
1,3j ,

{
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{
ψi>
si
S1,1(t

∗+
i )ψi

si
+ Φ̄i

sisi
, if i = N − j + 1,

S3j−1,3j−1(t
∗+
i ), if i = N − j, . . . , 1,

Γi
3j−1,3j ,

{
ψ̃i>
si
, if i = N − j + 1,

S3j−1,3j(t
∗+
i ), if i = N − j, . . . , 1,
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Γi
3j−1,3j+1 ,

{
θi + ψi>

si
S1,1(t

∗+
i )ψ̇i, if i = N − j + 1,

S3j−1,3j+1(t
∗+
i ), if i = N − j, . . . , 1,

Γi
3j,3j ,

{
0, if i = N − j + 1,
S3j,3j(t

∗+
i ), if i = N − j, . . . , 1,

Γi
3j,3j+1 ,

{
0, if i = N − j + 1,
S3j,3j+1(t

∗+
i ), if i = N − j, . . . , 1,

Γi
3j+1,3j+1 ,

{
κi + ψ̇i>S1,1(t

∗+
i )ψ̇i, if i = N − j + 1,

S3j+1,3j+1(t
∗+
i ), if i = N − j, . . . , 1,

Γi
3k+r,3l−1 ,

{
−S>

1,3k+r(t
∗+
i )ψi

si
, if i = N − l + 1,

S3k+r,3l−1(t
∗+
i ), if i = N − l, . . . , 1,

Γi
3k+r,3l ,

{
0, if i = N − l + 1,
S3k+r,3l(t

∗+
i ), if i = N − l, . . . , 1,

Γi
3k+r,3l+1 ,

{
−S>

1,3k+r(t
∗+
i )ψ̇i, if i = N − l + 1,

S3k+r,3l+1(t
∗+
i ), if i = N − l, . . . , 1,

where j = 1, . . . , N − i + 1, k = 1, . . . , N − i, l = k + 1, . . . , N − i + 1, and r = −1, 0, 1.
Note that block terms Γi

3k+r,3l−1, Γ
i
3k+r,3l and Γi

3k+r,3l+1 exist only when i ≤ N − 1.


