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develi@erciyes.edu.tr

Received August 2011; revised December 2011

Abstract. This paper presents a new approach that combines two well-known approx-
imations in order to improve the approximation accuracy of the Gaussian Q-function.
Differential evolution, which can be considered as a simple and efficient evolutionary
algorithm for optimizing real-valued optimization problems, is applied to estimate the pa-
rameters of the new approximation. The results produced by the presented approximation
are compared with some other Q-function approaches from the literature. It is shown that
the new approximation outperforms previously reported approximations and can provide
an accurate representation of the Gaussian Q-function, especially for small arguments.
Keywords: Digital communications, Gaussian Q-function, Differential evolution, Ab-
solute relative error

1. Introduction. The one-dimensional Gaussian Q-function, Q (x), is described as the
complement of the cumulative distribution function corresponding to the Gaussian ran-
dom variable X with zero mean and unit variance [1]. This function plays an important
role in analyzing the error probability of various communication systems when the noise is
Gaussian [2]. However, a simple and exact closed-form expression that can be practically
used for this analysis is not available. Therefore, over the years, a notable amount of re-
search has been conducted on the issue of the derivation of approximations for the Q (x).
It is worth noting that the birth of approximations was inevitable to reduce computational
complexity while paying the price with a loss in accuracy.

To reduce complexity at the expense of a tolerable loss of accuracy, infinite series
of representations were proposed in [3, 4]. Rapid convergence was reported as the main
advantage of the convergent series proposed in [3]. However, poor convergence can be seen
as the main disadvantage of this approach especially for large argument x. Tellambura
et al. claimed that the infinite series representation for the error function presented in
[4] becomes more accurate and efficient as the argument x increases. In fact, instead of
using infinite series of representations, most recent earlier works on this subject in the
current literature have mainly focused on developing various approximations that are both
computationally efficient as well as being sufficiently accurate [5-13]. The most valuable
feature of the approximations proposed in [6, 9, 11] is their high level of accuracy while
those in [7, 8] are mainly noted for their appropriate mathematical structure.

In this paper, we propose a new approximation in order to improve the approximation
accuracy of the Gaussian Q-function at the cost of slightly increased calculation complex-
ity. The differential evolution (DE) algorithm is employed to optimize the parameters of
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the proposed approximation. It is found that the approximation presented in this study
can predict the Gaussian Q-function with high accuracy.
The layout of this paper proceeds as follows. Section 2 provides a brief mathematical

review of the approximations presented so far in the literature. In Section 3, the proposed
model and the parameter identification process based on the DE algorithm are described.
Section 4 gives the absolute relative error curves both for the proposed approximation and
previously introduced approximations. Finally, based on the findings, some concluding
remarks are made in Section 5.

2. Background and Previous Work. A significant number of contributions have been
dedicated in the literature to the development of approximations for the Gaussian Q-
function. This section presents a brief review of some of the approximations existing in
the literature.
In a preliminary work [6], some tight bounds and good approximations for the Gaussian

Q-function were given where the emphasis was on the simplicity and practicality of the
proposals. As a result of this work, the following tight approximation was presented [6,
Equation (13)];

Q(x) ≈ 1

a
√
x2 + b+ (1− a)x

· 1√
2π

e−x2/2 x ≥ 0 (1)

where a and b are the parameters of Q (x), and the optimum values of these parameters
are found as 0.339 and 5.510 in [6], respectively. Unfortunately, the approximation in
Equation (1) is thought to be less useful in algebraic manipulations. Considering related
works on approximations for the Gaussian Q-function, Chiani et al. [7, Equation (14)]
presented an alternative expression which is quite simple but less accurate as

erfc(x) ≈ 1

6
e−x2

+
1

2
e−4x2/3 x ≥ 0 (2)

It is useful to note that erfc(·) is related to the Q function by

Q(x) =
1

2
erfc

(
x√
2

)
(3)

In 2009, Loskot et al. [8] revised Chiani et al.’s model by considering a finite sum
of exponentials in the representation of the Q-function. The approximations that were
formed as the sum of two and three terms can be given by [8, Equations (13c) and (13d)]

Q(x) ≈ 0.208e−0.971x2

+ 0.147e−0.525x2

x ≥ 0 (4)

Q(x) ≈ 0.168e−0.876x2

+ 0.144e−0.525x2

+ 0.002e−0.603x2

x ≥ 0 (5)

Although the performance of Loskot et al.’s approximation is better than those previ-
ously proposed, it has poor approximation accuracy for high function arguments. Kara-
giannidis et al. [9, Equation (6)] then further presented a novel, simple and tight approx-
imation for the Gaussian Q-function and its integer powers as

f (x,A,B) = erfc(x) ≈
(
1− e−Ax

)
e−x2

B
√
πx

x ≥ 0 (6)

For the argument region x ε [0, 20], the values of A and B in the above equation are
found numerically as 1.98 and 1.135 in [9], respectively. Isukapalli et al. extended the
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work of [9] and derived a modified version of Equation (6) that can be easily integrated
for any m of a Nakagami-m fading distribution as [11, Equation (3)]

Q(x) ≈

(
1− e−Ax/

√
2
)
e−x2/2

B
√
2πx

≈ e−x2/2
na∑
n=1

(−1)n+1(A)n

B
√
π
(√

2
)n+1

n!
· xn−1 x ≥ 0 (7)

where na is the number of terms that is taken into account for the approximation. Instead
of using exponential or rational based functions, a new polynomial approximation that
employs only power functions was proposed by Chen et al. in [12, Equation (4)] as

Q(x) ≈ Qn(x) = 1−
n∑

m=0

n∑
p=0

(−1)m+p

 n
p


m!(n−m)!

(
n
12

)p/2 · (n
2
−m

)n−p
xp

·U
(
x−

√
12
n

(
n
2
−m

))
|x| <

√
3n

(8)

where U(·) denotes the unit step function. Very recently, inspired by the different types
of approximations presented in previous works, a new mathematical model based on a
second-order exponential function was considered by Lopez-Benitez et al. in [13, Equation
(8)] as

Q(x) ≈ eax
2+bx+c x ≥ 0 (9)

where a, b, c ε < are fitting parameters. The optimum values of these parameters can
be found in [13, Table I] for different argument ranges. Nevertheless, the second-order
exponential function with a minimum sum of square errors (min-SSE) criterion has large
approximation errors for small arguments. Therefore, this approximation is less appro-
priate for using in performance computation over fading channels.

3. Proposed Approximation for the Q (x). The following model that is a combina-
tion of the Börjesson et al.’s and the Loskot et al.’s approximations (with 2 terms) was
considered as

Qa(x) =
a1

a2
√
x2 + a3 + (1− a2) x

· 1√
2π

e−x2/a4 +
(
a5 · ea6·x

2

+ a7 · ea8·x
2
)

x ≥ 0 (10)

where {a1, a2, . . . , a8} represent the unknown parameters that will be determined by the
differential evolution algorithm, and Qa(x) denotes the proposed approximation for the
Gaussian Q-function. The expression in Equation (10) may alternatively be shown in
closed form as

Qa(x) = f (x, a1, a2, . . . , a8) (11)

where f(·) represents the nonlinear relationship between x and Qa(x). The mean absolute
model error may be expressed as follows:

E =
1

M

M∑
k=1

|Q (k)−Qa (k)|2 (12)

where k denotes the kth sample and M is the number of all samples. Q(k) and Qa(k)
represent the original values and the results computed by the proposed approximation,
respectively. By substituting Equation (11) into the above equation, we can rewrite
Equation (12) as:

E =
1

M

M∑
k=1

|Q (k)− f (k, a1, a2, . . . , a8)|2 (13)
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START

Initialize a population of individuals 

Evaluate fitness of all individuals 

for a specific number of generations 

for each candidate solution in the population  

  /* P e r f o r m   M u t a t i o n   o p e r a t i o n

  Create mutant vector 

  /* P e r f o r m   C r o s s o v e r   o p e r a t i o n

  Create trial vector 

  /* P e r f o r m   S e l e c t i o n   o p e r a t i o n

  Evaluate fitness of the new candidate solution 

  Compare parent and offspring solutions 

end for 

end for 

 Save and display the best found solution 

STOP

Figure 1. Main steps of the DE algorithm

The only unknowns in the above equation are the parameters {a1, a2, . . . , a8} of the
approximation. In this section, the mean absolute model error given in Equation (12) is
used as the cost function, and the optimum approximation parameters are determined by
using the DE algorithm.
Differential evolution (DE) developed by Storn and Price [14], [15] is a simple and pow-

erful evolutionary algorithm for solving various difficult parameter optimization problems.
Similar to many evolutionary algorithms, DE has three important operations: mutation,
crossover and selection [16, 17]. The main steps of the DE algorithm are described in
Figure 1.
The DE algorithm operates on a population with Npop real-valued vectors Xi,G ={
x1
i,G, . . . , x

D
i,G

}
, i = 1, 2, . . . , Npop, where i denotes the index of the individual and G

represents the generation. Each individual belonging to the solution vector is composed
of D optimization parameters. An initial population of Npop solution vectors is generated
randomly on a search space. Note that the initialized population is supposed to satisfy
uniform probability distribution in the solving space. The initial population in the first
generation (G = 0) is generated by the following equation:

xp
i,0 = xp

min + rand[p] · (xp
max − xp

min), p = 1, . . . , D (14)

where rand[p] is a uniform random number produced within [0, 1]. Here xp
max and xp

min

are the upper and lower bounds of the pth parameter, respectively. Finding a region
that probably contains the optimum solution is the main motivation for choosing the
values for xp

max and xp
min. This region can be scaled by prior knowledge of the problem to

improve search efficiency [18]. After the population is initialized, the algorithm evolves
to the genetic evolution loop by applying the three basic genetic operations; mutation,
crossover and selection in sequence.
The mutation process is the key procedure in the DE algorithm. The basic idea is to

create a difference vector (mutant vector) by selecting three individuals (Xa, Xb and Xc)
that are all randomly selected from the population and satisfy a 6= b 6= c and a, b, c ∈
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[1, Npop]. The mutation operator performs as follows:

V p
i,G+1 = Xp

c,G + F ×
(
Xp

a,G −Xp
b,G

)
(15)

where F is the real-valued mutation factor which is commonly chosen from within the
range [0.1, 1]. This factor weights the differential variations, and therefore controls the
mutation operation. Crossover is the second operation that is carried out to increase
the variety of the population. The crossover operation is applied between V p

i,G and Xp
i,G

according to the probability of a real-valued crossover factor Pcross, Pcross ∈ [0, 1]. The
new vector called the trial vector Hp

i,G =
[
h1
i,G, h

2
i,G, . . . , h

D
i,G

]
is generated by the following

equation:

Hp
i,G+1 =


V p
i,G+1 if rand [p] ≤ Pcross

Xp
i,G otherwise

(16)

After the crossover phase in which a parent chromosome vector generates its own off-
spring vector, the selection step is realized as a final operation in order to select better
offspring. This operator compares the fitness of each parent vector Xp

i,G and the corre-
sponding trial vector Hp

i,G+1 based on the principle of greediness and decides whether the
trial vector Hp

i,G+1 will have a place in the next generation. As a result, the trial vector
competes with its parent vector to advance into the next generation. A greedy selection
is performed as follows:

Xp
i,G+1 =


Hp

i,G+1 if f
(
Hp

i,G+1

)
≤ f

(
Xp

i,G

)
Xp

i,G otherwise
(17)

where f(·) is the fitness function that is equal to the cost function in Equation (12) and
Xp

i,G+1 is the new generation vector. The processes of mutation, crossover and selection
are repeated over and over again until a predetermined generation limit is reached or until
a termination criterion is satisfied.

4. Numerical Results. In this section, we evaluate the accuracy of the approximation
developed in the previous section and compare it with other existing approximations
presented in the literature. For the simulations, a population of 40 individuals, Npop = 40,
was used while the real-valued mutation factor F was chosen as 0.7. Because the number
of unknown parameters in Equation (10) is eight, D = 8. The DE algorithm performs
very well in this optimization problem when the crossover probability Pcross is selected as
0.9. It is useful to note that the choice of these control parameters determines the ability
of the DE to find an optimum solution. The parameters of the approximation were then
optimally designated for the derivation of an accurate approximation for the Q(x). This
is achieved by tuning the parameters of the proposed approximation by the DE algorithm
so as to minimize the cost function defined in Equation (12). Finally, the algorithm was
defined to terminate when the maximum number of generations is equal to 250. The
parameter values found by the DE algorithm are tabulated in Table 1.

In Figure 2, the proposed approximation is compared with the previously proposed
approximations of Chiani et al., Loskot et al. and Börjesson et al. in terms of absolute
relative error as a function of the argument x. It is evident from the figure that the
proposed approximation outperforms these previously proposed approximations in terms
of accuracy. As can be noted, while the argument x is low, the accuracy of the presented
approximation turns out to be very powerful. Figure 3 presents the absolute relative error
curve obtained by using the proposed approximation. The approximations of Chen et al.,
Isukapalli et al., Benitez et al. and Karagiannidis et al. are also included in this figure for
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Table 1. Parameter values for the proposed approximation found by the
DE algorithm

Parameters of the
proposed approximation

Optimum values

a1 0.9702
a2 0.3987
a3 3.6677
a4 2.0055
a5 –0.0013
a6 –2.3690
a7 –0.0054
a8 –1.0436
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Loskot et al.  (2 terms)  [8] 

Börjesson et al.  [6] 

P r o p o s e d 

Figure 2. Comparison of the absolute relative error against the argument
x between the proposed approximation, Chiani et al.’s approximation [7],
Loskot et al.’s approximation [8], and Börjesson et al.’s approximation [6]

a better evaluation of accuracy. As can be easily seen from the figure, the accuracy of our
approximation significantly outperforms the other four approximations. More specifically,
the accuracy of our approach becomes more impressive as the argument x decreases.

5. Concluding Remarks. The Gaussian Q-function is of major importance in evaluat-
ing the performance of communication systems. This function is tabulated for a specific



A NEW APPROXIMATION FOR THE GAUSSIAN Q-FUNCTION 7101

0 0.5 1.5 2.5 3.5

10
-8

10
-6

10
-4

10
-2

10
0

A
b
s
o
lu

te
 R

e
la

ti
v
e

 E
rr

o
r 

    Chen et al.  [12] 
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Figure 3. Comparison of the absolute relative error against the argument
x between the proposed approximation, Chen et al.’s approximation [12],
Isukapalli et al.’s approximation [11], Benitez et al.’s approximation [13],
and Karagiannidis et al.’s approximation [9]

range of argument x, and frequently defined as a built-in function in mathematics software
packages such as Matlab and Mathematica. However, in most states it is more suitable
to hold approximations instead of the exact expression in order to simplify mathematical
manipulations. In this paper, we have proposed an accurate expression that combines
two well-known approximations to improve the approximation accuracy of the Gaussian
Q-function for small arguments. The differential evolution algorithm, which is a compu-
tationally efficient global optimization method, is employed to estimate the parameters
of the proposed approximation. The results indicate that the approximation derived in
this paper can accurately predict the Gaussian Q-function especially in the low x re-
gion. However, as expected, its accuracy tends to decrease as the values of argument
x increase. Although the proposed approximation is the most accurate it suffers from
increased computational complexity as compared to both Börjesson et al.’s and Loskot
et al.’s approximations. This is the main deficiency of our approach compared to two
approximations mentioned. As a final remark, the theoretic results presented in this work
can be practically used to the general problem of analysing the error probability of various
communication systems in an additive white Gaussian noise channel.
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important suggestions.
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