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Abstract. In recent times there has been an interest in developing automatic techniques
to create and/or populate knowledge bases (KB) and ontologies. One initiative along
this line is the Knowledge Base Population (KBP) track of the Text Analysis Conference
(TAC), which offers a framework for the evaluation of automatic systems designed to
populate ontologies using information found in unstructured text. In KBP, the knowledge
base population process has been divided into two complementary tasks: entity linking,
whose goal is to detect mentions in text to instances in a reference KB, and slot filling,
which extracts from text facts about the previously detected instances and adds these
facts to the KB. In this paper, an automatic, unsupervised algorithm for entity linking is
presented. The main novelty of the proposed approach, named WikiIdRank, comes from
applying a PageRank-like algorithm to a network of instance co-occurrences to address
the task. The algorithm was implemented and evaluated in the KBP 2010 with positive
results. Furthermore, an analysis of the impact of instance co-occurrence information in
the entity linking process was carried out, and indicates a gain of accuracy around 16%
compared with a baseline approach relying on information retrieval techniques.
Keywords: Knowledge discovery, Ontology population, Entity linking, Named entity
disambiguation, Instance co-occurrence

1. Introduction. Nowadays, digital contents are produced at an extraordinary pace.
For instance, a recent report by IDC1 estimates that the world will create a total number
of 1.8 zettabytes of digital contents in 2011. It also indicates that the world’s information
is doubling every two years.

The large and quickly increasing volumes of digital contents that are available either
in public (like the web) or private repositories (like corporate intranets), make it difficult
to find valuable information resources and to analyze data to extract meaningful conclu-
sions. This leads to a problem of information overload or infobesity [1] that affects both
individuals and organizations.

In order to cope with this problem, initiatives like the Semantic Web [2, 3, 4] or the
Linked Data [5]2 propose the creation of knowledge bases or ontologies [6] by extracting
information from digital contents and representing it in a formal, well-structured manner.
These knowledge bases or ontologies can be later used by software agents to carry out
complex information processing tasks. For instance, they have been successfully applied

1http://spain.emc.com/leadership/programs/digital-universe.htm (30/Nov/2011)
2http://linkeddata.org/ (30/Nov/2011)
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to tasks like information retrieval [7, 8], web page clustering or information integration [9]
and in domains like medicine [10], news distribution [11], genetics [12].
However, the process of structuring the information in digital contents into knowledge

bases or ontologies is not free from difficulties. These difficulties are a consequence of the
knowledge acquisition bottleneck [13], a well known problem in the knowledge management
area. Some of the causes of this problem are (1) the large scale of the contents to be
processed; (2) the unstructured nature of a significant part of the contents (HTML, plain
text), which makes the process of conversion into well-structured representations more
difficult and, (3) the evolution of information over time, which imposes the need for
maintenance in the knowledge bases and ontologies. Due to these difficulties, it is not
surprising the interest in developing techniques to automate, at least partially, the process
of building, populating and maintaining knowledge bases and ontologies.
One of the initiatives along this line is the Knowledge Base Population (KBP) track3 of

the Text Analysis Conference (TAC)4. This forum aims at offering a research environment
for the competitive evaluation of automatic systems designed to populate ontologies using
information found in unstructured text.
In the context of the KBP track, all participants are provided with a corpus of text

documents and a reference knowledge base to be populated. The population process is
divided into two different tasks: entity linking and slot filling. KBP participants may
address both tasks or only the entity linking one. Basically, the main goal of a slot
filling system is to populate the reference knowledge base with facts extracted from the
different documents in the corpus. However, those facts should be linked to a concrete
entry in the knowledge base (a.k.a. instance)5, and thus a previous process of detecting
mentions to instances in the text of documents is needed. For example, before a slot
filling system can extract from a document a fact about the date of birth of a concrete
instance of a person (like Angela Merkel), the mention to this concrete instance needs to
be recognized in the document. Nevertheless, this recognition process is not always easy,
as instances may be sometimes referred to with ambiguous names (like Merkel, which may
represent Angela Merkel or Alexander Merkel), alternative names (like Angela Kasner),
or even misspelled names (like Angela Mierkel). Successfully addressing these difficulties
is the goal of the entity linking systems, which, given a document in the corpus and a
piece of text mentioned in that document (a.k.a. entity), should find out in the reference
knowledge base the instance, if it exists, that best represents the meaning of the entity
in the context of the document. Thus, using accurate entity linking systems is crucial for
the success of slot filling systems in their task of populating the reference knowledge base
with reliable facts, because if the instances detected by the entity linking system were
wrong, the facts extracted at a later step by the slot filling system would also be wrong.
In this paper an automatic, unsupervised approach to the KBP entity linking task

is presented. The proposed algorithm, named WikiIdRank, is based on previous work
of the authors in the context of semantic annotation of news items: the IdentityRank
algorithm [14]. In particular, both IdentityRank and WikiIdRank are inspired in the
semantic coherence principle as stated in [14]. According to this principle, instances
are frequently mentioned in documents together with (i.e., co-occur with) other related
instances (for example, the instances for Obama and USA or the ones for Pau Gasol and

3http://nlp.cs.qc.cuny.edu/kbp/2011/ (30/Nov/2011)
4http://www.nist.gov/tac/2011/ (30/Nov/2011)
5In this paper a common nomenclature within the Semantic Web community is adopted. However, it

must be clarified that other communities, like the one researching in natural language processing, usually
adopt a different terminology, using the term surface form to refer to what is called entity in the context
of this paper and the term entity to refer to an instance in a knowledge base.
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Los Angeles Lakers). Thus, the mention (occurrence) of a certain instance in a certain
context (like a document) gives information about the occurrence of other instances in
the same context. However, whereas IdentityRank was semi-supervised, and specifically
designed to process news items’ streams, WikiIdRank is an unsupervised algorithm and
may be applied to different contents. In fact, the KBP corpus includes news items, but
also web resources like blog entries.

The algorithm was implemented and evaluated in the context of KBP 2010, achieving
positive results. Furthermore, an analysis of the impact of instance co-occurrence informa-
tion in the entity linking process was carried out, and indicates a gain of accuracy around
16% compared with a baseline approach relying on information retrieval techniques.

The rest of this paper is organized as follows. Section 2 provides an overview of the
entity linking task of KBP. Section 3 describes the proposed algorithm. In Section 4,
the results obtained by empirical evaluation of WikiIdRank in the KBP environment
are shown and discussed. Section 5 compares the approach with related work in the
state of the art. Finally, Section 6 provides some concluding remarks and future lines of
development of the system.

2. The Entity Linking Task. Though the original description of the KBP 2010 entity
linking track can be found on the web at the time of writing6, for the sake of completeness,
the most relevant aspects are covered in this section.

The main goal of a system participating in the entity linking task may be summarized
as follows: given a query consisting of (1) a piece of text (entity) and (2) a document
from a corpus where the text is mentioned, the system should find out the instance (if it
exists) in a reference knowledge base that best represents the meaning of the entity in the
context of the document. In case no appropriate instance were found in the knowledge
base for the entity, the system should return NIL as answer for the query. The answers
given by the automatic system to a set of queries provided by the organizing committee
are compared to a golden standard of answers, manually built by a group of experts.
The accuracy (percentage of correct answers) of the system is thus computed and used
as metrics to compare different approaches.

A few phenomenon make this process of linking entities to knowledge base instances
difficult. On the one hand, entities may be ambiguous, that is, the same piece of text may
refer to different instances (for example, George Washington may refer to a jazz musician,
a US president or a university). On the other hand, the same instance may be represented
by several different entities: nicknames, aliases, acronyms, abbreviations, transliterations,
etc. (for example, Angela Merkel and Angela Kasner may refer to the same person, AZ
and Arizona refer to the same place, etc.). Successfully facing these phenomena is the
target of entity linking systems.

In order to address the entity linking task a system needs some information sources: the
reference knowledge base, the corpus of documents, the evaluation dataset (queries) to be
answered, etc. In particular, the following sources are provided by the KBP organizing
committee to participating teams:

• A knowledge base, generated by processing the info-boxes of the articles in an
English Wikipedia dump of 2008. The knowledge base provides some information
about each of its 818,741 entries, including: a label or name, a type (PERson, ORGa-
nization, Geo-Political Entity or UnKNown), a unique identifier, a set of properties
or facts and a text snippet obtained from the original Wikipedia page. Listing 2

6http://nlp.cs.qc.cuny.edu/kbp/2010/KBP2010 TaskDefinition.pdf (11/Jul/2011)
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shows an example of knowledge base entry, representing the instance for the city of
Kunduz.

Listing 1. An example of entry from the KBP reference knowledge base

• A corpus of documents in English represented in XML format. The corpus includes
a collection of approximately 1 million news articles and around 300,000 documents
obtained from web data, most of them selected from blog content.

• A set of queries (2250 to be precise) to be answered, represented in XML format as
shown in Listing 2. Each query consists of three information pieces: a unique query
identifier, a piece of text, representing the entity to be linked to the knowledge base,
and a reference to a document in the corpus where the entity is mentioned. This
document provides context information for the linking process.

Listing 2. An example of query

• Additionally, a set of more than 5000 human assessments was also provided.
Each of these assessments consists on a query that has been previously answered by
human experts, mapping its entity to an instance in the knowledge base or to NIL.
They allow teams to test and tune their systems and may also be used as training
information in the case of supervised systems.

The entity linking task in KBP 2010 included two different sub-tasks: in one of them
(general sub-task) the text from the Wikipedia pages associated with the knowledge base
entries may be used as support information in the linking process, whereas in the other
(no-wikitext sub-task), this text must not be used. However, it is possible in both cases to
compile lists of name variations or alternative labels for instances, based on information



WIKIIDRANK ALGORITHM FOR ENTITY LINKING 7523

in Wikipedia like hyperlinks and redirections. It is also possible to create a KB of world
knowledge using Wikipedia or a Wikipedia derived-resource (like DBpedia [15]). As will
be shown in next section, WikiIdRank exploits these possibilities to extend the reference
knowledge base with additional information.

3. WikiIdRank. In this section, the inner details of the WikiIdRank algorithm are de-
scribed. Basically, given a query (with its entity and context document) the algorithm
proceeds through the following four sequential stages:

1. It uses a combination of state-of-the-art named entity recognition tools to find the
entities (persons, locations, organizations) that appear in the context document.
These are merged with the entity in the query, to obtain the final set of entities that
will be further processed by the algorithm.

2. It looks for candidate instances for each of the entities detected in the previous
stage. A candidate instance for an entity is any entry in the knowledge base that is
considered to represent a potential meaning of the entity. For example, the instance
described in Listing 1 can be considered as a candidate for the entity Kunduz. In
order to carry out this process, an extended knowledge base was built, that merges
the instances in the official KBP KB with additional information and new entries
obtained from a Wikipedia dump dated in year 2010. For each instance in the
extended KB, a set of labels, obtained from Wikipedia redirections, anchors and
disambiguation pages, is also stored. All the extended KB entries are indexed by
Lucene7, an information retrieval system. For each entity in the input, the text
of the entity is used to query the Lucene index, obtaining the potential candidate
instances in the extended KB.

3. The different candidate instances for the same entity are ranked to decide which is
the best one. This process is carried out for all the entities, including the one in the
query. In order to compute this ranking, WikiIdRank puts into action the semantic
coherence principle, using information about instance co-occurrence estimated from
the hyperlink structure of Wikipedia. For each entity, the output of the ranking
process is a set of pairs {candidate instance, score}.

4. Taking into account the scores provided by the previous step, a configured threshold
and the candidates’ origin in the extended KB (reference KBP KB or Wikipedia)
the algorithm selects a candidate or NIL as answer for the entity in the initial KBP
query.

These four different stages are implemented in four different components: Entity Finder,
Instance Finder, Instance Ranker and Instance Selector respectively. Figure 1 shows the
architecture of the system, including all its components and the information sources they
use. The next sections describe with more detail the functionality provided by each
component and the information stored in each source.

3.1. Entity finder. The entity finder component uses state-of-the-art natural language
processing (NLP) tools to find occurrences of named entities (persons, locations, organi-
zations) in the query context document. The implemented system uses a combination of
three free, open source tools to carry out this task: University of Sheffield’s GATE [16],
Stanford’s Named Entity Recognizer (NER) [17] and University of Illinois at Urbana-
Champaign’s LbjNerTagger [18]. The entity finder processes the input text with all these
named entity recognizers, and obtains the list of the entities detected by each one. Then,

7http://lucene.apache.org/ (11/Jul/2011)
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Figure 1. Document processing pipeline architecture

the component merges their results, selecting the entities detected by at least two recog-
nizers. The entity in the initial query is also explicitly added if it is not detected by the
NLP tools.
While most of the documents included in the KBP corpus are relatively small (few

kilobytes) there are some outliers that are specially big. When analyzing these documents
with the entity finder, many entities are detected8, which may result in an overload for
the next components of the WikiIdRank processing pipeline. To avoid such potential
overload, the entity finder component filters out some entities so that at most 100 are
handed to the next components. In order to select the entities to be removed, the filter
takes into account the relative position of these entities with respect to the first occurrence
in the document of the query text, keeping only those that appear nearer to it. The result
of this filtering process is an entity set (entities in Figure 1), which is provided as input
to the next component in the processing pipeline. Note that this set cannot be empty,
because at least the entity in the query should be included in the entity finder results.

3.2. Instance finder. The main goal of this component is to obtain a set of candidate
instances from the knowledge base for each entity detected by the entity finder. Basically,
this process is carried out by matching the text of the entity with a set of names or labels
associated to the instances in the knowledge base.
This component should be designed to minimize the possibility of leaving the instance

that correctly represents the meaning of a certain entity out of the set of candidates for
that entity. Due to this, it is important to include as many instances as possible in the
knowledge base and to provide as many alternative names and labels as possible for each
of these instances.
In accordance with this requirement, an extended knowledge base was built by merging

the official KBP KB with information obtained from a Wikipedia dump downloaded
from the English Wikipedia website9 (the one dated 01/30/2010, to be more precise).
In the extended KB, each instance represents a Wikipedia page in the dump (ignoring
disambiguation pages and pages with special namespaces10, and handling redirections as
a sole entry). This results in a total of 9.604.232 entries, which cover all the ones in the
original KBP KB, plus many new additions.
The extended knowledge base was later indexed in Lucene (IFindWiki.idx in Figure 1)

to allow searching for instances. The fields stored in the index for each entry can be
classified into two groups: Those that contain labels for the instance, and those that
contain additional information about the instance (like its identifier). The fields in the
first group are the ones used when looking for the candidates of a certain entity, by

8In one case, more than 2500 named entities were found on a single document.
9http://en.wikipedia.org/wiki/Wikipedia:Database download (11/Jul/2011)
10http://en.wikipedia.org/wiki/Wikipedia:Namespace (11/Jul/2011)
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matching the labels in the index with the text of the entity. This matching process may
be an exact matching (that is, the text of the entity should be the same as the one in the
label) or a free-text matching (where the words in the entity text are searched within the
text of the labels). Due to this, the label fields are further divided into two groups: those
that store the labels as keywords, used for exact matching, and those that store the same
labels, but parsed to be used in free-text searching11.

More in detail, the following fields are available for each entry in the Lucene index:

• Non-parsed fields, used for exact matching queries:
– source The name of the Wikipedia page.
– anchors, redirects and disambiguation These fields contain, respectively, the
text of the link anchors, names of redirect pages, and names of disambiguation
pages that point to the Wikipedia page of the index entry. All these strings can
be considered as potential alternate labels for the topic represented by the entry.

• Parsed fields for non-exact matching queries:
– source-parsed, anchors-parsed, redirects-parsed and disambiguation-p-
arsed These fields contain the same information as the non-parsed ones described
above. However, on the contrary to them, these fields are processed word by
word. Therefore, it is not necessary to exactly match the text of the query: the
relevance of an entry depends on the occurrences of the words in the query inside
these fields.

• Fields containing additional information:
– identifiers The associated identifier in the official KBP KB or an automatically
generated one if the Wikipedia page is not included in the official KB. In order to
define the mapping between the Wikipedia pages and the KBP KB entries, the
names of the pages are compared with the names of the official KB entries. If an
exact match is found, a mapping is defined. One problem that we found with this
approach was due to redirections: in our system we treat pages with redirections
as alternative representations of the same entry. As the Wikipedia version that
we used (dated 01/30/2010) is different to the one the official KB was built from
(dated October 2008), it happens that some redirection pages have changed, and
Wikipedia pages that originally were different (and thus have different entries
in the official KBP KB) are now redirected (and thus have a single entry in our
index). The consequence is that a single entry in our index may have two or more
different official KB identifiers. An example of this situation is the Angikuni Lake,
which appears in the official KB as two separate entries Angikuni Lake and Lake
Angikune, while in the version of Wikipedia we used they represent the same
entry (Lake Angikune is just a redirection to Angikuni Lake). In these cases, the
identifiers of both entries in the KBP KB are stored in this field.

– pagerank Given the graph structure of the 2010 Wikipedia dump, the PageR-
ank [19] value of each page was computed and stored in the index for later usage.

In order to find the most adequate candidate instances for each entity in the input, the
instance finder component queries the Lucene index by using the entity text as query. As
Lucene provides many query capabilities12, several ways of using the text of the entity
are possible.

11From an implementation point of view, the main difference between these two types of fields is
the particular Lucene Analyzer used to process the text in the field: in one case it would be the
KeywordAnalyzer and in the other the StandardAnalyzer. See Lucene documentation for details:
http://lucene.apache.org/java/docs/index.html (11/Jul/2011)

12More information on Lucene query capabilities and operators may be found in http://lucene.
apache.org/java/3 0 1/queryparsersyntax.html (11/Jul/2011)
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In practice, the WikiIdRank approach relies on a three-stage query mechanism. The
first stage looks into the non-parsed index fields with a query among quotes, looking
for exact matches in these fields. When exact matches are not found, the second stage
is run, which carries out a fuzzy search (looking for similar text using the Levenshtein
metrics [20]) on the non-parsed fields as well as a quoted query in the parsed fields. In
case this second stage does not find any candidate, the third stage is carried out. It looks
into the parsed fields with and unquoted query and using the Lucene proximity operator,
that matches the labels only in the case they contain the words in the query within a
specific distance away.
As can be seen, each stage uses a query with more relaxed conditions than the previous

one (and, thus, with lower precision but higher recall) and is executed only when the
previous stage does not produce any results. Table 1 summarizes the aforementioned
query stages.

Table 1. Queries run at each stage of the instance finder component

Stage Fields queried Query conditions

1
source, anchors,

Quoted query
redirects, disambiguation

2

source, anchors, Lucene’s FuzzySearch
redirects, disambiguation (similarity threshold 0.8)

source-parsed, anchors-parsed,
Quoted query

redirects-parsed, disambiguation-parsed

3
source-parsed, anchors-parsed,

Unquoted query and

redirects-parsed, disambiguation-parsed
Lucene proximity operator
(proximal ≤ 2 words away)

This three-stage query process to the extended knowledge base index is repeated for
each entity provided by the entity finder. Its results consist of a set of pairs {candidate
instance, Lucene score} for each entity. Note that, for some entities, the set may be
empty, if no candidate instance is found when searching the index.
As in the case of the entity finder (see Section 3.1), once these results have been ob-

tained, they are filtered. The goal of this filter is to avoid potential overloads by limiting
the maximum number of candidate instances per entity to be handed to the following
component of the processing pipeline.
To select the candidates that survive the filtering process, the algorithm uses the fol-

lowing criteria:

• The target entity (the one in the KBP query) should keep more candidates than the
rest of the entities (context entities), to minimize the possibility of filtering out the
correct instance to be answered.

• The number of candidates for the target entity should depend on the concrete query
stage where they were found. The rationale behind this criterion is that first stages
are based on more restrictive queries and, due to this, it is expected that they produce
more reliable results. Thus, depending on the specific stage, different thresholds for
the maximum number of candidates are set (lesser when results are poorer, to avoid
introducing too much noise in the system).

• When selecting the final candidates, both the scores provided by Lucene and the
PageRank values stored in the Lucene index are taken into account.

In accordance with these requirements, the final candidate filtering process consists of
the following three stages:
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1. A weight is computed for each candidate, by linearly combining its Lucene score and
the PageRank value stored in the Lucene index. That is, if M is the set of entities
provided by the entity finder and C(m) represents the set of candidate instances for
a certain entity m ∈ M , the weight Wi of a candidate Ii ∈ C(m) is

Wi = αLSi + αPRPRi (1)

where
• Si is the Lucene score for Ii, normalized so that Si ∈ [0, 1] and

∑|C(m)|
i=1 Si = 1.

• PRi is the PageRank value for Ii, normalized so that PRi ∈ [0, 1] and
∑|C(m)|

i=1 P
Ri = 1.

• αL and αPR are configuration parameters, chosen so that αL + αPR = 1, αL ∈
[0, 1] and αPR ∈ [0, 1].

2. All the candidates for the same entity m (all Ii ∈ C(m)) are ranked using the
previously computed weights Wi.

3. Candidates are filtered, keeping only the top-K of the ranking. The value of K
depends on the entity and the query stage where its candidates were found. The
target entity keeps 200 candidates in case they have been obtained in the first query
stage, or only 30 if they have been obtained in the second or third stages. The
context entities retain only a maximum of 15 candidates, independently of the query
stage where they were found. Though a more restrictive approach taking the query
stage into account is also possible for these entities (for instance, filtering out those
whose candidates are not found in the first query stage), it was not implemented to
avoid limiting too much the context information.

The final results of the instance finder component include, for each entity m ∈ M , a
(potentially empty) list of pairs {candidate instance, weight} (that is, {Ii, Wi}, ∀Ii ∈
C(m)). The lists for all the entities (element candidates in Figure 1) are provided to the
next component in the pipeline: the Instance Ranker.

3.3. Instance ranker. The main goal of the instance ranker component is to rank the
set of candidate instances provided by the instance finder for each entity. This rank is
later used to choose a single instance (or NIL) for the target entity.

It has to be noted that, as indicated in the previous section, the candidate instance list
for a certain entity may be empty. If this is the case for the target entity, the algorithm will
assign NIL as answer of the KBP query, without running the instance ranker. However,
in the rest of this section it will be assumed that this is not the case.

The algorithm implemented in the instance ranker is based on the IdentityRank algo-
rithm described in [14]. Basically, the principle that inspires the algorithm is the seman-
tic coherence principle: as instances typically co-occur in documents with other related
instances (for example, Obama and USA or Pau Gasol and Los Angeles Lakers), the oc-
currence of a certain instance gives information about the occurrence of other instances.
There is, however, a difficulty with this approach: in order to use instance co-occurrence
information for disambiguation, the actual instances that appear in the query context
document need to be known. However, the instance ranker only knows the entities that
are mentioned in the document and, for each of them, a list of candidate instances that can
potentially represent the meaning of the entity. Moreover, due to the semantic coherence
principle stated above, the occurrence of a certain instance depends on the occurrence of
other instances in the context document. There is, therefore, a recursive problem: the
decision about the linkage entity/instance (or entity/NIL) for a certain entity depends
on the decisions taken for other entities and vice versa. This recursive problem may be
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addressed by defining the linkages not only for the target entity but for all the entities at
the same time.
Fortunately, as indicated in [14], the difficulty described above can be addressed by

a PageRank-like algorithm. In PageRank, which is targeted at ranking web pages, a
page has high rank if the sum of the ranks of the pages that link to it is high [19]. In
the WikiIdRank case, the goal is to rank the possible identities (candidate instances)
associated with a certain entity in the document. So, paraphrasing the sentence above, it
can be said that an instance has a high rank if the sum of the ranks in the document of
the instances that typically co-occur with it is high.
As reported in [14], this principle may be represented mathematically by a recursive

matrix equation. Let C represent the set of candidate instances for all the entities in the
document:

C =
∪

∀m∈M

C(m) (2)

It might happen that the same instance is candidate for several entities, that is, it might
appear in different C(m). However, each instance is only included once in C.
Let N = |C| and Ii, Ij any two instances included in C. Taking this into account, as

it is explained in [14], the aforementioned principle can be mathematically modeled by a
set of equations:

Ri = (1− α)
N∑
j=1

aijRj + αEi i = 1 . . . N (3)

These equations may be represented in recursive, matrix form as follows:

R = (1− α)AR + αE (4)

where

• R ∈ RN is a vector that represents the rank of the candidates in the context docu-
ment. The element Ri represents the rank of a specific candidate instance Ii.

• A ∈ MNxN is a matrix where aij ∈ R represents the strength of the relationship
that Ij has with Ii, that is, the proportional part of the Ij rank which is given to
Ii. Those coefficients are computed by using instance co-occurrence information, as
will be described later.

• E ∈ RN is a vector that corresponds to a source of rank. Each component Ei can
be used to adjust the rank of a certain instance Ii (give an a priori weight to certain
candidates).

• α is a configuration parameter so that α ∈ [0, 1].

As indicated in [19], the matrix Equation (4) can be solved using numerical methods,
like the power method. A description of the power method can be found at [21].
In order to estimate the co-occurrences between instances, WikiIdRank uses the Wikipe-

dia link structure. In particular, two candidate instances are considered to co-occur when
Wikipedia pages that link to both of them exist. For instance, in the Wikipedia dump
used by the system, the instance referring to Italy is considered to co-occur with the
instance for European Union because the Wikipedia page for Rome points to both the
pages of Italy and the European Union. Additionally, two instances are also considered to
co-occur when a direct link exists between the Wikipedia pages of the candidate instances
(at least in one of the directions). For instance according to this principle, Barack Obama
and Columbia University are also considered to co-occur, because there is a direct link
from the Wikipedia page for Obama to the page of the Columbia University.
The co-occurrence information that is needed by the instance ranker component is

stored in a Lucene index, represented as ICooc.idx in Figure 1. The entries stored into
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the index, each of them representing a Wikipedia page (ignoring disambiguation pages
and pages with special namespaces – User, Talk, File, etc. – and resolving redirections)
consists of the following fields:

• source The name of the Wikipedia page as a keyword, that is, not parsed.
• destination This field represents the concatenated text of the different names of the
Wikipedia pages that are pointed by the links in the source page (outgoing links).
Each of the names is also treated as a keyword.

Taking into account the two different contributions to the co-occurrence information
described above, Equation (4) has been replaced by:

R = (kLAL + kCAC)R + kEE (5)

Again, let N = |C|, and Ii, Ij ∈ C:

• R has the same meaning as in Equation (4)
• AC ∈ MNxN is a matrix. The value of each element aCij in AC , is computed using the
information in the ICooc.idx index as follows:

aCij =

{
0.0 i = j
|Q(d = Ii, d = Ij)|/|Q(d = Ij)| i 6= j

(6)

The term |Q(d = Ii, d = Ij)| represents the total number of documents returned
by Lucene by querying ICooc.idx with a query that looks in the destination field
for the quoted name of the instance Ij and for the quoted name of Ii (for example,
destination:“Madrid” AND destination:“Spain”). Thus, the number of Wikipedia
articles that include links to both pages is obtained. The term |Q(d = Ij)| represents
the total number of results returned by Lucene when querying the index with a query
that looks in the destination field with the quoted name of the instance Ij, that is,
the number of Wikipedia articles that contain links to Ij. Thus, the aCij values can
be interpreted as an estimation of P (Ii/Ij). The AC matrix is later normalized by
dividing it by its norm one, so that ||AC ||1 = 1. Note that the strength of relations
between instances is not required to be symmetric. That is, it is not always the case
that aCij = aCji and that P (Ii/Ij) = P (Ij/Ii).

• AL ∈ MN×N is the matrix that carries data about direct links in a Wikipedia page to
other Wikipedia page (in contrast to AC that is built based on the co-occurrence of
links to two Wikipedia pages in a third one). Intuitively, it is clear that the instances
that are mentioned in a Wikipedia page are related to the instance represented by
such Wikipedia page. Thus, if a certain Wikipedia article links many times to
another one, and the instance represented by the former article is likely to occur in
the context document of the KBP query (that is, it has a high ranking value), then
it is also likely that the pointed article and its associated instance (which is also a
candidate) is also present.

Specifically, the values of the AL matrix, aLij, are computed using the information
in the ICooc.idx index according to the following equation:

aLij =

{
0.0 @Ij → Ii or i = j
score(Q(s = Ij, d = Ii)) ∃Ij → Ii

(7)

where the → symbol is used to represent a link between two instances (link between
the Wikipedia pages of the instances in the direction indicated by the arrow), and
score(Q(s = Ij, d = Ii)) represents the Lucene score obtained by querying ICooc.idx
with a query that looks in the source field for the quoted name of Ij, and in the
field destination with the quoted name of the instance Ii. The AL matrix is later
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normalized by dividing it by its norm one, so that ||AL||1 = 1. Again, it is not always
the case that aLij = aLji, and thus the AL matrix is not symmetric.

• E ∈ RN represents a source of rank, as in Equation (4). The value of the element Ei

is the weight (Wi) for the instance Ii, that the instance finder component provides to
the instance ranker. As the same instance Ii might be candidate for several different
entities with several different weights, the maximum weight across all entities is
assigned. E is normalized so that ||E||1 = 1.

• kL, kC and kE are configuration parameters so that kL, kC , kE ∈ [0, 1] and kL + kC +
kE = 1.

Using the power method, the matrix Equation (5) is solved, obtaining the vector R.
OnceR is computed, the ranking of each candidate instance in the context of the document
being analyzed is known: the weight of the instance Ii is simply the component i of the
vector R. For each entity m ∈ M in the document, the algorithm returns a list with all
the pairs {candidate instance, weight} for the entity (that is, {Ii, Ri}, ∀Ii ∈ C(m) ⊆ C),
ordered by weight. The list obtained for the entity in the KBP query (element ranked
candidates in Figure 1) is provided to the next component in the pipeline: the Instance
Selector.

3.4. Instance selector. The main goal of the KBP entity linking system is to define a
single assignment entity-instance (or entity-NIL) for the entity in the KBP query. The
final decision process that selects the best answer (top ranked candidate instance as pro-
vided by the instance ranker or NIL) is implemented by the instance selector component.
In particular, the following activities are carried out:

1. Selecting the candidate instance to be assigned to the target entity. When several
candidates are available, the weights for the two candidates with highest rank are
compared by computing the coefficient:

Plausibility =
TopInstanceWeight

SecondInstanceWeight
(8)

In case the weight of the second instance is similar to the one of the first instance,
that is, when the coefficient is below a configurable threshold, NIL is returned
instead of the top ranked instance. The rationale behind the thresholding mechanism
is that when two candidates get a similar weight from the ranker, there is a less clear
distinction between them, that is, the context may be proper for the occurrence of any
of them and, thus, there is less confidence about the result. This mechanism is also
useful to break ties between candidates, and to avoid giving too much credibility to
small differences between instance weights due to numerical imprecision. Empirical
tests on the human assessments provided by the KBP organization showed that,
using the threshold, a slight gain in accuracy (around 3% or 4%) is obtained. A
thresholding mechanism for instance/NIL selection is also used in other approaches
like [22].

In practice, two different threshold values are defined, selecting between them
depending on how the instance finder has found the candidates. In case the instance
candidates for the target entity have been obtained by the instance finder in the
first query stage, the threshold (named σL) is lower (thus the L) than in case the
candidates have been obtained in second or third query stages (threshold named σH ,
H for high), as these results are considered less reliable.

2. Addressing the problem of multiple identifier values that was referred in Section 3.2
when describing the identifiers index field. In case several official KB identifiers are
available for the same candidate, the name in the official KB associated to each
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identifier is looked up in a specific table (KBPKB.tbl in Figure 1) which contains the
id and name of all the entries in the official KBP KB. The Levenshtein distance [20]
is then used to compare the different names with the text of the target entity in the
KBP query. The official KB entry whose name is the most similar to the text of the
query is finally assigned.

3. As the system is using an extended KB, which contains more instances than the
official KBP KB, in case the instance selected as the best candidate is not included
in the official KB, NIL is answered.

4. Evaluation. In order to validate the approach described in Section 3, it was imple-
mented and evaluated in the KBP 2010 scenario. In this section the results obtained by
the system in the entity-linking task are shown (Section 4.1). In addition, tests were car-
ried out with the core functionality of the instance ranker disabled, i.e., with no instance
co-occurrence information, in order to measure its actual contribution in the accuracy
of the system. The results of this second experiment are reported in Section 4.2. Fi-
nally, Section 4.3 shows a performance analysis of the algorithm, designed to measure the
response time of WikiIdRank.

4.1. Entity linking task results. According to the KBP rules, each team taking part in
the competition might submit at most three different runs of their systems for evaluation.
In the case of WikiIdRank, three runs were submitted. The differences between these runs
were not in the algorithm, which was in all the cases the one described in Section 3, but
in the configuration parameters. The configurations for each submitted run are shown in
Table 2.

Table 2. Configuration of the WikiIdRank system for the three submitted runs

Run
Instance Finder Instance Ranker Instance Selector
αL αPR kL kC kE σL σH

Run1 0.8 0.2 0.55 0.25 0.2 1.05 1.5
Run2 0.8 0.2 0.55 0.25 0.2 1.2 2.0
Run3 0.8 0.2 0.4 0.4 0.2 1.2 2.0

In order to establish appropriate values for the different configuration parameters, (αL,
αPR, kL, kC , kE, σL, σH) the system was run and tuned using the information given by
the human assessments provided by the KBP organizers. Though there was no guarantee
that these values would be also optimum for other sets of queries, after having analyzed
the results obtained with the 2010 query set, we found those values to perform well also
for that query set.

Results achieved by these runs, as reported by the organizing committee, are summa-
rized in Table 3. The first column, Run, identifies the system run, whose configuration
is described in Table 2. The column All indicates the accuracy (between 0 and 1) of
a certain run in all the 2250 evaluation queries. The accuracy for the 1020 evaluation
queries whose manual answer is an instance, is reported in the column Non-NIL. Finally,
the last column, NIL, indicates the accuracy of the system for those evaluation queries
(1230) where the correct manual answer was NIL.

4.2. Analyzing the contribution of instance co-occurrence information. The
main novelty of the system presented in this paper with respect to other approaches
to the entity linking problem is the use of instance co-occurrence information for disam-
biguation purposes. The objective of this section is to analyze its actual influence in the
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Table 3. Results obtained by the different runs (accuracies between 0 and 1)

Run All Non-NIL NIL
Run1 0.7698 0.6647 0.8569
Run2 0.7636 0.6098 0.8911
Run3 0.7596 0.6049 0.8878

system accuracy. In order to do that, the results achieved by the best run submitted to
KBP were compared with two baseline approaches that only take into account the rank-
ing as provided by the instance finder component. This ranking is based on information
retrieval techniques (Lucene score, PageRank). Thus, it does not take advantage of the
instance co-occurrence information.
Apart from that, the algorithm was also run with two additional configurations to

analyze the impact in the final results of the different instance co-occurrence information
sources (matrices AL and AC , see Section 3.3). The configurations compared were (see
Table 4):

• Lucene: core algorithm of the instance ranker disabled (i.e., returning candidates
in the same order as the instance finder module), with results ranked with 100% the
score given by Lucene (without any PageRank contribution).

• Lucene-pagerank: core algorithm of the instance ranker disabled, with results
ranked with 80% the score given by Lucene and 20% the value of PageRank com-
puted for each candidate (i.e., same configuration for instance finder as in Run1, but
without instance co-occurrence contribution).

• AC only: all the components enabled, but the instance ranker component uses only
the information about instance co-occurrence provided by the AC matrix.

• AL only: all the components enabled, but the instance ranker component uses only
the information about instance co-occurrence provided by the AL matrix.

• Best run: all the components enabled, with the configuration of the best run (Run1)
as submitted to KBP 2010.

Table 4. Configuration parameters for the five runs used to analyze the
impact of instance co-occurrence information in the final results of the sys-
tem. The “Lucene” and “Lucene-pagerank” configurations have the core
algorithm of the instance ranker disabled, i.e., kL = kC = 0 and act as a
reference baseline.

Run
Instance Instance Instance
Finder Ranker Selector
αL αPR kL kC kE σL σH

Baseline Lucene 1.0 0.0 0.0 0.0 1.0 1.05 1.5
runs Lucene-pagerank 0.8 0.2 0.0 0.0 1.0 1.05 1.5

Runs using AC only 0.8 0.2 0.0 1.0 0.0 1.05 1.5
co-occurrence AL only 0.8 0.2 1.0 0.0 0.0 1.05 1.5
information Best run 0.8 0.2 0.55 0.25 0.2 1.05 1.5

Table 5 summarizes the results for those five configurations, using the same nomencla-
ture as Table 3. According to the results shown in this table, the core algorithm of the
instance ranker has a significant positive effect in the results of the system for the non-NIL
queries. Overall accuracy increases from 0.6667 to 0.7698, a gain of 15.46%, when the
Best run is compared to the best of the baseline runs (Lucene-pagerank). The accuracy
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for NIL answers is better when running only Lucene. However, this is just an effect of the
system returning more NIL answers, which reduces the success rate for non-NIL queries.

Table 5. Overall results of the system with five different configurations

Run All Non-NIL NIL
Baseline Lucene 0.6387 0.2912 0.9268
runs Lucene-pagerank 0.6667 0.3725 0.9106

Runs using AC only 0.7458 0.6294 0.8423
co-occurrence AL only 0.7556 0.6284 0.8610
information Best run 0.7698 0.6647 0.8569

Table 5 also shows that, even considered only by themselves, both instance co-occurren-
ce contributions outperform the Lucene-pagerank baseline, which stresses the previous
conclusion. It can also be seen that there are minor differences between the AC only
and AL only cases, mainly due to the later performing slightly better in the NIL queries,
though there are no significant differences between them in the non-NIL case. Finally, it
has to be noted that the Best run, that takes into account all the contributions, provides
better results than all the individual components, which confirms that the combination
of the different features is beneficial.

To further validate the previous conclusions, the accuracy-at-k of the five different runs
was also computed. The accuracy-at-k of a run is defined, for a given integer k, as the
fraction of queries with a non-NIL manual answer in which that answer is in the first k
results given by the ranker. For example, accuracy-at-2 represents the ratio of queries
with a non-NIL correct answer for which the answer is the first or second result produced
by the instance ranking process. Figure 2 compares the value of accuracy-at-k for the five
runs. Figure 3 shows the same results as Figure 2, but with a zoom along the X and Y
axes to provide a clearer view of the differences between the five configurations tested.

The accuracy-at-k values shown in Figures 2 and 3 confirm also the significant effect of
the instance co-occurrence information: it increases the probability of the correct answer
being at the top of the ranked list of candidates.

Figure 2 shows also that the five configurations converge to an accuracy-at-k of 0.8569
when k = 200. This result indicates that in 14.31% of the queries with non-NIL manual
answer (that is, in 146 out of 1020 queries) the instance finder did not return the correct
answer within the list of candidates. Thus, the recall of the instance finder, defined as
the percentage of queries with non-NIL manual answer in which the only relevant result
(the correct answer to the query) appears in the list of candidates, is 85.69%.

Note that, when the instance finder is not able to provide the correct answer among
the candidate instances, the instance ranker never returns that correct answer. Thus, the
recall of the instance finder has a very significant impact in the final quality of the system.
Due to this, improving this recall may constitute an interesting approach to increase the
system accuracy. In this sense, a potential improvement that needs to be explored in
future versions of WikiIdRank is using a query expansion mechanism, as is suggested by
some related works [23]. The idea is to extend the query used by the instance finder
component with additional context information obtained from the document, with the
aim of increasing the number of queries where the correct answer is included among the
candidate instances.

4.3. Performance analysis. Apart from the accuracy of the system, another aspect
that needs consideration when evaluating the quality of an entity linking system is its
performance. In particular, a relevant parameter to be measured is the response time of
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the algorithm, that is, the average time that the system needs to process a document. This
parameter is very relevant, because in case an entity linking system were very accurate,
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but its response time were too long (for instance, in case it took hours to process a single
document) the practical usefulness of the system would be limited.

A performance analysis of WikiIdRank is shown in this section. This analysis includes
not only an evaluation of the total response time of the algorithm, but also information
about how the different processing stages of the algorithm (EntityFinder, InstanceFinder,
InstanceRanker) affect the global system performance.

In order to carry out this performance analysis, the WikiIdRank implementation was
run on the KBP 2010 corpus in a Debian Linux 2.6.32 machine with 8 GB RAM, 1 TB
SATA-II hard disk and an Intel(R) Core(TM) i7 860 at 2.80GHz processor. The total
response time of the algorithm, as well as the response time of the main processing stages,
was measured for each document in the corpus.

Table 6. Median, mean and maximum response time for each processing
stage and the complete system (in seconds)

Time Median (sec.) Mean (sec.) Max (sec.)
tEF 0.48 0.68 14.32
tIF 18.84 30.23 304.08
tIR 2.70 8.16 287.63
tTOT 25.85 39.07 426.80

Table 6 provides a statistical summary of the measured response times. In particular,
table columns show the median, mean and maximum response time (in seconds) measured
for each processing stage (EntityFinder, tEF , InstanceFinder, tIF , and InstanceRanker,
tIR) as well as the total response time of the system (tTOT ).

As can be seen in Table 6, the InstanceFinder and InstanceRanker stages are the two
most computationally expensive. In order to explain this result, it has to be taken into
account that both the InstanceFinder and InstanceRanker components carry out multiple
queries to Lucene indexes. As these indexes are stored in hard disk, this process requires
extensive disk access, which has a negative impact in the response time. In particular, as
is also shown in Table 6, this impact specially affects the InstanceFinder, due to the fact
that the three-stage query process used by this component is more complex than the one
used by the InstanceRanker. Thus, in order to reduce response time, loading the Lucene
indexes into RAM memory or storing them into an SSD (Solid State Drive) disk could be
potential ways to be considered in the future.

Looking at Table 6 it can also be seen that the maximum total processing time of
a single document in the KBP 2010 corpus was around 427 seconds, which, though not
unreasonable, would prevent the usage of the system in restrictive real time environments.
However, the table also shows that the median and mean total response time were much
shorter (around 26 and 39 seconds, respectively), which indicates that the relatively long
processing time may be due to outliers.

In order to give more precise information, the histograms of tEF , tIF , tIR and tTOT are
shown in Figure 4. As can be seen, they follow the pattern of a long tail distribution,
which explains the difference between the mean/median times and the maximum times
described in Table 6. Note that, according to the information displayed in Figure 4, the
total processing time, tTOT , for most of the processed documents lies below the 90 second
threshold. In particular, these documents constitute the 91.29% (2054 out of 2250) of
the total number of documents, which can be considered a positive result: though some
documents took several minutes to be processed by the WikiIdRank algorithm, the vast
majority required less than one minute and a half.
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Figure 4. Histograms showing the response time of the EntityFinder (tEF ,
top left), InstanceFinder (tIF , top right), InstanceRanker (tIR, bottom left)
and total of the full system (tTOT , bottom right)

5. Related Work. Due to its prominent role in the process of automatic knowledge
base population, the entity linking problem has been addressed by several works in recent
times. In this section, a comparative analysis of these approaches in relation to the work
described in this paper is presented.
This analysis is structured into two subsections. Firstly, Section 5.1 reports on the

qualitative aspects of the comparison, centered on the techniques used to address the
entity linking task. Secondly, Section 5.2 addresses the comparative analysis from the
quantitative point of view, centered on the accuracy of the system.

5.1. Qualitative comparison to related work. From a qualitative point of view, the
different works that address the entity linking task may be classified into several groups
taking into account the techniques used to approach the problem:

• A first group of works, including for instance the ones in [24, 25, 26], rely on building a
vector space model to address the task. In this approach, the reference KB entries (or
their corresponding Wikipedia articles) and the query context document are modeled
as vectors. These vectors are later compared by computing the scalar product or
other vector similarity metrics to decide which KB entry is the best answer for the
query (or NIL). However, the works in this family differ in the features that are
considered when modelling the documents and KB entries as vectors.

• A second group is composed of works relying on information retrieval techniques,
like for instance [27, 28, 29, 30, 31]. In this case the reference KB (possibly extended
with information from Wikipedia) is indexed in an information retrieval system (like
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Lucene or Indri13). This index is later searched with a query built from the target
entity text and/or text from the context document. The results obtained are later
used to decide which instance (if any) is the best for the target entity.

• Machine learning techniques are also commonly used to address the entity linking
task. Some works use Support Vector Machines (SVMs) [32, 33, 34]. Some are
based on agglomerative clustering techniques [35]. Others rely on regression-based
classifiers [36].

• Using the information provided by the graph of Wikipedia links is also explored in
some works, like [37] or [38]. In [37] the GRAPH algorithm is described. Basically,
GRAPH is similar to WikiIdRank in the sense that it builds a graph where nodes
represent the candidate instances (including NIL among them) for the target entity
as well as candidate instances for up to other 5 named entities in the context doc-
ument. The algorithm places edges connecting the nodes according to connectivity
information obtained from the KB (for example, two nodes are connected when they
are one or two clicks away in Wikipedia). Nodes are assigned initial weights and an
error back-propagation algorithm is used to assign weights also to edges. Finally,
once the graph is built, a random walk is carried out on this graph, to obtain the
final node weights. The node with the biggest weight is selected. In [38] the authors
describe a graph based reweighing technique. For each named entity considered in the
context document, its candidates are found using information retrieval techniques.
A set containing the in-links to the top ranked candidate instance of each entity is
built. Then a score is computed for each candidate of each entity using the inter-
section of the in-links to the candidate with the in-links in the previously built set.
This score is used in the candidate ranking process together with other features.

• Additional related works are based on the usage of heuristics or custom similarity
metrics. Examples of this type include [22] which uses a heuristic based on detecting
the named in the context document and counting how many of them are mentioned in
the facts included in the KB entry of each candidate; [29], which relies on a similarity
metrics based on comparing the name and type of each candidate instance with the
entity query text and type; [31], which makes use of heuristics rules; [39] which uses
a similarity metrics based on comparing the noun phrases found in the query context
document with the ones found in the text of the KB entries of the different candidate
instances; [40] that uses a technique based on look-up on a cascade of specifically
built dictionaries or [23] that uses the normalized Google distance [41]. This last
work is specially relevant in the context of this paper, because the authors propose
the usage of concepts, instead of text terms, as context information for linking.
These concepts are just other Wikipedia articles (that is, instances) referenced in
the context document. The concepts are detected by selecting low ambiguity terms
in the document that are easy to link to Wikipedia. Once the concepts are detected,
the similarity between the candidate instances and each of these concepts is computed
using the normalized Google distance, and the average similarity with all the concepts
of a candidate is used as one of the features for candidate ranking.

• Obviously, it is possible to design hybrid systems that rely on different families of
techniques to address the task. Some examples are: [26], based both on a vector space
model and custom similarity metrics; [29], which combines information retrieval
techniques with an heuristic similarity metrics; and [31], which uses both information
retrieval techniques and a rule-based heuristic.

13http://www.lemurproject.org/indri/ (11/Jul/2011)
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According to the previously described classification, WikiIdRank may be considered a
hybrid system that combines information retrieval techniques (features included in the
E vector in Equation (5)) with specific Wikipedia graph analysis techniques (instance
co-occurrence information, matrices AL and AC in Equation (5)).
Though some of the aforementioned related works use features based on the link struc-

ture of Wikipedia (like [38]) or propose the usage of other instances detected in the context
document as features (for example, [23]), the idea of applying a PageRank-like algorithm
to a network of co-occurrences of candidate instances to rank these candidates is, to the
knowledge of the authors, novel to WikiIdRank.
In this sense, the most similar related work is the GRAPH algorithm described in [37].

Both WikiIdRank and GRAPH rank the candidate instances for the different entities
in the context document using information about the relations (links) between these
candidates. Thus, while most of the related works are centered on disambiguating named
entities in a one-at-a-time basis, WikiIdRank and GRAPH have the potential advantage of
co-disambiguating the different named entities that appear in the query context document
all at the same time in a single run. However, both approaches differ in how this is done
(random walk in GRAPH, PageRank-like algorithm in WikiIdRank). They also differ in
the features used: though the direct linkage between candidate instances is considered in
both systems, the co-occurrence in other Wikipedia pages (matrix AC in WikiIdRank) is
not taken into account in GRAPH. These differences in the mechanism used to address
the task imply also differences in the results obtained by both approaches, as will be
shown in the next section.

5.2. Quantitative comparison with related work. From the quantitative point of
view, a first aspect that needs consideration is that some of the approaches described in
Section 5.1 ([24, 25, 32, 35]) have been developed outside of the KBP context. Due to
this, they use a different evaluation corpus to the one provided in TAC KBP. Furthermore,
there are also differences in the evaluation metrics (F-measure is used instead of accuracy
in [35]) and in whether the NIL case is taken into account or not (for instance, [24, 25, 35]
do not consider that case). Due to this, the empirical results reported in these works are
not directly comparable with the ones in this paper.
Taking this into account, the quantitative analysis of the related work will be centered

in KBP 2010 approaches, which use the same corpus and evaluation metrics. In particular,
due to the fact that WikiIdRank does not use the text of Wikipedia pages to carry out the
linking process, the comparison will focus on the systems taking part in the no-wikitext
sub-task (see Section 2), which imposes this restriction, thus making the comparison fair.
Table 7 summarizes the results achieved by the no-wikitext systems, comparing them to

WikiIdRank. It has to be noted that, though the system in [40] did not take part in the no-
wikitext sub-task, its authors indicate that it is compatible with that sub-task, and it has
been, thus, included. The first column in the table is a reference to the system description.
The second column provides the accuracy as reported by the KBP organizers. As can be
seen, the WikiIdRank approach outperforms all but two of the systems, including the one
described in [37]. However, taking into account that the system in [33] is a supervised
one, the WikiIdRank approach is the second among the unsupervised.
Finally, it has to be pointed out that the work described in this paper extends the one

initially reported to KBP 2010 [42], including a more detailed evaluation and comparison
with related approaches, and continues former work of the authors described in [14, 43].
Compared with these two precedents, the algorithm presented in this paper is unsuper-
vised, domain-independent and has been evaluated in a large corpus on the context of an
international forum as the TAC KBP.
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Table 7. Quantitative comparison with related approaches in the no-
wikitext sub-task

Reference Accuracy
[40] 0.80
[33] 0.7791

WikiIdRank 0.7698
[29] 0.7547
[36] 0.6978
[37] 0.6716
[28] 0.66
[22] 0.6458
[27] 0.4396

6. Conclusions and Future Lines. In this paper an automatic, unsupervised approach
to the entity linking task of the Knowledge Base Population (KBP) track within the Text
Analysis Conference (TAC) was presented. The proposed algorithm, named WikiIdRank,
is inspired in the semantic coherence principle, which states that instances are frequently
mentioned in documents together with (i.e., co-occur with) other semantically related
instances. Following this intuition, the main novelty of WikiIdRank consists in applying
a PageRank-like algorithm to a network of instance co-occurrences obtained from the link
structure of Wikipedia to address the entity linking task.

The algorithm was implemented and evaluated in the context of KBP 2010, achieving
positive results. In particular, when compared to the systems that took part in the no-
wikitext sub-task of KBP 2010, WikiIdRank ranks as third (or as second, taking only
unsupervised systems into account).

The a posteriori analysis of the system shows that the instance co-occurrence informa-
tion has a significant positive impact on its accuracy. In particular, as has been shown in
the evaluation section, the usage of instance co-occurrence information provides a gain of
accuracy around 16% compared with a baseline approach relying on information retrieval
techniques. Furthermore, a performance analysis of the algorithm was also carried out.
This analysis indicates that the average processing time per document is in the order of
seconds.

Despite the recognized positive impact of instance co-occurrence information in the
entity linking process, the WikiIdRank system may be subject to further improvements.
For instance, as shown in the evaluation section, the instance finder component has a
relatively low recall, and is by itself responsible of the errors in 14.31% of the queries
that have a non-NIL correct answer. This is an aspect that clearly needs consideration.
Furthermore, another aspect that needs to be explored in the future is including in the
context information not only candidate instances associated to named entities, but also
potential links to Wikipedia pages about common topics (like programming language and
president). The intuition is that adding these links may enrich the available context in-
formation and provide better results at the ranking stage, an aspect that obviously needs
empirical testing. Combining the instance co-occurrence information with additional fea-
tures used by related works, to test whether the combination is positive or not, may be
another line worth exploring. Finally, adapting the algorithm to run on multilingual sce-
narios is also considered as a potential future work. This adaptation would benefit from
the existence of versions of Wikipedia in different languages14, as well as natural language
processing tools for languages other than English.

14http://meta.wikimedia.org/wiki/List of Wikipedias (11/Jul/2011)
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