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ABSTRACT. This paper presents the implementation of PID controller tuning using two
modern heuristic techniques which are differential evolution (DE) and genetic algorithm
(GA). The optimal PID control parameters are applied for a high order system, system
with time delay and non-minimum phase system. The performance of these techniques
is evaluated by setting their objective functions as mean square error (MSE) and integral
absolute error (IAE). The reliability between DE and GA in consistently maintaining
minimum MSE is studied. The performance of the PID control systems tuned using GA
and DE methods are also compared with Ziegler-Nichols method.

Keywords: PID controller, Differential evolution, Genetic algorithm, Ziegler-Nichols,
Mean square error

1. Introduction. PID is a remarkable control strategy, widely used in processes indus-
tries such as oil and gas, chemical, petrochemical, pulp and paper, food and beverage.
PID controller has been proven in terms of reliability and robustness in controlling pro-
cess variables ranging from temperature, level, pressure, flow, pH, etc. Other factors that
attracted industries to choose PID controller could be due to low cost, easy to maintain,
as well as simplicity in control structure and easy to understand. However, improper PID
parameters tuning could lead to cyclic and slow recovery, poor robustness and the worst
case scenario would be the collapse of system operation [1]. This led researchers to explore
the best method in searching optimum PID parameters.

Since the introduction of PID controller, many strategies have been proposed to deter-
mine the optimum setting of PID parameters. Ziegler and Nichols [2], Cohen and Coon
[3] are amongst the pioneers in PID tuning methods. They have proposed experimen-
tal PID tuning methods based on trial and error, and process reaction curve. However,
the difficulties may arise to tune the PID controller when the system is complex such
as high order, time delay, non-minimum phase and non-linear processes. For example,
Ziegler-Nichols method may give high overshoots, highly oscillatory, and longer settling
time for a high order system and Cohen-Coon method is only valid for systems having S-
shaped step response [4,5]. To overcome these difficulties, various methods have been used
to obtain optimum PID parameters ranging from conventional methods such as refined
Ziegler-Nichols [6] and pole placement [7] and the implementation of modern heuristic op-
timization techniques such as genetic algorithms, simulated annealing, population based
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incremental learning, and particle swarm optimization [8]. Heuristic optimization is a
technique of searching good solutions at a reasonable computational cost without being
able to guarantee either feasibility or optimality, or even in many cases to state how close
to optimality a particular feasible solution is [9].

Recently, GA has been extensively studied by many researchers in searching for optimal
PID parameters due to its high potential of escaping being trapped at a local minimum.
Kim et al. [10] proposed an improved GA method to tune PID controller for optimal
control of reverse osmosis (RO) plant with minimum overshoot and fast settling time
compared with conventional tuning method. Yin et al. [11] have successfully used GA to
tune PID controller for low damping, and slow response plant. Zain et al. [12] applied
GA for optimization of PID parameters used to control a single-link flexible manipulator
in vertical motion. Simulation results revealed that optimum PID parameters enable the
system to perform well in reducing vibration at the end-point of the manipulator. Even
though, GA has proved its capability in searching for the optimum solution from the
problem space, there is no absolute assurance that a genetic algorithm will find a global
optimum. There are two main drawbacks in GA: poor premature convergence and loss of
best solution found [13].

DE has been found to be a promising algorithm in numeric optimization problems.
It has been proposed by Storn and Price [14]. DE has been developed to fulfill the
requirement, for practical minimization technique such as fast and consistent convergence
to the global minimum in consecutive independent trials, easy to work with, as well
as its ability to cope with non-differentiable, non-linear and multimodal cost functions
[14]. Therefore, the algorithm has gained great attention since its proposal. Dong [15]
studied the performance of DE and particle swarm optimization (PSO) in optimizing PID
controller for first order process and found that DE is generally more robust (with respect
to reproducing constant results in different runs) than PSO. Luo and Che [16] applied DE
algorithm in tuning PID controller for electric-hydraulic servo system of parallel platforms.
Simulation results showed satisfactory response of the control system and the proposed
parameter optimum method is an effective tuning strategy. Arya et al. [17] applied DE in
tuning PID controller for automatic generation control where comparative studied showed
that DE has produced better optimal transient response of frequency and tie line power
changes compared with particle swarm optimization based gains.

Even though PID tuning methods using GA and DE have been extensively studied
by many researchers, the details on how the algorithms are implemented are still vague.
This paper is intended to provide a better understanding of how PID controller is tuned
using two popular heuristic approaches by GA and DE. The performance of GA and DE
in searching globally optimal PID parameters and its reliability to maintain the optimum
value for several independent trials have been investigated for a high order system, system
with time delay and non-minimum phase system. This paper also compares the transient
performance of the system using GA and DE tuning methods with Ziegler-Nichols method.
The practical implementation of PID controller using GA and DE cannot be done using
direct on-line optimization method due to the needs to compute the fitness of every chro-
mosome/individual in the population. These require a complete response of the system
to be obtained for all chromosomes/individuals before new optimal PID parameters are
produced. Thus, practical concept of PID controller tuning is explained briefly in Sec-
tion 7. This concept is based on indirect controller optimization via self-tuning control
technique.

This paper is organized as follows. Section 2 briefly explains the fundamental of PID
controller. Sections 3 and 4 describe the implementation of GA and DE techniques to
optimally tune PID controller. Section 5 describes the implementation of PID tuning
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using Ziegler-Nichols tuning method. Section 6 shows the case studies of PID tuning for
the systems of high order, with time delay and non-minimum phase. Section 7 describes
the practical concept for PID tuning using heuristic optimization methods. Finally, the
paper is concluded in Section 8.

2. PID Controller. PID controller parameters consist of three separate terms: propor-
tionality, integral and derivative values are denoted by k,, k;, and k4. Appropriate setting
of these parameters will improve the dynamic response of a system, reduce overshoot,
eliminate steady state error and increase stability of the system [7]. The transfer function
of a PID controller is:

U(s) - k;
E(s)

The fundamental structure of a PID control system is shown in Figure 1. Once the
set, point has been changed, the error will be computed between the set point and the
actual output. The error signal, E(s), is used to generate the proportional, integral, and
derivative actions, with the resulting signals weighted and summed to form the control
signal, U(s), applied to the plant model. The new output signal will be obtained. This
new actual signal will be sent to the controller, and again the error signal will be computed.
New control signal, U(s), will be sent to the plant. This process will run continuously
until steady-state.

C(S) = + kys (1)

S

Set Point Error Control Signal Actual Output
R(3) E(5) . Uls) ()
+ .
k »t _g +Kk 45 — G(S) -
) PID Conmaoller Plant

FIiGURrE 1. PID control structure

3. Genetic Algorithm for PID Tuning. GA was first introduced by John Holland as
reported in [18]. It is a heuristic optimization technique inspired by the mechanisms of
natural selection. GA starts with an initial population containing a number of chromo-
somes where each one represents a solution of the problem in which its performance is
evaluated based on a fitness function.

Based on the fitness of each individual and defined probability, a group of chromosomes
is selected to undergo three common stages: selection, crossover and mutation. The
application of these three basic operations will allow the creation of new individuals to
yield better solutions then the parents, leading to the optimal solution. The implementing
of genetic algorithm in PID tuning is as follows:

i. Initialize the setting of GA parameters and generate an initial, random
population of individuals. GA is implemented with small population size. This
requirement is important in practice in order to allow the controller to be optimized as
fast as possible. In this study, the size of initial populations is set to be 20, crossover
rate P, = 0.9, mutation rate P,, = 0.01, and the number of generation G = 100.

The initial population is set by encoding the PID parameter, k,, k; and k4 into
binary strings known as chromosome. The length of strings depends on the required
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precision which is about 4 significant figures. The required bits string is calculated
based on the following equation:

2M~h < (by —a;) x 10" < 2™ — 1 (2)
where m; is the number of bits, and b; and a; are an upper bound and lower bound
of PID parameters. For example, if k, € [0,2.0], k; € [0,2.5], and kq4 € [0,0.1], the
required bits calculated based on (2) are equal to 15, 15 and 10 bits respectively. The
total length chromosome is 40 bits which can be represented as Figure 2.

fed fp ki

V.= [0001010100 0100100011 1000110010 1010010001]
- - -
15 bits 15 bits 10 bits

F1GURE 2. A chromosome representing PID parameters

In this study, the population in each generation is represented by 20 populations
% 40 bits chromosome length.
Evaluate the fitness of each chromosome. The fitness of each chromosome is
evaluated by converting its binary string into a real value which represents the PID
parameters. The conversion process of each chromosome is done by encoding into
real number as follows:

xj = a; + decimal(substring;) x % (3)

For example, the corresponding values for £, k; and k4 are given below:

Binary string Decimal value
k,: 000101010001001 2697
k;: 000111000110010 3634
kg4: 1010010001 657

Therefore, the real number becomes:

2-0
k, =0+ 2697 x ( ):0.1600

215 _ |
(2.5 —=0)
(0.1 0)

Each set of PID parameters is passed to PID controller. A complete response of
the system for each PID set and its initial fitness value is computed using a defined
objective function. In this study, the mean square error (MSE) and integral absolute
error (IAE) are chosen as the objective functions. Figure 3 shows the flowchart of
the tuning procedure. The goal of GA is to seek for minimum fitness value.

MSE = - / " (e()2dt (4)

t Jo
IAE:/OT|e(t)|dt (5)
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iii. Perform selection, crossover and mutation. All chromosomes will go through

the selection process based on their fitness values. The higher the fitness value, the
more chance an individual in the population will be selected. Tournament selection
[19] is chosen because this method offers a better selection strategy. It is able to adjust
its selective pressure and population diversity to improve GA searching performance,
unlike roulette selection which allows weaker chromosomes to be selected frequently
and also cause noisy convergence profile.

After the selection process has been completed, crossover will be preceded. For ba-
sic GA, single point crossover is chosen. The two mating chromosomes are randomly
selected and one cut-point is used to exchange the right part of the two parents to
generate offspring.

Mutation prevents the algorithm to be trapped in local minima and maintain
diversity in the population. Commonly, lower mutation rate should be chosen. Higher
mutation rate may probably cause the searching process becomes random search.

iv. Repeat step 2 until end of generations. After selection, crossover and mutation
processes have been completed, again the binary string of each chromosome in the
population needs to be decoded into real numbers in the next generation. A new set

Initial random population and encode to binary number
Generation= 00
ree—_————— -
Gen={Cen + |
Y

I

I

I

I

I

I

I

I

| Ra3)
I
-

|')L‘r:nt|q: 18]

real number

Evaluate fitness value for each
chromosome

Fitness value

‘ Objective
H - Function
Fitness value
Genetic operator (MSEAAE) PID Control
System

-~
Selection ki dt ki —

Crossover Desired Input l l i Actual Output

L C N - = Ciw)
Mutation -.H'. P *_{ ':(.n +_:L - kis }_’| G }_ Pl

' Error

PID Controller  Drynamic System

Optimal
solution

FiGURE 3. Flowchart of genetic algorithm for PID tuning
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of PID parameters is sent to the PID control system to compute for a new fitness
value. This process will go through steps 2 to 3 sequentially and repeat until the end
of generations where the best fitness is achieved. The tuning method using GA can
be represented by the flowchart shown in Figure 3.

4. Differential Evolution for PID Tuning. Differential Evolution (DE) algorithm
is a heuristic optimization algorithm recently introduced. Unlike simple GA that uses
binary coding for representing problem parameters, DE uses real coding of floating point
numbers. The crucial idea behind DE is a scheme for generating trial parameter vectors.
Basically, DE adds the weighted difference between two population vectors to a third
vector.

The key parameters of control are: NP — the population size, CR — the crossover
constant, F' — the mutation constant applied to random differential (scaling factor). It is
worth noting that DE’s control variables, NP, F' and CR, are not difficult to choose in
order to obtain promising results. Storn [20] has come out with several rules in selecting
the control parameters. The rules are listed below:

e The initialized population should be spread as much as possible over the objective
function surface.

e Frequently the crossover probability, CR € [0, 1] must be considerably lower than
one (e.g., 0.3). If no convergence can be achieved, CR € [0.8, 1] often helps.

e For many applications, NP = 10 x D, where D is the number of problem dimension.
The mutation constant, F' is usually chosen between [0.5, 1].

e The higher the population size, NP, the lower the mutation constant, F' should
choose.

These rules of thumb for DE’s control variables which is easy to work with is one of DE’s
major contribution [14]. The detailed Differential Evolution algorithm used in tuning the
PID controller is presented below:

i. Setting DE optimization parameters. In this study, population size, NP =
100, crossover constant, C'R = 0.9, mutation constant, F' = 0.6, and a number of
generation G = 100. The problem dimension, D, is set based on the number of
parameters used in the objective function. In this case, problem dimension refers
to the number of PID parameters k,, k; and k; which is equal to 3. The boundary
constraint is set based on the PID parameters range. For example, if k, € [0,2.0], it
means that low boundary, L = 0 and high boundary, H = 2.0.

ii. Initialize the vector population. Initialize all the vector population randomly in
the given upper and lower bound and evaluate the fitness of each vector.

Popij:L+(H—L).randi]~(0,1), izl,...,D, ]:1,,NP (6)
Fit = f(Pop;) (7)
where
1
f(Popj) = ;/ )2dt, for MSE (8)
0
f(Pop;) = / le(t)| dt, for TAE 9)

and rand 45(0,1) — random number between 0 and 1. Before optimization starts
the population needs to be initialized and their fitness values need to be evaluated.
The population is initialized randomly within its boundary constraints using (6).
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The fitness value (7) which referred as MSE and IAE is computed using (8) and
(9) respectively based on the error of the control system. Figure 4 shows the block
diagram of population and its corresponding fitness value. For example, if &, € [0, 10],
k; € [0,13], and kq € [0, 18], and let rand;5(0, 1) = 1.1118, rand;3(0, 1) = 0.8594, and
randy; (0,1) = 1.0471, then the individuals representing the controller parameters are

calculated as:
For k, € [0, 10],

Pop1s = 0+ (10 — 0).rand;5(0, 1)
Popy, = 11.1180 = k,

For k; € [0,13],
Popyz =0+ (10 — 0).rand;3(0, 1)
Popi3 = 8.5944 = k;

For k4 € [0, 18],
Popy; =0+ (18 — 0).randy; (0, 1)
Popiy = 10.4714 = ky

The value of k,, k;, and k4 in the first individual of population, Pop;; are sent to
the PID control system. The output response is simulated and the value of its fitness
value is computed (refer to Figure 4).

~ — o
Individual x
Population, i
2 N
g 2 5 NP
e
PC-‘pjj
Dmension of 7 PID Control
problem, > i 7 ? System
(b Fsk) i (MSE/IAE)
k,
POpjg

Fitness, 8
Fix}.

FI1GURE 4. The block diagram of population and its corresponding fitness value

Perform mutation and crossover. The optimization process will run iteratively
until the end of generations. The first individual fitness value from the current
population is set to be the target vector as Figure 5. Then the trial vector is created
by selecting three individuals randomly from the current population, mutation using
(10) and crossover with the target vector. The fitness value (MSE/IAE) of the trial
vector is computed by sending its individuals to the PID controller.
a. Mutant vector. For each vector z; (target vector), a mutant vector is gener-
ated by:

vjG41 = e, + F (21,6 — Troc) (10)
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Ficure 5. Updating for new individual in the population

where the three distinct vectors x,1, x,2 and z,3 are randomly chosen from the current
population other than target vector x; . The detail example how the mutant vector
is determined is shown in Figure 6.

b. Crossover. Perform crossover for each target vector with its mutant vector to
create a trial vector Uj.Gt1-

Uj,g+1 = (U1j,G+1, Uj,G+1y - -+ UDj,G+1)
UijGer = { Vij,G+1 if (ranqi S CR) V (Rnd = Z)
' Tija otherwise
1=1,...,D

Crossover is done in order to increase the diversity of the perturbed PID parameters
for each individual in the population. The block diagram on how this process is done
is shown in Figure 7.

Verifying the boundary constraint. If the bound (i.e., lower and upper limit of
a variable) is violated then it can be brought in the bound range (i.e., between lower
and upper limit) either by forcing it to the lower/upper limit (forced bound) or by
randomly assigning a value in the bound range (without forcing).

if v; ¢ [L,H], z; =L+ (H — L).rand;(0,1) (11)

Equation (11) is purposely used in order to make sure that all the parameter vectors
(PID parameters) are within its boundary constraints.

. Selection. Selection is performed for each target vector, z; ¢ by comparing its fitness

value with that of the trial vector, u; . Vector with lower fitness value is selected
for the next generation. Figure 8 shows how the selection process is performed.
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Population, 3 Random Individual X
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Ki

!

Target Vector, X
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Viern = X6 T FAX,6—%X.:55)

FIGURE 6. Mutation process

X Y1

[ / rand(l) > CR
kd /
2

J:)'Probllem n . rand(2) < CR

imension, — 72

i=1,..,D=3 A

i // rand(3) = CR

Target Vector Mutant Vector Trial Vector

FIGURE 7. Crossover process

vi. Repeat steps 3 to 5 until new population completed. When the first individual
in the new population has produced, then the optimization process will repeat for
the second individual in population as it now becomes the second target vector in the
first generation, v, ;. This process will follow steps 3 to 5 until new second individual
in the new population is produced. This process will repeat until all the individuals
in the new population are updated.

vii. Repeat step 6 until end of generations. The process in step 6 is repeated until
the end of generation. At this stage, the optimization process is completed. The
global minimum of fitness value is achieved which is referred to optimum parameter
of PID controller. Overall optimization process can be seen in Figure 9.

5. PID Tuning with Ziegler-Nichols Method. PID tuning using Ziegler-Nichols
method [2] is based on the frequency response of the closed-loop system by determin-
ing the point of marginal stability under pure proportional control. The proportional
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Target vector, x;

Kd
Kp
Trial vector, 1
Ki
K e e o o— o— o— —-
Fitness of Target Vector PID Control
Fx) Kp System
Selection . o
/\\ Fitness of Trial Vector ¢ |
P Fan) Trial fitness d
Flun)<F) > (MSE/IAE function) ¢ = = =
No Yes
Target vector, X; Trial vector, 1
New Population Kp
Ki
Fitness Values | | | | | | _____________ N
(MSE/AE)

FIGURE 8. Selection process

TABLE 1. Ziegler-Nichols PID tuning parameter

Controller kp k; ky
PID 0.6k, tu/2 tu/8

gain is increased until the system becomes marginally stable. At this point, the value of
proportional gain known as the ultimate gain, k,, together with its period of oscillation
frequency so called the ultimate period, t., are recorded. Based on these values Ziegler
and Nichols calculated the tuning parameters shown in Table 1.

For mathematical model system, the ultimate gain, k,, and its ultimate period, t,, can
be determined using root locus technique. When the root locus of the system has been
plotted, rlocfind command in Matlab can be used to find the crossing point and gain of
the system at real part equal to zero.

6. Case Studies.

6.1. Systems considered. In this study, the systems used to evaluate the performance
between DE and GA are a high order system, G1(s), system with time delay, G»(s), and
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FiGUrE 9. Blok diagram of PID tuning using DE algorithms

non-minimum phase system, G3(s). These systems are:
25.25% +21.2s + 3

= 12
Gr(s) 55 +16.58s% + 25.41s% + 17.1852 + 11.70s + 1’ (12)
a (S) B 106—1.03 (13)
2T (14 85)(1 + 2s)
(1 —10s)
Gs(s) = DI (14)

The tuning performance of PID controller is evaluated using mean squared error (MSE)
and integral absolute error (IAE) which then becomes the objective function that is used
as the fitness value of each chromosome/individual in GA and DE. GA and DE will
heuristically find the optimum value of the controller parameters where the smaller the
value of objective function the fitter is the chromosome/individual. Finally the transient
performance of the system tuned by DE and GA is compared with Ziegler-Nichols method.

6.2. Simulation results. In this study, PID controller tuning method using heuristic
optimization techniques (DE and GA) has to be implemented offline due to the fact that
heuristic optimization techniques are stochastic and required computation time spent to
compute the fitness of every chromosomes/individuals in the population. Additionally,
GA and DE require several iterations to obtain an optimized solution. These require a
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complete response of the system to be obtained for all chromosomes/individuals before
new optimal PID parameters are produced.

Such an offline method requires a plant model in most cases. Simulation is carried
out in order to study the performance between DE and GA to optimally tune the PID
controller for the systems given by systems (12)-(14). The parameter values of DE and
GA optimization are shown in Table 2, chosen based on [21]. The parameters range for
ky, k; and k4 as shown in Table 3 are set based on the previous studies [22,23]. The perfor-
mance of both tuning methods is observed in terms of rise time, settling time, maximum
overshoot of the response, and the value of MSE and TAE. Finally, the convergence rate
in achieving the global optimum value of the objective function is investigated.

TABLE 2. Parameter setting for DE and GA

DE GA
Population size = 20 Population size = 20
Crossover Rate = 0.9 Crossover Rate = 0.9
Differentiation constant = 0.6 Mutation rate = 0.01
Generation number = 100 | Generation number = 100

TABLE 3. PID parameter range

High Order | System with | Non-minimum
System Time Delay Phase System
Parameter | min | max | min max min max
k, 0 10 0 2.0 0 0.5
k; 0 13 0 0.5 0 0.5
kq 0 18 0 2.5 0 0.25

The results for closed-loop step response for DE and GA PID tuning method are shown
in Figures 10(a)-10(c) respectively. For Figure 10(a), it is clear that the responses from
DE and GA tuning methods are almost indistinguishable. The details of these results
are shown in Table 4. The values of rise time, settling time, maximum overshoot, MSE
and TAE between DE and GA are almost the same. Both tuning methods give better
performance compared with Ziegler-Nichols method. As seen from Table 4, Ziegler-Nichols
gives poor rise-time, settling time and highest overshoot.

In the case of system with time delay, DE and GA optimized by MSE and [AE give
almost the same response as shown in Figure 10(b). DE and GA optimized by MSE
offered better rise time compared with DE and GA optimized by IAE. However, DE and
GA optimized by TAE give better settling time and overshoot which is about 12 seconds
faster and 14% reduction with respect to DE and GA optimized by MSE (refer to Table
5). Even though DE and GA optimized by TAE offered better settling time and overshoot
compared with DE and GA optimized by TAE, both methods give superior performance
than Ziegler-Nichols method.

For the case of non-minimum phase system, instead of evaluating in the aspects of rise
time, settling time and peak overshoot, the improper undershoot effect should also need
to be reduced. All the tuning methods give different responses as shown in Figure 10(c).
DE optimized by IAE gives the best values of rise time and settling time followed by DE
optimized by MSE, GA optimized by MSE, GA optimized by TAE, and Ziegler-Nichols
tuning method. However, in terms of overshoot, no overshoots are produced by GA
optimized by TAE, MSE and Ziegler-Nichols except DE optimized by TAE and MSE which
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FIGURE 10. Step response of PID control system

TABLE 4. Comparison performance of ZN, DE and GA for high order system

High Order System
7N DE GA DE GA

(MSE) | (MSE) | (IAE) | (IAE)

MSE - 0.0011 0.0011 - -
IAE - - - 11.4246 | 11.4448
Rise time (s) 0.3904 | 0.0677 0.0677 0.0617 | 0.0671
Settling time (s) | 9.1802 | 0.4041 0.4038 0.3987 | 0.4763
Overshoot (%) |57.5644 | 27.1927 | 27.2598 | 28.4234 | 28.5395
ky 3.990 3.5563 3.7500 7.1578 7.5001
k; 4.218 10.9608 | 10.9941 | 11.1596 | 11.1719
ka 0.945 18.000 18.000 18.000 | 18.0000

give small overshoot about 3% and 7% respectively (refer to Table 6). However, in terms
of undershoot, Ziegler-Nichols give the lowest undershoot compared with followed by DE
optimized by MSE, GA optimized by MSE, GA optimized by [AE, and DE optimized by
TAE. In order to get better results with minimum overshoot and undershoot, the objective
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function needs to be modified [24]. With standard performance criteria, there should be
a trade-off between minimum overshoot/undershoot and settling time. In this study, only
MSE and TAE are used as objective function for tuning the system.

In this study, root locus plot for the system given by systems (12)-(14) is shown in Fig-
ures 11(a)-11(c). The ultimate gain, k,, ultimate period, ¢,, and PID tuning parameters
are calculated based on these figures. The details data are listed in Table 7.

For overall performance, it can be concluded that DE optimized by MSE gives better
transient response. The evolution of PID parameter for non-minimum phase system can
be seen in Figures 12(a)-12(d). Figures 12(a) and 12(b) show the convergence profile of

TABLE 5. Comparison performance of ZN, DE and GA for system with

time delay

System with Time Delay
7N DE GA DE GA

(MSE) | (MSE) | (IAE) | (IAE)

MSE - 0.0198 0.0198 - -
IAE - - - 18.6978 | 18.7052
Rise time (s) 1.6274 | 0.6572 0.6646 1.1349 1.1349
Settling time (s) | 17.8714 | 19.2064 | 18.4438 | 6.7626 | 6.7828
Overshoot (%) |[44.3219| 25.5339 | 25.2640 | 11.4190 | 10.8491
kp 0.666 0.6099 0.6250 0.6798 0.6718
k; 0.159 0.1048 0.0937 0.0671 0.0663
ka 0.694 2.1519 2.1289 1.3419 1.3526

TABLE 6. Comparison performance of ZN, DE and GA for non-minimum

phase system

Non-minimum Phase System
7N DE GA DE GA
(MSE) | (MSE) | (IAE) | (IAE)
MSE - 0.0189 0.0218 - -
TIAE - - - 1333.5 1601.9
Rise time (s) 57.5505 | 2.4486 2.7176 1.8575 | 14.9517
Settling time (s) | 79.2055 | 20.5469 22.6840 | 11.7506 | 23.5574
Overshoot (%) - 7.0137 - 2.9414 -
Undershoot (%) | 131.8 146.8 157.4 205.7 167.3
ky 0.1550 0.1903 0.1884 0.2071 0.1875
k; 0.0320 0.0695 0.0624 0.0765 0.0624
kq 0.1880 0.1035 0.0662 0.1723 0.1875

TABLE 7. Ziegler-Nichols PID tuning values

High Order | System with | Non-minimum

System Time Delay Phase System
Ultimate gain, k, 6.650 1.110 0.258
Ultimate period, ¢, 1.893 8.344 9.726
k, 3.990 0.666 0.155
k; 0.946 4.172 4.863
kq 0.237 1.043 1.216
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FI1GURE 11. Root locus plot

the PID parameter, k,, k; and k4 with 100 generations for DE and GA optimized by IAE
respectively. From the observation, PID parameter for both techniques almost settles at
the same generation. However, for DE and GA optimized by MSE, it shows that PID
parameter convergence for DE is faster than GA (refer Figures 12(c) and 12(d)). Param-
eter ky is seen not very consistent. Its convergence profile fluctuated at the beginning and
settled after 50 generation. From these observations, for non-minimum phase system, DE
performed better than GA with [AE as the fitness function.

Convergence test is done 5 times for each of the systems in order to investigate the
convergence rate and its consistency in searching the globally optimal solution of PID
parameters. The lower the value of fitness function the better the closed-loop system
response will be. Comparison for the convergence rate of fitness function performance
between DE and GA can be seen from Figures 13-15. From these figures, it is observed
that DE is significantly consistent than GA in searching for minimum fitness function.
Convergence test done for DE and GA settled almost at the same generation. From
the overall results, it is observed that, DE algorithm outperforms GA in terms of its
consistency in constantly achieving the globally minimum fitness value.
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FiGURE 12. Convergence profile of PID parameter

7. Practical Concept for PID Tuning Using Heuristic Optimization Methods.
Practical implementation of PID tuning method can be done using concept of self-tuning
control technique [25]. Figure 16 shows the block diagram representing the methodology
that is generally used for tuning controllers designed for systems with time varying pa-
rameters [26]. It is required that the system parameters are identified before the controller
can be tuned. When the system has been identified on-line, then optimization process
will run to find the optimum control parameter with minimum fitness value such as MSE
or IAE. When optimization has been completed, the on-line controller will be updated
with the new control parameters.

8. Conclusions. PID controller has been tuned using Ziegler-Nichols method and mod-
ern heuristic algorithms, DE and GA for a high order system, system with time delay
and non-minimum phase system. For the same population, crossover rate and number
of generation, both tuning methods demonstrated the same performance in searching the
best value of MSE and TAE. It is worth noting that for high order system and system with
delay, DE and GA give almost the same transient performance for the objective function
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MSE and TAE respectively. However, for non-minimum phase system, DE optimized by
MSE gives better performance with regards to the trade-off between settling time, maxi-
mum overshoot and undershoot. In terms of reliability, DE offers consistency in achieving
its globally minimum of fitness value. However, the convergence rates for all the trials for
higher order system, system with time delays and non-minimum phase system are almost
the same. Practical implementation of PID tuning has been explained briefly in the case

study.
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