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Abstract. This paper proposes how to determine the optimal selection based on gen-
eration cost of power system network. For this purpose, an efficient PSO-optimal power
flow algorithm has been proposed. In this proposed PSO-optimal power flow, Newton
Raphson Method and Particle Swarm Optimization algorithm have been used for power
flow and economic dispatch respectively. A Hybrid Particle Swarm Optimization (HPSO)
algorithm has also been proposed for economic dispatch. Based on the power transfer ca-
pability and minimum generation cost, an optimal wheeling option will be suggested to
both the owners of private non-utility generator (i.e., independent power producers or
co-generators) and the utility. The proposed algorithm is independent of the cost char-
acteristics of non-utility generators (NUGs). The proposed model has been tested on the
IEEE 30 and Indian Uitility 69-bus test system with synthetic imposition of wheeling
transactions. The solutions obtained are quite encouraging and useful in the present de-
regulated environment.
Keywords: Optimal power flow, Particle Swarm Optimization (PSO), NUG, Wheeling

1. Introduction. Wheeling is the transaction of electrical energy from a seller to buyer
through a transmission network owned by a third party [1]. As dependence on electricity
grew, regulation on the federal and local level increased as well. However, the need for
more efficiency in power production and delivery has led to a restructuring of the power
sector in several countries traditionally under control of federal and state governments. In
this, new environment of de-regulation, one common problem has been encouraged namely
transmission congestion. Transmission congestion refers to the inability to dispatch ad-
ditional generation from certain generators within the system due to transmission line
limits. Generator rescheduling is one of the important ways to relieve congestion [15,16].

A wide variety of optimization techniques have been applied in solving the OPF problem
such as nonlinear programming [2-7] Newton based techniques, genetic algorithm, Particle
Swarm Optimization [13,14]. Recently a new evolutionary computation technique, called
Hybrid Particle Swarm Optimization (HPSO) has been proposed. HPSO is a population
based stochastic optimization technique. In HPSO search of optimal solution is conducted
using a population of particles, each of which represents a candidate solution to the
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optimization problem. Particles change their position by flying round a multi-dimensional
space by following current optimal particles until a relatively unchanged position has
been achieved or until computational limitations are exceeded. Each particle adjusts its
trajectory towards its own previous best position and towards its best position attained
until now. HPSO is easy to implement, provides fast convergence for many optimization
problems, and has gained lots of attention in power system application recently.
Under de-regulation, the generation patterns resulting from market activities can be

quite different from the traditional one [18]. Further that any non-utility generator (NUG)
in the system can sell all part of its output to single or multiple buyers located anywhere
within the network, has made the problem very much complicated. NUGs include both
independent power producers (IPPs) and co-generators. There is a need for an optimal
system, which may balance the needs of energy providers, the resellers, the large industrial
customers and residential consumers. Some methods and mathematical models have been
reported in literature for solving above-mentioned problems.
The general concept of wheeling and optimization has been explained in [17]. The re-

view of the major existing methods of wheeling has been discussed [8] and various existing
models are in use in different countries. Privatizing and restructuring the state electric-
ity boards has been proposed for the Indian power sector [9] and Norway’s power sector
[10]. The optimal approach explained in this paper, using PSO-OPF, in the proposed
hybrid model, is simple and efficient under various complicated situations and system
constraints. It can handle the generating plant with non-convex or any other cost charac-
teristics. The proposed approach is free from mathematical complexity and suitable for
highly complex environment. Hence, POPF has been used to determine most economical
and suitable (satisfying various system constraints) options for wheeling transactions un-
der de-regulated environment of power systems. The proposed algorithm is independent
of cost characteristics of NUGs.

2. Mathematical Formulation. The selection of wheeling transaction is based on op-
timization of generation cost without violating system constraints [11,12]. So the opti-
mization of cost of generation has been formulated based on classical OPF. The detailed
problem formulation of the proposed approach is as follows:

Base case (optimal generation without any wheeling transaction). For a given
power system network, the optimization cost of generation is given by the following equa-
tion

C = min

Ng∑
i=1

fi(pgi) (1)

The cost is optimized with the following power system constraint

Ng∑
i=1

pgi = pD + pl (2)

The power flow equation of the power network is

g(|v| , φ) = 0 (3)

where |v| and φ are voltage magnitude and phase angles of different buses.
The inequality constraint on real power generation Pgi of each generation i

Pgmin
i ≤ Pgi ≤ Pgmax

i (4)

The inequality constraint on voltage of each PQ bus

V min
i ≤ Vi ≤ V max

i (5)
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Power limit on transmission line

MVAfp,q ≤ MVAfmax
p,q (6)

where C is optimal cost of generation when the utility supplying its own load, fi(pgi) =
Generation cost function of the ith generator for pgi generation. pgi = Power generation
by the ith generator. Ng = Number of generator connected network. Pd = Total load
of the system, Pl = Transmission losses of the system (when the utility supplying its
own load), Pgmin

i and Pgmax
i are respectively minimum and maximum value of real power

generation allowed at generator i, V min
i and V max

i are respectively minimum and maximum
voltage at bus i, MVAfmax

p,q is the maximum rating of transmission line connecting bus p
and q.

3. Wheeling Transaction and Its Loadability Limit. A simultaneous wheeling tran-
saction has been included in an ‘n’ bus system. The seller at the bus i and the buyer with
a load at bus j. The corresponding wheeling transaction can be represented at WT (i-j),
where i and j may be varied from 1 to n and i is not equal to j. Let us assume that an IPP
is willing to supply the additional load demand at bus j through the utility transmission
system by a wheeling transaction WT (i-j). Then, run the power flow program with all
the generators of the utility being held at fixed optimal setting of base case under these
conditions. The amount of wheeled power in the network must be within the limits of IPP
and satisfy the transmission constraints. In general the algebraic sum of power delivered
by the non-utility generators/Independent Power Producers is equal to the sum of power
taken at different load points.

Suppose now real load is increased at load bus, which is virtually the load increasing
at a bus j with unity power factor and it is a function of load parameter λ as

Pdj = λPdj0 j = 1, 2, . . . , nl (7)

The zero subscript indicates base load at the buses. Now the load at bus j is varied
until the system no longer has a solution. Therefore,

λ ≥ λmax (8)

The λ is the bifurcation parameter, where ‘λ’ is scalar parameter representing the increase
in busload. λ = 1 corresponds to base case and λ = λmax corresponds to the maximum
load.

4. Overview of HPSO. The traditional PSO model has described by Dr. Kennedy and
Dr. Eberhart in 1995. It consists of a number of particles moving around in the search
space, each representing a possible solution to a numerical problem [20-22]. Each particle
has a position Vector Xi = (xi1, xi2, . . . , xin), a velocity Vector Vi = (vi1, vi2, . . . , vin).
In the PSO, the collective best position of all the particles taken together is termed as
the global best position given as Glbesti = (glbi1, glbi2, . . . , glbin) and the best position
achieved by the individual particle is termed as the local best or position best and for
ith particle given as Pbesti = (pi1, pi2, . . . , pin). Particles use both of these pieces of
information to update their positions and velocities are given in the following equations

V k+1
i = ωV k

i + C1rand1(Pbestki −Xk
i ) + C2rand2(Glbestki −Xk

i ) (9)

In each iteration, the position of each particle is updated. This is done by adding the
velocity vector to the position vector, i.e.,

Xk+1
i = Xk

i + V k+1
i (10)

The accuracy and rate of convergence of the algorithm depends on the appropriate
choice of particle size, maximum velocity of particle size and the inertia constant. If the
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velocity is higher than a certain limit, called V max, this limit will be used as the new
velocity for this particle in this dimension, thus keeping the particle within the search
space.
The breeding and subpopulation process is employed by the following equations:

child1(xi) = pi ∗ parent1(xi) + (1.0− pi) ∗ parent2(xi) (11)

child2(xi) = pi ∗ parent2(xi) + (1.0− pi) ∗ parent1(xi) (12)

where pi is a uniformly distributed random value (between 0 and 1). The velocity vectors
of the offspring are calculated as the sum of the velocity vectors of the parents normalized
to the original length of each parent velocity vector.

child1(v̄) =
parent1(v̄) + parent2(v̄)

|parent1(v̄) + parent2(v̄)|
|parent1(v̄)| (13)

child2(v̄) =
parent1(v̄) + parent2(v̄)

|parent1(v̄) + parent2(v̄)|
|parent2(v̄)| (14)

The arithmetic crossover of positions and velocity vectors used were empirically tested
to be the most promising. The arithmetic crossover of positions in the search space is one
of the most commonly used crossover methods with standard real valued GAs, placing the
offspring within the hypercube spanned by the parent particles. In this paper, mutation
process is employed by the following equation:

mut(p[k]) = (p([k]) ∗ −1) + ω (15)

where p[k] is the random choice particle from the swarm, and ω is randomly obtained
within the range [rand(0, 0.1) ∗ (xmax − xmin)], representing 0.1 times the length of the
search space, where xmax and xmin are the domains of the search space. Note that this
does not restrict the values of xi.
The structure of the hybrid model is illustrated below
Begin

Initialize
While (not terminate-condition) do

Begin
Evaluate

Calculate new velocity vectors
Move

Breeding
Mutation

End
End

Pseudo code for HPSO algorithm

5. Algorithm for HPSO. The step by step algorithm for the method is explained as
follows:

1. Specify the maximum and minimum limits of generation power of each generating
unit, maximum number of iterations to be performed and fuel cost co-efficient of
each unit.

2. Specify the Bus data, Line data, Inertia weight, Acceleration constants, no of parti-
cles and the particle size.

3. Initialize randomly the individuals of the population of all units other than the
reference unit according to the limit of each unit.

4. Calculate the evaluation value of each population Pg using the evaluation equation.
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5. Compare each population’s evaluation value with its pbest. The best evaluation
value among the pbest is denoted as gbest.

6. Modify the velocity V of each individual Pgi using the Velocity Equation (9).
7. Modify the position of each individual according to the position Equation (10).
8. Perform Mutation using Equation (15).

9. If p
(t+1)
gid violates the constraints then it must be set to the near margin of that

particular unit.
10. If the evaluation value of each population is better than the previous pbest the current

value is set to be pbest. If the best pbest is better than the gbest the value is set to be
gbest.

11. If the number of iterations reaches the maximum then go to step 12, otherwise go
to step 4.

12. The individual that generates the latest gbest is the optimal generation power of each
unit.

13. The rescheduled power values of each generator corresponding to the minimum con-
vergence value and the fuel cost of the same is displayed.

14. Using Newton-Raphson method the power flowing through all the lines of the system
are determined.

15. Wheeling transaction is performed for each bus.
16. Stop.

6. Results and Discussions. The proposed method has been illustrated on IEEE 30-
bus and Indian utility 69-bus utility systems. The influence of the PSO parameters, i.e.,
the inertia weight, and population size, constants C1 & C2, on the convergence of the
algorithm has been studied. The size of particles has been increased from 10 to 100 in
steps of 10 and the number of best particles for this problem is found to be 60. The
inertia constant is varied from 0.4 to 0.9 and optimal value for this problem is found to
be 0.5. Maximum number of iteration has been taken as 100. The minimum solution
was obtained for 100 trial runs. Simulation studies have been conducted on Intel(R)
core i5, CPU M430 @ 2.27 GHz processor under MatLab 7.6 environment. The adopted
parameters for the algorithms are given in Table 1.

The Non Utility generator is added at 24th bus for the IEEE 30-bus system. In Indian
69-utility bus has NUG at 24th bus, where its cost coefficients and power constraints are
shown in Table 2.

6.1. IEEE 30-bus system. The numerical data for IEEE 30-bus system are taken from
[19]. This system has 6 generators, 41 transmission lines. The generators are connected at

Table 1. Parameter values for PSO and HPSO for the two test systems

Parameters
IEEE 30-bus system Indian 69-bus system
PSO HPSOCM PSO HPSOCM

Population 100 100 100 100
Social Factor, C1 2 2 2 2

Cognitive Factor, C2 2 2 2 2
Minimum Inertia Weight Factor 0.4 0.4 0.4 0.4
Maximum Inertia Weight Factor 0.9 0.9 0.9 0.9

Cross over probability − 0.8 − 0.8
Mutation probability − 0.01 − 0.01

Iterations 100 100 100 100
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the buses 1, 2, 13, 22, 23 and 27. For this system, bus 1 is slack bus and there are 24 load
buses. IPP is interested to have a wheeling transaction of all load buses of 30-bus system.
In each bilateral transaction, the algorithm conducts the OPF by satisfying all the power
flow constraints and estimates the maximum load at each load (buyer) buses without
violating transmission line limit constraint. To validate the superiority of the proposed
HPSOCM approach, simulation results have been compared with PSO technique. Table
3 shows the base case and optimal generation (MW) of the generating units. From the
results obtained, we infer that the total fuel cost for the IEEE 30-bus system is 789.635
$/hr by using HPSO.

Table 2. IPP cost function

Test Systems Pmin (MW) Pmax (MW)
ai

$/MW2 − h
bi

$/MW−h
ci
$/h

IEEE 30-bus system 20 44 0.02 2 0
Indian 69-bus
utility system

80 100 0.0035 3 0

Table 3. PSO and HPSO results for wheeling transaction (IEEE 30-bus system)

PSO HPSO
Total power demand 290.20 MW 290 MW

Power
Generated

P1 174 MW 174 MW
P2 26 MW 26 MW
P5 24 MW 24 MW
P8 20 MW 20 MW
P11 13 MW 13 MW
P13 33 MW 33 MW

Total Fuel Cost $/hr 790.10 789.635
Execution Time 3.2190 sec 1.5480 sec

Figure 1. Iterations vs. Fuel Cost for IEEE 30-bus using PSO
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Figure 2. Iterations vs. Fuel Cost for IEEE 30-bus using HPSO

Figure 3. Bus No vs. Fuel Cost

Figure 4. Bus No vs. maximum load

Figure 1 and Figure 2 show the graph drawn between Iterations vs. Fuel Cost. The
minimum fuel cost converges at the 10th iteration.

Figure 3 shows the graph drawn between Bus No vs. Fuel Cost.
The maximum allowable load with respect to IPP is calculated and shown in Figure 4.

We conclude that, the worst transaction takes place when the load is connected at 6th
Bus. The best transaction takes place when the load is connected at 22nd Bus.

6.2. Indian 69-bus utility system. This utility system has 13 generators and 99 trans-
mission lines and there are 57 load buses. The bus data for this system have been taken
from TamilNadu Electricity Board report (2003-2004). Tamil nadu is one of the southern
states of India and the entire power network is under the control of Tamil Nadu electricity
Board, a state government owned Power Corporation.
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Table 4. PSO results for wheeling transaction (Indian utility 69-bus system)

PSO HPSO
Total power demand 4647 MW

Power Generated
In MW

P1 800 800 MW
P13 990 990 MW
P14 350 350 MW
P15 459.4 459.4 MW
P21 250 250 MW
P31 100 99 MW
P36 120 120 MW
P39 320 320 MW
P52 812.5 812.5 MW
P53 55 54 MW
P57 150 150 MW
P58 150 150 MW
P60 90 89 MW

Total Fuel Cost Rs/hr 9408.80 9356.30
Execution Time 5 sec 3.422 sec

Figure 5. Iterations vs. Fuel Cost for Indian utility 69-bus system using PSO

From Table 4, we infer that the total fuel cost for the 69-bus systems is 9408.80 Rs /hr.
From Figure 5 and Figure 6, the minimum fuel cost converges at the 5th iteration.
The maximum allowable load is calculated and shown in Figure 7. We conclude that,

the worst transaction takes place when the load is connected at 67th Bus. The best
transaction takes place when the load is connected at 28th Bus. Figure 8 shows the graph
drawn between Bus No vs. Fuel Cost.
From the results obtained, we infer that the total fuel cost for the 69-bus system is

9356.3016 Rs/hr. Figure 5 shows the graph drawn between Iterations vs. Fuel Cost using
PSO. From Figure 6, the minimum fuel cost converges at the 5th iteration in HPSO
algorithm. The maximum allowable load is calculated and shown in Figure 7.
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Figure 6. Iterations vs. Fuel Cost for Indian utility 69-bus system using HPSO

Figure 7. Bus No vs. maximum load for Indian utility 69-bus system

Figure 8. Bus No vs. Fuel Cost
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From Table 4 we conclude that, the worst transaction takes place when the load is
connected at 66th Bus. The best transaction takes place when the load is connected at
31st Bus. Figure 8 shows the graph drawn between Bus No vs. Fuel Cost for the Indian
utility 69 bus system.

7. Conclusion. A PSO & HPSO based approach for optimal selection of wheeling option
from the various feasible options of power system considering various system constraints
has been proposed under de-regulated environment. The rescheduling of generators is in a
manner that congestion does not occur in any part of the transmission line. The maximum
load is determined at each bus when a non-utility generator comes into operation. This
paper presents an approach to solve optimal power flow problem, which aims at minimizing
fuel cost. Our proposed approach satisfactorily finds global optimal solution within a small
no of iteration. Thus, the algorithm is very fast and can be applied online. However, as
the other evolutionary methods HPSO also has the drawback of not converging to exactly
the same value all the time due to its stochastic nature. However, in this case HPSO has
returned almost the same result for most of the cases.
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