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Abstract. There are many different approaches to alert correlation such as using corre-
lation rules and prerequisite-consequences, using machine learning and statistical methods
and using similarity measures. In this paper, iCorrelator, a new AIS-inspired architec-
ture, is presented. It uses a three-layer architecture that is inspired by three types of
responses in the human immune system: the innate immune system’s response, the adap-
tive immune system’s primary response, and the adaptive immune system’s secondary
response. In comparison with other correlators, iCorrelator does not need information
about different attacks and their possible relations in order to discover an attack scenario.
It uses a very limited number of general rules that are not related to any specific attack
scenario. A process of incremental learning is used to encounter new attacks. Therefore,
iCorrelator is easy to set up and work dynamically without reconfiguration. As a result of
using memory cells and improved alert selection policy, the computational cost of iCorre-
lator is also acceptable even for online correlation. iCorrelator is evaluated by using the
DARPA 2000 dataset and a netForensics honeynet data. The completeness, soundness,
false correlation rate and execution time are reported. Results show that iCorrelator is
able to extract the attack graphs with acceptable accuracy that is comparable to the best
known solutions.
Keywords: Intrusion detection system (IDS), Alert correlation, Artificial immune sys-
tem (AIS)

1. Introduction. Intrusion Detection System (IDS) is a rapidly growing field. It is the
process of identifying and (possibly) responding to malicious activities targeted at com-
puting and network resources [1]. When an IDS detects a malicious activity, it generates
an alert. Alerts are usually in low-level format. It means that each alert contains a little
information about the malicious activity that is almost useless for the administrator. On
the other hand, an IDS in a large network of computers with many different users generates
high volumes of low-level alerts. These raw alerts overwhelm the system administrator in
such a way that she/he cannot use them effectively. As a result, the administrator may
ignore these alerts and miss their possible related intrusions. Alert correlation is used to
overcome this problem. It is a process that analyzes the alerts produced by one or more
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intrusion detection system(s) and provides a more succinct and high-level view of occur-
ring or attempted intrusions [2]. The most important goal of the alert correlation process
is to reduce the number of alerts the system administrator should investigate manually.
The administrator prefers to process a high-level attack scenario instead of a high volume
of raw alerts. The correlation process is usually done by removing false alerts, aggregating
related alerts and prioritizing alerts.
Most correlation systems need extra information such as correlation rules and network

metadata in order to correlate the alerts. The rules define the relationship between
different alerts, whereas metadata is about the features of the protected network and its
assets. As a result, the correlation systems need experts with extensive knowledge of
network and security in order to provide this information and keep it up to date. The
everyday new emerging attack scenarios make it hard and time-consuming to provide and
keep this information up to date.
In this paper, iCorrelator, a new architecture for alert correlation which employs many

concepts of the Artificial Immune System (AIS), is presented. The human immune system
is an efficient and accurate system which has successfully protected the humans against
different types of diseases for millions of years. It gathers different signs of danger and
correlates them to detect diseases. Multilayer of protection is one of the key points of its
success.
iCorrelator is inspired by the human immune system. It employs three layers of corre-

lation in order to assign a correlation probability to each pair of alerts. These correlation
probabilities are used to extract the attack scenarios from the input alerts. Moreover, a
group of matrices are used to store the experiences of the system from each correlation.
In the first layer of correlation, twenty one fuzzy rules are used. Each rule contains a

vector and a class number that is assigned to it. The vector contains the values of six
features. The values are extracted from a pair of alerts and a few matrices. The class
number is used to calculate the correlation probability of two alerts. The vector and its
assigned correlation probability are called a cell. To assign a correlation probability to
a cell, Ci, iCorrelator explores the rules and finds the most compatible rule, Rj, with
Ci. If the correlation probability in Rj is more than a predefined threshold, then it is
used to assign the correlation probability to Ci. Otherwise, next layers of correlation are
examined.
In the next layer of correlation a pool of immune memory cells is used. The immune

memory cells have been generated by the learning-based layer of correlation (next layer)
in the previous correlation processes. For each new cell, C, iCorrelator explores the pool
and finds the most similar cell, Cmx, with C (The similarity is measured by the weighted
Euclidean distance). If the similarity between C and Cmx is more than a predefined
threshold, then the correlation probability of Cmx is used as the correlation probability
for C. Otherwise, C is examined by the next layer of correlation.
In the next layer of correlation an incremental learning correlation method is used. The

AIRS algorithm with a few changes is used in this layer. AIRS is an AIS-based algorithm
which produces a population of memory cells from the training data with the ability to
classify the new data. It is used to assign a correlation probability to a novel cell. A novel
cell is a cell without a compatible rule in the set of general rules and without a similar
cell in the pool of immune memory cells. The fuzzy rules of the first layer are used as the
training data for AIRS which assigns a correlation probability to the novel cell. When
AIRS assigns a correlation probability, p, for a novel cell, C, it also stores the pair of C
and p in the pool of immune memory cells. This pair (C, p) is used in the memory-based
layer of correlation as described above.
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When a new alert, a, arrives, a few alerts from the previously observed alerts are
selected, and a group of new cells are generated by using a and each selected alert. The
cell, Cmax, with the most correlation probability is determined among the generated cells
by using three layers of correlation. a and the other alert in Cmax are added to a hyper-alert
if their correlation probability is more than a predefined threshold (correlation threshold).
Otherwise, a new hyper-alert with only one alert (a) is created. The alert selection policy
defines the scope and method of the search in the previous alerts. A new enhanced time
window-based approach with random alert selection is introduced for iCorrelator, named
Random Directed Time Window (RDTW). A time window with a fixed number of sliding
time slots is defined. When a new alert arrives, iCorrelator randomly selects m alerts from
each time slot, ti, for correlation. m is different for each time slot, and it is a function
of the total number of alerts in ti, the slot number, i, and the maximum correlation
probability calculated for alerts in ti.

In comparison with other correlation systems, iCorrelator does not need information
about different attacks and their possible relations in order to discover an attack scenario.
Most correlation systems use a database of rules to define the causal relations among
the events. These rules describe an attack scenario or define the prerequisites and conse-
quences of each event. Definition of these rules or scenarios needs an extensive knowledge
of computer security and different types of attacks. Furthermore, this knowledge should
be updated in response to everyday new emerging attacks. Therefore, the initial setup
and the subsequent maintenance of the correlation systems are difficult to do and need
expertise. On the other hand, iCorrelator uses a very limited number of general rules that
are not related to any specific attack scenario. A process of incremental learning is used
to encounter new attacks. Therefore, iCorrelator is easy to set up and work dynamically
without reconfiguration. As a result of using memory cells and improved alert selection
policy, the computational cost of iCorrelator is also acceptable even for online correlation.

The main contribution of the present work is a multilayer correlation architecture that
is inspired by the human immune system. The architecture is based on three layers of
correlation: a limited number of fuzzy rules, an AIS-based incremental learning method
and a group of immune memory cells. Each layer is the equivalent of one working layer
of the human immune system: innate immune system, primary response in the adaptive
immune system and secondary response in the adaptive immune system. The innate
immune system evolves genetically. We are born with it. It has the ability to recognize
a fixed number of common pathogens. The agility, effectiveness and accuracy are the
most important features of the innate immune system. The adaptive immune system
has the ability to encounter new pathogens. It is able to learn the structure of a new
pathogen and generate an antibody for it (primary response). The most considerable
features of the primary responses are their adaptability and flexible learning. Moreover,
the adaptive immune system is able to memorize the pathogens and their antibodies for
future use (secondary response). The most attractive features of the secondary responses
are their quickness and performance. By using a three-layer architecture for correlation,
iCorrelator enjoys all these features.

As mentioned before, AIRS is used in the learning-based layer of correlation to assign
a correlation probability to each cell. A new attribute weighting method is presented
and used in order to improve the accuracy of AIRS. There are many methods of at-
tribute weighting such as Pearson Partial Correlation, Information Gain and Symmetric
Uncertainty, each of which is appropriate for a different application. We introduce a new
attribute weighting method which is very fast and accurate, named average contribu-
tion. It is used to assign a weight or degree of importance to each attribute of a dataset.
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The generated weights are used to improve the AIRS algorithm. Significant accuracy
improvement is observed in the obtained algorithm.
The rest of this paper is organized as follows. Section 2 reviews the related works.

Section 3 provides a brief review of the human immune system. Section 4 presents iCor-
relator in details. It illustrates its architecture and provides the details of its components.
Section 5 reports the result of running the system with the DARPA2000 and netForen-
sics honeynet data. Finally, Section 6 provides the conclusion and some suggestions for
further research.

2. Related Works. Alert correlation has two main goals: reducing the number of alerts
and increasing the relevance and abstraction level of the produced reports [2]. Alert
correlation techniques are usually classified in three groups: Fusion-based, Filter-based
and Causality-based.
The fusion-based correlation [3, 4, 5] is based on the similarity between two alerts. It

defines a function for similarity and looks for alerts that are similar. If the similarity
value is more than a predefined threshold, alerts are placed in one cluster. Filter-based
approaches [6, 7, 8, 9, 10, 11] either identify the false positive and the irrelevant alert or
assign a priority to each alert. For instance, an alert could be classified as irrelevant if it
represents an attack against a non-existent service. Priority is usually assigned to alerts
based on the importance of the assets on the target. Causality-based approaches use the
logical relationships among alerts to correlate them [12, 13, 14, 15, 16, 17, 18, 19, 20]. They
either use the expert knowledge to find related alerts or aim to infer it from statistical
or machine learning analysis. Because the approach of iCorrelator to alert correlation is
closer to the causality-based approach, we focus on the works that use this approach.
There are several causality-based approaches that use known scenarios to find relation-

ships among alerts. They match the sequence of incoming events with some predefined
scenarios. These scenarios should be defined by an attack language (e.g., STATL [21],
LAMDBA [22], ADeLe [23]) or learned by using machine learning techniques [12, 13].
Specifying all scenarios in advance is time-consuming and error-prone work and needs
extensive knowledge of the domain. Moreover, they cannot handle new attack scenarios.
Wang et al. [13] proposed a multi-step attack pattern discovering method that aims at
solving problems of new attack pattern discovery and also overcoming the difficulty in
complex attack association rule definition and maintenance. They mine multi-step attack
activity patterns with the attack sequential pattern mining method from history aggre-
gated high-level alerts. Their method requires good integration of history database which
should include various multi-step attack instances.
Another type of causality-based correlation systems uses the rule-based correlation

approach [14, 15, 16, 17]. They rely on the fact that complex attacks are usually executed
in several phases or steps, where the first step prepares for attacks executed in the later
steps. Each step of the attack has its prerequisites and consequences. Thus, analyzing
alerts based on the predefined rules containing prerequisites and consequences of the
attack steps is sufficient to identify related alerts.
Both scenario-based and rule-based approaches rely on expert knowledge to find related

alerts and cannot handle novel attacks. Statistical approaches [18, 19, 20, 24] analyze
relationships among alerts based on their co-occurrence within a certain time period, and
thus, are generally independent of the prior domain knowledge.
Qin [18] presented a Bayesian correlation engine for discovering the statistical relation

among alerts. He analyzes statistical patterns among aggregated alerts, with the assump-
tion that alerts are causally related if a strong statistical correlation exists among them.
The degree of relevance of alerts is evaluated by calculating the conditional probability
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between each pair of hyper-alerts. The approach builds an attack scenario by evaluating
the causal relationship between each pair of hyper-alerts. Because of the large number of
possible combinations between hyper-alerts, the running of the system in online mode is
infeasible.

Ren et al. [19] presented an approach for adaptive online alert correlation. The approach
incorporates two components: the offline module that is responsible for retrieving relevant
attack information from the previously observed alerts based on the Bayesian causality
mechanism; and the online component that is based on the extracted information. It
correlates raw alerts and constructs attack scenarios online.

There are other works that use machine learning algorithms to estimate the correlation
probabilities among alerts and use them in correlation. Zhu et al. [24] used Multilayer
Perceptron and Support Vector Machines to estimate the alert correlation probability,
and Sadoddin et al. [20] used the frequent structure mining technique. All statistical and
machine learning-based approaches do not require expert knowledge and are capable of
representing unknown attacks. The most important drawback of these methods is their
computational cost. As a result, these methods are not usually appropriate for online
correlation.

3. Human Immune System. The Human immune system is responsible for protecting
the body against invasion by diseases and other pathogens including viruses, bacteria
and parasites. Its ability to detect and eliminate most pathogens is essential for survival;
without an immune system we die within weeks [26]. The architecture of the immune
system is multi-layered, with defenses on several levels.

3.1. Innate immune system. The innate immune system provides immediate defense
against infection. It evolves genetically. We are born with it. It does not change or
adapt during our life. The innate immune system identifies and removes the foreign
substances present in organs, tissues, the blood and lymph, by specialized white blood
cells. It initiates and directs the response of the adaptive immune system. It comprises
the cells and mechanisms that defend the body from infection by pathogens in a non-
specific manner. This means that the cells of the innate immune system recognize and
respond to pathogens in a generic way, but unlike the adaptive immune system, it does
not confer long-lasting or protective immunity.

3.2. Adaptive immune system. The adaptive (acquired) immune system provides the
vertebrate immune system with the ability to recognize and remember a specific pathogen,
and to mount stronger attacks each time the pathogen is encountered. It comprises two
types of immune cells (lymphocytes): the B-Cells and T-Cells. These cells are able to
adapt to new pathogens and learn their structure. Each individual cell learns the structure
of a certain pathogen and adapts with it. The adaptation occurs when chemical bonds
are established between receptors on the surface of an immune cell and epitopes which
are located on the surface of a pathogen. The strength of the bond between a receptor
and an epitope is termed the affinity. If the affinity between a cell and a pathogen is
strong enough, then the cell produces copies of itself (clones that are produced through
cell division). The number of clones for the cell is dependent to the affinity strength. The
higher the affinity of a cell for the pathogens present, the more likely it is that the cell
will clone. Within the cloning process, mutation is occurred, and if the affinity of the
mutated clone would be higher than the original cell, then it will be cloned more. During
this process a specific cell for the encountered pathogen is evolved by the immune system
(primary response). This specific cell is transformed to the memory cell and remains in
the immune system for future use (secondary response). A consequence of learning and
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Figure 1. Comparing iCorrelator and the human immune system

memory is that two types of immune response can be distinguished: a primary response
to previously unencountered pathogens, and a secondary response to pathogens that have
been encountered before [26].

3.3. Artificial immune system. The human immune system is an adaptive, robust, de-
centralized and error tolerant system. These properties are desirable for the development
of novel computer systems. Artificial Immune Systems (AIS) are algorithms and systems
that use the human immune system as inspiration [25]. It is used in anomaly detection,
pattern recognition, fault detection, data mining and computer security. Most applica-
tions of AIS in computer security are related to its ability to discriminate between the self
and non-self. There are so many researches in this area. Hofmeyr [26] proposed an im-
munological model of distributed detection and used it in intrusion detection application.
Kim [27] investigated some AIS algorithms and used them to design an intrusion detec-
tion system. Schaust et al. [28] and Fu et al. [29] used AIS in misbehavior detection and
anomaly detection. Lin et al. [30] proposed a functional-link-based neural fuzzy network
with immune particle swarm optimization for solving prediction and control problems.
Our research in AIS area is focused on alert correlation as a new application for AIS

in computer security. The present work is an extension of our previous works [31, 32]
on alert correlation which employed AIS and fuzzy logic for alert correlation. In present
work a new multilayer architecture, called iCorrelator is introduced and evaluated.

4. iCorrelator. iCorrelator is an immune-inspired architecture for alert correlation. Its
goal is to extract attack scenario from raw alerts. In order to correlate the input alerts,
it creates a cell from each pair of alerts and assigns a correlation probability to the cell.
Three layers of correlation are used to assign a correlation probability to a cell: rule-based
correlation layer, learning-based correlation layer and memory-based correlation layer.
The correlation probability assignment process for each cell is a serial process (Figure

1). Firstly, a limited number of general rules which are defined in set up time are used.
These rules are some typical cases and are used by iCorrelator in order to enjoy the
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simplest correlation relationships. The antecedent part of a rule contains six features and
their corresponding values, and its consequent part contains a class number. These six
features are calculated by considering a pair of alerts and their similarity (see Section
4.2). iCorrelator searches the rules to find the most compatible rule with the current
pair of alerts and uses the class number in the consequent part of the rule to calculate
the correlation probability of the pair. There are a limited number of fixed and general
rules in this layer. Thus, the response in this layer is rapid and accurate (if it finds a
compatible rule). This mechanism is comparable to the fixed, rapid and accurate response
of the innate immune system.

Secondly, if iCorrelator does not find a compatible rule, then the next layer of correlation
(memory-based) is used. In this layer, a pool of previously generated immune memory
cells is explored for a cell similar to the current cell. The cells which are in the pool have
been generated by learning-based layer during the previous correlation processes. In fact,
each immune memory cell contains one previous correlation experience. The content of the
pool of immune memory cells is updated dynamically. Each new correlation generates a
new cell and it will be added to the pool. Using these immune memory cells by iCorrelator
is comparable to the secondary response in the adaptive immune system. The correlation
process in this layer is dynamic and rapid.

Finally, if iCorrelator does not find a matching cell in the pool of immune memory
cell, then AIRS is used to calculate the correlation probability. AIRS is an AIS-based
algorithm. It is a supervised learning algorithm and uses the same aforementioned general
rules as input and generates some memory cells for them. These memory cells are used
to classify new cells. The process of generating memory cells in AIRS is an evolutionary
process that is inspired by the primary response in the adaptive immune system.

The calculated probability and the generated cell in the learning-based layer are stored
in the pool of immune memory cells for future usages. It is important to differentiate
between the immune memory cells which are placed in the pool of immune memory cells
and the memory cells which are used in the AIRS algorithm. The memory cells in AIRS
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are generated in an evolutionary process by considering the rules which are in the rule-
based layer. On the other hand, immune memory cells are the memory of the system
from its correlation experience in learning-based layer.
Figure 2 shows the architecture and components of iCorrelator. Three different correla-

tion probability assignment modules are observable. The first one is the output of Fuzzy
rule matcher, the second one is the output of Extended AIRS and the third one is the
output of Euclidean cell matcher. There are also a cell generator unit, an attack graph
generator, an alert selection unit and a collection of acquired knowledge in the form of
matrices and hyper-alerts. Different parts of this architecture are described in details in
the next seven subsections.

4.1. Knowledge acquiring. In this section, three matrices which are used in the corre-
lation process are introduced. They are Alert Correlation Matrix (ACM), forward corre-
lation strength matrix (Πf ) and backward correlation strength matrix (Πb). Each element
of ACM is the correlation weight between a pair of alert types. The correlation weight for
two alert types is the total correlation probabilities between them during the correlation
process. It is calculated as [24]:

Wc(ai,aj) =
n∑

k=1

Pi,j (k) (1)

where ai and aj are two alerts from type i and type j, and Pi,j(k) is the correlation
probability for ai and aj in their kth correlation. Pi,j(k) is produced by the correlation
engine. ACM is not symmetric. It encodes the temporal relationship between two alerts
(ai is occurred before aj). The ACM elements are used later for generating two strength
matrices (Πb,Πf ). By each new correlation between a pair of alert types, ACM is updated
dynamically. As a result, the correlation probability of the corresponding alert types will
be updated accordingly. The elements of two strength matrices are calculated as [24].

Πf
c(ai,aj)

=
Wc(ai,aj)∑n
k=1 Wc(ai,ak)

(2)

Πb
c(ai,aj)

=
Wc(ai,aj)∑n
k=1 Wc(ak,aj)

(3)

Πf (ai, aj) is used to predict the correlation probability of one alert (ai) with another
alert that happens after it (aj). It is used in the attack graph generation. On the other
hand, Πb(ai, aj) is used to find the correlation probability of one alert (aj) with another
alert that has happened before it (ai). Π

b(ai, aj) is used as the fifth feature in the process
of feature vector generation (cell generation). Both matrices initially are filled with zero.
After each correlation the corresponding elements in ACM, Πb and Πf are updated. These
matrices play the role of some sort of memory or acquired knowledge for the correlation
system [31, 32].

4.2. Cell generation. iCorrelator is an AIS-based correlator. It uses concepts such as
cell, antigen and memory cell. It works on input antigens and produces the memory
cells. The memory cells are used to classify the new input cells. In iCorrelator, each cell
(antigen) is a vector of six features and one class number. The cell generator creates a
cell by using a pair of alerts. Suppose that a1 and a2 are two alerts, and a1 was produced
before the a2. Six features of two alerts are selected to produce a feature vector (cell) [24].

• F1: Source IP similarity for a1 and a2 ([0-1])
• F2: Destination IP similarity for a1 and a2 ([0-1])
• F3: Equality of destination port for a1 and a2 (0 or 1)
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• F4: Equality of destination IP of a1 with the source IP of a2 (0 or 1)
• F5: Backward strength correlation for alerts of type a1 and a2 ([0-1])
• F6: Correlation frequency for alerts of type a1 and a2 ([0-1])

Suppose that the timestamp, source address, destination address and alert type for
two alerts a1 and a2 are 4:13:20, 172.16.114.50:1227, 172.16.113.50:25, Email Ehlo, and
5:06:16, 172.16.113.50:1048, 172.16.112.50:21, FTP User respectively. Their correspond-
ing cell is (F1=.6872, F2=.7187, F3=0, F4=1, F5=.2424, F6=1) [31].

4.3. Fuzzy rules and fuzzy rule matcher. A limited number of fuzzy rules are defined
in order to assign a correlation probability to each pair of alerts. The antecedent part
of a rule contains six features (F1 − F6) and their corresponding values (V1 − V6). Two
features (F3 and F4) are Boolean. Five others are expressed by linguistic terms such
as high, low and medium. These linguistic terms are defined by appropriate fuzzy sets.
The consequent part of a rule is a class number. It is an integer number between 1 and
λ. The class number of 1 is equal to the probability value of 0, and the class number
of λ is equal to the probability value of 1. Other class numbers (between 1 and λ) are
mapped to the probability values by using a mapping function. Assigning a class number
to the consequent part of a rule requires certain degree of knowledge about the similarity
measurement, but it is not directly related to any particular alert types. For example,
a rule expresses that if the similarity of source and target IP addresses in two alerts are
high, and the target ports for both alerts are the same, and the target IP of the first
alert is not equal with the source IP of the second alert, and the frequency of previous
correlation for these two alert types are high, and the backward correlation strength of
these two alert types are high, then the class number is λ (correlation probability is 1).
A few more sample rules are shown in Table 1.

Table 1. Sample predefined rules with λ = 20

F1 F2 F3 F4 F5 F6 Class
Rule 1 Med Med 1 0 High High 16
Rule 2 High High 1 0 Low Low 19
Rule 3 High High 1 0 Low Low 18
Rule 4 Med Med 0 0 Med Low 4
Rule 5 Med Med 0 0 Med Low 3

The rule format is as follows:
If (F1 = V1) and . . . (F6 = V6) Then (Class = C)
A fuzzy rule matcher is used to assign a probability value to an input feature vec-

tor x. It uses the concept of compatibility. The compatibility of a feature vector x =
(v1, v2, v3, v4, v5, v6) with a rule Rj is the average of its six features membership values
with respect to the rule Rj. It is calculated as follows [32]:

Compatibility(x,Rj) =
1

n

n∑
i=1

µ(vi, Vi) (4)

where n is the number of features, vi is the value of ith feature in x, Vi is the value of
ith feature in the antecedent part of the rule Rj, and µ is the membership function for
the fuzzy set Vi. The compatibility of x with all rules is calculated in order to find the
most compatible rule. If the compatibility value for the most compatible rule is more
than a predefined rule selection threshold, rs, then the class number for x is determined
by the fuzzy rule matcher. The class numbers in the consequent parts of the three most
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compatible rules with x, their compatibility values and their distances from each other
are considered in order to assign a class number, C, to input vector, x (see Algorithm 1).
After assigning the class number C to input vector x, a mapping function is required to
convert C to a probability value. Equation (5) is used for this purpose.

P =
C− 1

λ
+

1

2λ
(5)

Algorithm 1 outlines the class number identification and probability mapping function
[32].

4.4. Extended AIRS. An extended version of the AIRS algorithm is used in the learn-
ing-based layer of correlation. It uses the AIRS algorithm with a few modifications.
Weighted Euclidean is used for distance calculation, and least average distance is used
for class selection. A mapping function is also provided for mapping the class number to
probability.

4.4.1. The AIRS algorithm. AIRS is a supervised-learning algorithm. It was introduced
in 2001 for the first time by Watkins [33]. Its revised version was introduced later [34].
It is more efficient than the original version and has the same level of accuracy. In this
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paper, we refer to this new version as AIRS. The main goal of the algorithm is to produce
a population of memory cells from the training data with the ability to classify the new
data. The AIRS design refers to many immune system metaphors including resource
competition, clonal selection, affinity maturation and memory cell retention. It uses the
resource limited artificial immune system concept. In this algorithm, the feature vectors
that are presented for training and test are called antigens while the system units are
called B-cells. A group of similar B-cells are called Artificial Recognition Ball (ARB).
The ARBs compete with each other for a fixed number of resources, and the ARBs with
higher affinities to the training antigen are improved. Each antigen in training data is
presented to algorithm once, and the algorithm creates a memory cell for it. The memory
cells that are formed after the presentation of all training antigens are used to classify
test antigens. The class of a test antigen, x, is determined by majority voting among the
k most stimulated memory cells with x, where k is a user defined parameter.

The aforementioned fuzzy rules are converted to appropriate form for using by AIRS.
They are called training cells or antigens in the AIRS algorithm. Table 2 shows a pop-
ulation of cells that are generated based on the rules of Table 1. These cells are used in
the training phase of the AIRS algorithm. The algorithm processes the training cells and
generates a population of memory cells. The memory cells are used in the classification
phase of the algorithm. The goal of the classification phase is to assign a class number
(probability value) to each new input cell. Table 3 shows a sample population of generated
memory cells.

As mentioned before, some modifications are made in AIRS in order to be used in
alert correlation. These modifications are made to improve the accuracy of the algorithm
for alert correlation and to convert the output of the algorithm to a real value. The
modifications are described in next three subsections.

4.4.2. Weight assignment. One of the key elements of the AIRS algorithm is its distance
calculation method. The distance between two cells is used to calculate their stimulation
level. It is calculated as follows:

Stimulation(c1, c2) = 1−Distance(c1, c2)

where Distance(c1, c2) is the Euclidean distance between two cells, c1 and c2.

Table 2. The training cells corresponding to rules of Table 1

F1 F2 F3 F4 F5 F6 Class
Cell 1 0.5 0.5 1 0 1.0 1.0 16
Cell 2 1.0 1.0 1 0 0.0 0.0 19
Cell 3 1.0 1.0 1 0 0.0 0.0 18
Cell 4 0.5 0.5 0 0 0.5 0.0 4
Cell 5 0.5 0.5 0 0 0.5 0.0 3

Table 3. Sample generated memory cells by AIRS

F1 F2 F3 F4 F5 F6 Class
Cell 1 0.55 0.99 1 0 0.38 0.62 16
Cell 2 0.98 1.0 1 0 0.10 0.61 19
Cell 3 1.0 1.0 1 0 0.50 0.07 18
Cell 4 0.20 0.46 0 0 0.24 0.20 4
Cell 5 0.65 0.50 0 0 0.10 0.11 3
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Since, the number of classes is high (λ = 20), and the number of training data is limited,
a more accurate method for computing the distance values is required. By observing the
training data, it is obvious that some features are more important than others. A slightly
change in these features causes a considerable change in the class number (probability
value). It is better to assign a weight to each feature in order to reflect its importance in
distance calculation [31].
There are many methods of attribute weighting such as Pearson Partial Correlation,

Information Gain and Symmetric Uncertainty, each of which is appropriate for a different
application. These methods are used to assign a weight or degree of importance to each
attribute in a dataset of vectors. We introduce a new attribute weighting method which
is very fast and accurate, named Average Contribution.
Consider a feature vector v that contains m numerical predictor features, F1-Fm, and a

numerical predicted value P . Assume that all m features are normalized between 0 and 1.
The Contribution of the feature Fj in providing the value of P for vector v is calculated
as below:

C(Fj, P ) =
Fj × P∑m

k=1 Fk

(6)

Average contribution of a feature in a dataset of vectors is defined based on its contri-
bution. It shows the total contribution of Fj in providing different values of P . It is used
as the weight or importance degree of the Fj in a dataset of vectors.
Consider dataset S in Figure 3 in which there are n feature vectors (v1-vn). Each

vector contains m numerical predictor values (F1-Fm) and a numerical predicted value
(P ). Average contribution of the feature Fj in dataset S is calculated as follows:

Wj = AC(Fj) =

∑n
k=1C(fkj, pk)∑n

k=1 fkj
(7)

where fkj is the value of the jth feature in the kth vector, pk is the numerical value that
is assigned to the kth vector (predicted value) and C(fkj, pk) is Contribution of the jth

feature in the kth vector.
As mentioned before, the rules that are used in the first layer of correlation are used as

the training data for the AIRS algorithm (Table 2). The Average Contribution is used to
assign a weight to each attribute in this data. As a result, the following coefficients are
produced.
W1 = 0.154, W2 = 0.155, W3 = 0.148, W4 = 0.249, W5 = 0.152, W6 = 0.141.
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Figure 3. Feature vectors and weight calculation
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They are used in weighted Euclidean distance calculation for two cells, c1 and c2, as
follows:

Distance(c1, c2) = 2

√√√√ m∑
j=1

Wj × (c1.Fj − c2.Fj)
2 (8)

4.4.3. Class selection policy. The KNN algorithm is used in the last step of AIRS. It
is used to assign a class number to data item x based on the class numbers of its K
nearest memory cells. AIRS uses the majority vote in the KNN algorithm. It means that
the class label of data item x is the class label with the most number of memory cells
among the K nearest memory cells. Our experimental results show that the replacement
of the majority vote with the least average distances improves the accuracy of the AIRS
algorithm in correlation system. Therefore, the class label for the data item x is the class
label with the least average distances from x (among the K nearest memory cells). It is
possible that class, Ca, with two memory cells identifies the class label of x instead of
class, Cb, with three memory cells. Because the average distance from x for memory cells
with class Ca is less than the average distance from x for memory cells with class Cb.

4.4.4. Probability mapping. Eventually, a class number, Ci, is assigned to an input data
item (a cell) by AIRS. In order to use Ci in alert correlation, AIRS should map it to a
probability value. Equation (5) is used again. To improve the accuracy of the mapping
the predecessor and successor class of Ci (Ci−1, Ci+1) are also considered in mapping
process. Suppose that the class label generated for an antigen Ag is Ci, and the average
distance of Ag with Ci is di, and the distances of Ag with Ci−1 and Ci+1 are di−1 and di+1

respectively. Equation (5) is modified as follows:

P =
Ci − 1

λ
+

1

2λ
+∆ (9)

∆ =


−di

λ(di + di−1)
if (di−1 < di+1) or (@Ci+1)

0 if (di = 0) or (di−1 = di+1) or (@Ci−1 and @Ci+1)
di

λ(di + di+1)
if (di+1 < di−1) or (@Ci−1)

4.5. Immune memory cells and Euclidean cell matcher. In natural immune system
the cell that recognizes a pathogen is transformed to the memory cell and is stored in
the pool of immune memory cells which provide the secondary response of the immune
system. The secondary response is more rapid than the primary response.

Inspiring by the secondary response of the immune system, iCorrelator stores the cell
and its correlation probability for future usages. Each time a correlation probability, p, is
assigned to cell, x, by AIRS, the pair of x and p is stored in the pool of immune memory
cells. As a result, if iCorrelator encounters a cell similar to x, then the value of p will
be assigned to it immediately. In this way, the performance of the correlation probability
assignment is increased considerably.

Weighted Euclidean distance is used to calculate the similarity between a new cell and
an immune memory cell. A cell matching threshold (cm) that is between 0 and 1, is
considered to define the minimum required similarity. A large number (more than 0.95)
is assigned to cm, in order to match the cells more accurately.

The immune memory cells are different from the memory cells that are generated in
the training phase of AIRS. The memory cells generated by AIRS are a limited number
of static memory cells, and they are generated from the predefined rules. However, the
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immune memory cells are dynamically generated cells that are generated and stored during
the correlation process.
Immune memory cells are organized in a 4-way search tree in order to improve the

performance of the search among them. Each time AIRS produces a new cell and assigns
a correlation probability to it, AIRS inserts the cell and the probability in this tree. The
structure of the tree is based on the value of the six features of the cells. During a search,
a path in the tree from the root to a leaf node is examined. The path is determined by
the values of the features in the input cell. Each leaf node contains a group of previously
generated similar cells and their correlation probability values. Figure 4 shows the search
paths for two cells c1:(0.21, 0.75, 0, 1, 0.55, 0.88) and c2:(1, 0.15, 0, 1, 0.13, 0.5).
If iCorrelator finds a cell in the designated leaf node that its similarity with the input

cell, x, is more than the cell matching threshold, cm, then the correlation probability
in that cell is considered as the correlation probability of x. Otherwise, iCorrelator uses
the AIRS algorithm to calculate the correlation probability of x. After calculating the
correlation probability by AIRS, iCorrelator inserts x and the calculated probability in
the designated leaf node.

4.6. Alert selection policy and correlation. After obtaining the proper accuracy in
the probability calculation process, it is possible to start the correlation process. Each
new input alert, a, is probably related to few previously observed alerts that are inserted
into a structure called hyper-alert. A hyper-alert contains the previously observed alerts
with a degree of correlation that could be placed in a candidate attack scenario. An
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Figure 4. Finding two cells c1 and c2 in immune memory cells

alert selection policy which defines the scope and method of the search in the previously
observed alerts, is required to search through the existing hyper-alerts.

New alert a first goes through the cell generator which requires two alerts to generate
a cell. One of them is a. Another one is provided by the alert selection policy module
by searching through the existing hyper-alerts (see Figure 2). A simple selection policy
is to select all previous alerts for examining their correlation with a. It is a good policy
for small dataset, but it is not scalable for large dataset. Moreover, it is not necessary
to check a with all previous alerts. It is possible to examine only the most recent alerts
during a time window.

A new enhanced time window-based approach with random alert selection, named
Random Directed Time Window (RDTW) is introduced for iCorrelator. A time window
with a fixed number of sliding time slots is defined. Only the previous alerts in the time
window are selected for examining their correlation, and all old alerts, out of the time
window are ignored.

Suppose that the number of time slots in a time window is n, and the time slots are
numbered from 1 to n. Also, suppose that there are si alerts in slot number i. When
a new alert arrives, iCorrelator randomly selects m alerts from each time slot, ti, for
correlation. m is different for each time slot and is less than or equal to si. The value of
m is determined by considering three values: i, the slot number that is between 1 and n;
si, the total number of alerts in ti and mx, the maximum correlation between new alert,
a, and all selected alerts from ti. Two first values (si and i) are used to calculate the
initial value of m as below [35]:

m =

⌊
si × i

n

⌋
(10)

For example, in Figure 5, the numbers of selected alerts for slot 1 to 5 are 2, 6, 7, 10
and 11 respectively. In order to select alerts more effectively, iCorrelator uses RDTW to
direct the selection toward the time slots with more relevant alerts. Suppose that mx is
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the maximum correlation value between the new alert, a, and all selected alerts in ti at
this moment. Also suppose that min accept is the minimum acceptable probability value
for continuing the alert selection from a slot. For alert a, the alert selection from slot
ti is started by calculating the initial value of m (using Equation (10)). After selecting
and correlating m/2 alerts of ti, the calculated value of mx is checked. If mx is less
than min accept threshold, then it seems that a is not related with ti. As a result, m
is decremented by one, and the selection and correlation process is continued by the
new value of m. On the other hand, if after correlating m alerts the mx value is more
than 1-min accept, then it is reasonable to conclude that a is strongly related with ti.
Thus, m is incremented by one and the system continues the process of alert selection
and correlation from ti. The selection terminates either by encountering an alert with
correlation probability less than 1-min accept or by selecting all alerts in ti. As a result of
this strategy, iCorrelator directs the selection toward the more relevant time slots. There
are three adjustable parameters that influence the performance of RDTW policy: n, the
number of slots in a time window; Ws, the width of each time slot and min accept, the
minimum acceptable correlation probability for a slot.
By arriving each new alert, a, iCorrelator selects some previously observed alerts as

described above and calculates the correlation probability between a and each selected
alert. Suppose alert, x that belongs to hyper-alert Hmax, has the most correlation proba-
bility, Cmax, with a among the alerts of all time slots. If Cmax is more than a predefined
threshold (Correlation Threshold), then a is added to Hmax, and the correlation of a with
all alerts in Hmax is calculated. Otherwise, a new hyper-alert is created, and a is added
to it.
Each time an alert is selected by the alert selection policy and is correlated by one

of the two layers of correlation (fuzzy and AIRS-based), the ACM, Πb and Πf matrices
are also updated. As a result, the system updates its acquired knowledge dynamically
and adapts itself incrementally with the new correlation results. Algorithm 3 outlines the
random directed time window-based alert selection and correlation.

4.7. Attack graph generation. Hyper-alert is useful for presenting the relationships
among the alerts. However, by considering the number of generated alerts, it is obvious
that the size of the hyper-alerts is increased very quickly, and it becomes very difficult
to extract the required information. Each hyper-alert contains the step by step progress
of an attack. An attack graph is a directed graph that shows the overall scenario of an
attack, and it contains one node for each alert type. An attack graph presents an overall
and concise view of an attack scenario. As mentioned before, Πf and ACM are generated
during the correlation process, and are used in the attack graph generation.
The attack graph generation starts with an alert that represents a particular type of

attack. Then it performs a horizontal search in the ACM to find alerts that are most
likely to happen after this alert. These alerts become new starting points to search for
alerts that are more likely to happen next. The process is repeated until no other alerts
are found to follow any existing alerts in the graph [24].

5. Evaluation and Results. The input of iCorrelator is the information such as source
IP address, destination IP address and destination port number. Hence, it is working on
the network layer data. Moreover, iCorrelator is not able to process the alerts generated by
different IDSs directly. The format of alerts for each IDS is possibly different from others.
Therefore, alerts should be converted to the internal format of iCorrelator before they are
processed. The alerts produced by Realsecure and Snort on DARPA2000 and netForensics
honeynet data are employed to evaluate iCorrelator. DARPA2000 is a well known dataset



AIS-INSPIRED ARCHITECTURE 247

for evaluating the alert correlation systems. There are many works that have used this
dataset. Hence, it is possible to compare the generated results with the other works.
netForensics honeynet data is used to evaluate the accuracy and performance of the
iCorrelator. It contains about 70000 alerts, and it is more appropriate for performance
evaluation than DARPA2000.
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Figure 5. A time window containing 5 time slots (n = 5)

Realsecure produces 922 alerts from 22 different types for the Inside1 traffic of the
DARPA2000 data. It contains the LLDoS1.0 attack scenario. LLDoS1.0 has the following
stages:

1. IPsweep of the network from a remote site
2. Probe of live IPs to look for the sadmind daemon
3. Break-ins via the sadmind vulnerability
4. Installation of the trojan mstream DDoS
5. Launching the DDoS

Realsecure also produces 494 alerts from 20 different types for the Inside2 traffic of
DARPA2000. It contains the LLDoS2.0 attack scenario. LLDoS2.0 has the following
stages:

1. Probe of a public DNS server on the network, via the HINFO query
2. Breakin-to the DNS server via the sadmind vulnerability
3. FTP upload of mstream DDoS software and the attack script
4. Initiate the attack on the other hosts of the network
5. Launching the DDoS

DARPA2000 is used to evaluate the ability and accuracy of iCorrelator to extract the
multi-step attack scenarios. As a result of the limited number of alerts in both Inside1
and Inside2, another dataset with more alerts is used to evaluate the performance of
iCorrelator. The netForensics honeynet dataset contains 35 days of traffic logs collected
from February 25, 2005 to March 31, 2005. During this period, attackers issued several
multi-step attacks to compromise the honeynet. Here, the word compromised is defined
as a successful attack, followed by some follow-up activities.
From the honeynet owner’s point of view, the most compelling evidence of compromise

was the outbound IRC communication, which implies that the intrusion succeeded, the
attacker has some degree of control over the machine and that he managed to install his
own software (an IRC client or Bot). The owner of the honeynet also pointed out that
their victim server was first compromised on February 26 and then continued in March.
The traffic of the first two days of netForensics honeynet data is employed to test the
ability of iCorrelator to extract the attack scenarios. netForensics is also used to evaluate
the performance of the system.
Twenty one general rules are used in the rule set, and their corresponding twenty

one training antigens are used for AIRS training phase. Before starting the correlation
process, the AIRS algorithm is executed, and the generated memory cells are stored for
future use. Therefore, the initial knowledge of the system consists of the fuzzy rules and
the generated memory cells.
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Table 4. The system parameter setting during the experiments

AIRS parameters Correlation parameters
Number of lymphocytes 200 Correlation Threshold 0.5
Stimulation Threshold 0.95 Correlation Sensitivity 0.1
Mutation Rate 0.1 Rule Selection Threshold (rs) 0.9
Hyper Mutation Rate 3 Cell Matching Threshold (cm) 0.97
Clonal Rate 10 Time window parameters
Number of Initial Memory Cells 1 Number of Time Slots (n) 20
Affinity Threshold Scalar 0.2 Width of Each Slot in Seconds (Ws) 300
Number of Nearest Neighbors 3 Minimum Acceptable Probability (min accept) 0.75

Three measures are used to evaluate the accuracy of the system: completeness, sound-
ness and false correlation rate. Each one is defined as below [14]:

Completeness =
(correctly correlated alerts)

(related alerts)

Soundness =
(correctly correlated alerts)

(total correlated alerts)

False Correlation rate =
(incorrectly correlated alerts)

(related alerts)

where, the correlated alerts are all alerts in the extracted scenario and the related alerts
are all alerts in the desired complete scenario.

To evaluate the accuracy of the system, it is examined with two mentioned scenarios
(LLDoS1 and LLDoS2). Table 4 shows the system parameter setting during the experi-
ments. The most important parameters that influence the accuracy and performance of
the system are the number of alerts, the number of cells (lymphocytes), the correlation
threshold, the rule selection threshold, rs, the cell matching threshold, cm, the number of
time slots, n, and the width of each time slot, Ws. The best results are obtained by the
values that are shown in Table 4. The values of AIRS related parameters are selected
based on the well known works on this algorithm [33, 34]. For other parameters, admissi-
ble values that are selected by trial and error are used. The system is executed 10 times
for each dataset, and the results are reported based on the average values.

The select all and RDTW policy with three different configurations are used to evaluate
the performance of the system. The numbers of the time slots, n, in all three configurations
are 10, and the width of time slots, Ws, are 150, 300 and 600 Seconds. For each policy
and configuration, the numbers of alerts are changed from 1000 to 5000 and the execution
times are considered.

5.1. Accuracy evaluation. Both DARPA2000 and netForensics honeynet data are em-
ployed to examine the accuracy of iCorrelator. Two different alert selection policies are
investigated: the select all policy and RDTW with n = 20 and Ws = 300. The results are
compared with the results reported by Ning et al. [14] and Al-Mamory et al. [36]. These
two works use the same dataset (DARPA2000) and the same measures (soundness and
completeness) for their accuracy evaluation.

The results for LLDoS1.0 show that the alerts in this scenario are from six different
types: Sadmind Ping, Sadmind Amslverify Overflow, Admind, Rsh, Mstream Zombie and
Stream DoS. The first five alert types are appeared in all extracted scenarios with both
policies. The last step of the attack is a Stream DoS alert. It is the only alert that is not
correlated with other alerts. It is placed in a hyper-alert with only one alert.
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Table 5 shows the average of completeness, soundness and false correlation rate for
iCorrelator with select all and RDTW policies in processing the inside1 data. The results
reported by Ning [14] and Al-Mamory [36] are also provided in Table 5 for comparison.
iCorrelator with select all policy, offers the highest completeness. It shows the ability
of three-layer architecture in correctly correlating the most number of alerts. The mean
completeness is 0.941. It is close to the completeness reported by Ning et al. (0.932) [14]
and is considerably better than the completeness reported by Al-Mamory et al. (0.833).
It is important to consider that in [14] prerequisites and consequences are used as the
basic mechanism for correlation. Extensive knowledge of network security and different
attack types are required in order to define the prerequisites and consequences of differ-
ent steps of attacks. Also it needs to maintain this knowledge up to date. It is hard
and time consuming and need extensive technical knowledge. This process is done by
iCorrelator without the predefined rules about different attack types and their relations.
The soundness and false correlation rate with select all policy are 0.950 and 0.050 respec-
tively. They are 0.932 and 0.068 for Ning et al. and 1.0 and 0.0 for Al-Mamory et al.
The completeness for RDTW is less than all other methods (0.816). By considering the
extracted attack scenarios, it is obvious that the lower completeness for iCorrelator with
RDTW policy is not influential. Because, most missing alerts are Rsh alerts. There are
17 alerts of this type in LLDoS1.0. The decline of the completeness in the RDTW is the
consequence of the missing Rsh. In spite of the missing of few Rsh alerts, iCorrelator
is able to extract the scenario correctly. Figure 6(a) shows the extracted scenarios with
RDTW and select all policy for LLDoS1.0. The extracted graphs for both policies are the
same with a little difference in the weights of the edges. Thus, the less completeness for
RDTW is not influential in scenario extraction. Figure 6(b) shows the graph reported in
[24] for comparison. The extracted graphs (regardless of the weights) are the same with
both selection policies. As we will see later in Section 5.2 the performance of the system
with RDTW is much better than the system with select all policy.

Table 5. Accuracy comparison for LLDoS1.0

Select All RDTW Ning [14] Al-Mamory [36]
Completeness 0.941 0.816 0.932 0.833
Soundness 0.950 0.943 0.932 1.000
False Correlation 0.050 0.052 0.068 0.000
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Figure 6. The attack graph generated for LLDoS1.0 by iCorrelator (a)
and by Zhu et al. (b) [24]. The results for iCorrelator are for two policies:
RDTW (Ws = 300, n = 20) and Select All (separated by slash).
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It is worth pointing out that the different weights for graphs generated by different
methods are unavoidable. Each method uses different ways for probability calculation
and also different policies for alert selection. The different sequences of random numbers
and random selections generate different results in each execution even for one specific
method.

Both mentioned alert selection policies are also used to examine the Inside2 traf-
fic. Again both policies are able to extract the attack scenario almost completely (ex-
cept the last step). Alerts that appear in all extracted scenario are Admind, Sad-
mind Amslverify Overflow, FTP Put and Mstream Zombie for both policies. The last
step of the attack is not extracted in all experiments. Its related alert (Stream DoS ) is
placed in a hyper-alert with only one alert.

Table 6 shows the average of completeness, soundness and false correlation rate for iCor-
relator with select all and RDTW policies in processing the inside2 data. Again the results
reported by Ning [14] and Al-Mamory [36] are provided for comparison. Although Al-
mamory et al. report the highest completeness (0.875), their reported soundness (0.583)
is considerably less than iCorrelator and their reported false correlation rate (0.625) is
considerably higher. The completeness for RDTW is less than its corresponding value
for select all policy, but its soundness and false correlation rate (0.982 and 0.014) are the
best among all. The results for iCorrelator are close to the results reported by Ning et
al. In spite of the less completeness for iCorrelator, it is able to extract the LLDoS2.0
scenario correctly. Figure 7(a) shows the extracted scenarios with RDTW and select all.
The extracted graphs for both policies are the same with a little difference in the weights
on the edges. Hence, the less completeness for RDTW is not influential in scenario ex-
traction. Figure 7(b) shows the graph reported in [24] for comparison. The extracted
graphs (regardless of the weights of the edges) are the same with both selection policies.

Table 6. Accuracy comparison for LLDoS2.0

Select All RDTW Ning [14] Al-Mamory [36]
Completeness 0.607 0.600 0.667 0.875
Soundness 0.937 0.982 0.923 0.583
False Correlation 0.050 0.014 0.056 0.625
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Figure 7. The attack graph generated for LLDoS2.0 by iCorrelator (a)
and by Zhu et al. (b) [24]. The results for iCorrelator are for two policies:
RDTW (Ws = 300, n = 20) and Select All (separated by slash).
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Figure 8. The attack graph generated for netForensics honeynet with
RDTW policy (Ws = 300, n = 20) and Select All policy (separated by
slash)

iCorrelator is also examined with netForensics honeynet data. Snort generates 3419
alerts belonging to 43 different alert types for the first two days of this data. Re-
sults show that all 43 types of alerts in the input data are correlated with each other
with different strengths. As mentioned before, the most compelling evidence of compro-
mise is the outbound IRC communication, which implies that the intrusion succeeded.
Our extracted scenario is started by three alert types: WEB-ATTACKS rm command
attempt, BLEEDING-EDGE EXPLOIT Awstats Remote Code Execution Attempt and
WEB-ATTACKS wget command attempt. The attacker uses these remote command at-
tempts to download and install malicious software on the target machines. Then the
attacker issues IRC attacks from those compromised targets to the final victim. Snort is
produced alerts such as CHAT IRC nick change, BLEEDING-EDGE IRC-Nick change on
non-std port and CHAT IRC message for the rest of the attack, and our system correlates
these alerts. Figure 8 compares the extracted attack scenarios with RDTW and select all
policies.

5.2. Performance evaluation. There are two performance considerations for iCorre-
lator. Firstly, the correlation method in second layer of correlation is learning-based.
Generally, statistical and learning-based methods are time consuming and are not usually
applicable for online correlation. Secondly, using the nested loops in order to examine the
previous alerts for correlation are time consuming in large datasets.
The first problem is solved by using three layers of correlation. According to our

experimental results for iCorrelator, more than 98 percent of all correlations go through
the rule-based layer or memory-based layer of correlation and less than 2 percent go
through the learning-based layer. Moreover, iCorrelator uses an enhanced alert selection
policy to address the second problem. RDTW is used to reduce the execution time and
improve the performance of iCorrelator without (or with minimum) accuracy degradation.
The netForensics honeynet is used to evaluate the performance of iCorrelator with

RDTW and select all policy. Three different settings for the number of time slots (n) and
the width of the time slots (Ws) are used. Also the number of alerts is changed from 1000
to 5000, and the execution time is reported. All experiments are done on a system with
an Intel Core 2 Duo, 2.0 GHZ processor and 1 MB of main memory. Table 7 shows the
comparing results of the execution time. It is observable in Table 7 that the execution
time with select all policy is O(n2

a), where na is the number of alerts. For example for
1000 alerts the execution time is 16 seconds, and with 2000 alerts the execution time is
64 seconds.
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Table 7. Comparing the execution time (in seconds) with different time window

Number of Alerts Select All Ws = 600 s, n = 10 Ws = 300 s, n = 10 Ws = 150 s, n = 10
1000 16 10 8 7
2000 64 25 21 16
3000 146 48 44 30
4000 258 91 79 51
5000 402 158 133 90

As it is expected, the execution time with RDTW policy is decreased considerably.
Table 7 shows that even for the small number of alerts the difference between two policies
is considerable. The execution time for 1000, 2000 and 3000 input alerts with Ws = 600
Seconds and n = 10 (time window of 6000 seconds) are 10, 25 and 48 seconds respectively,
and with Ws = 150 Seconds and n = 10 (time window of 1500 seconds) are 7, 16 and
30. It shows that the time complexity is approximately linear, and it is applicable for
online correlation. The time window size is an important factor for the performance and
accuracy of the system. It is possible to adjust the performance and accuracy based on
the conditions in use. For example, a higher rate of alerts implies a shorter time window,
a more important asset in the protected network implies a longer time window, and a
longer time window needs more processing resources. The time window is controlled by
the number of time slots (n), the width of each time slot (Ws) and the min accept value.
In the current version of iCorrelator, the adjustment of the parameters is done manually
by the administrator.

6. Conclusion and Future Work. In this paper, iCorrelator, an immune-inspired ar-
chitecture for alert correlation is presented. It is based on the three layers of correlation
that is inspired by the three different responses in the human immune system. In the first
layer, an agile rule-based correlation system is used. It contains a very limited number
of general rules which are used to address some typical cases. An immune inspired learn-
ing algorithm along with a group of matrices provides an incremental learning method
in second layer of correlation. It is used to manage the previously unencountered cases.
The correlation results in the second layer of correlation are stored in a pool of immune
memory cells and are used in the third layer of correlation. Considerable performance
improvement is obtained by using the experiences which are stored in the pool of immune
memory cells. iCorrelator is simple to set up. It does not need complicated initial knowl-
edge. It is able to learn the correlation probability between different attack types, and is
able to remember this knowledge for future usages.

A new attribute weighting algorithm, named average contribution is also presented. It
is used in the AIRS algorithm to improve its accuracy. Moreover, a new alert selection
policy is used to improve the performance of the system. It is based on a time window
and a directed random alert selection method.

iCorrelator is examined by two DARPA2000 traffic data and a netForensics honeynet
data. The completeness, soundness and false correlation rate are examined for evaluating
its accuracy. The results are compared with other similar works. In spite of its simple set
up, iCorrelator is able to correlate the alerts accurately and extract the attack scenarios
correctly. The performance of iCorrelator is also examined by different number of alerts.
While the complexity of the correlation process with select all policy is O(n2

a) (na is the
number of alerts), it is almost linear with the RDTW policy. Although RDTW policy
decreases the time complexity of the system, it does not decrease its accuracy.
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More works are required in order to examine the system for online correlation. It is
also useful to work on automatic parameter selection for time window management.
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