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Abstract. Image segmentation is a fundamental technique in image processing. We
call the function that extracts blobs (image regions) in a given image and exhibits them
in a time series “dynamic image segmentation”. It is known that a locally excitatory glob-
ally inhibitory oscillator network (LEGION) described by ordinary differential equations
is an interesting dynamic image-segmentation system using synchronization of coupled
oscillators. On the other hand, we developed a discrete-time oscillator network that can
perform dynamic image segmentation by synchronizing the oscillatory responses that are
formed by periodic points in dynamics of discrete-time oscillators. Compared with LE-
GION, the proposed system can significantly reduce a computational cost because it does
not need unnecessary numerical integration; moreover, we can design the suitable values
of the system parameters for dynamic image segmentation on the basis of analyzed results
on bifurcations of fixed and periodic points. In this paper, we describe how the topological
property of a fixed point corresponding to non-oscillatory responses that are unsuitable
for dynamic image segmentation in the proposed system gives significant information on
the structure of regions in a given binary (black and white) image. We also suggest a
novel way to identify the number of image regions without performing a segmentation
process.
Keywords: Discrete-time oscillator, Fixed point, Neimark-Sacker bifurcation, Dynamic
image segmentation, The number of image regions

1. Introduction. The dynamics of coupled oscillators has been paid much attention in
many fields such as physics, chemistry, engineering, and neuroscience [1, 2, 3, 4]. Accord-
ing to the coupling structure of oscillators and the dynamical properties of each individual
oscillator, coupled oscillators produce various characteristics as fully incoherent, partially
coherent, and fully coherent states. Synchronization [1] that generates a coherent state is
a remarkable phenomenon and has been studied for various oscillator models [2, 3, 4].

Synchronization of coupled oscillators can be applied to image segmentation [5, 6, 7].
Image segmentation is a fundamental technique in image processing. The problem with
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image segmentation is still serious and various frameworks have been proposed to solve
this problem [8, 9, 10]. For example, the k-means method [11] is well known as an
image-segmentation method for gray-level images. However, as prior information of a
segmentation process, it requires the number of image regions to be segmented in a given
image. The number is determined by users and is often given as the number of gray
levels to be segmented. In contrast, as a novel image-segmentation system using coupled
oscillators, a locally excitatory globally inhibitory oscillator network (LEGION) [5, 6] has
been proposed.
A LEGION is composed of an inhibitor and the same number of oscillators as that of

pixels in a given image. The dynamics of a LEGION is described by ordinary differential
equations. Using in-phase and out-of-phase synchronization of oscillators, a LEGION can
extract blobs (image regions) in a given image and can exhibit them in a time series. We
call this function “dynamic image segmentation”. Thus a LEGION provides remarkable
image segmentation without the prior information on the number of image regions. How-
ever, numerical integration with a high computational cost such as LSODE [12] is needed
to accurately calculate the behavior of a LEGION, the number of image regions to be
segmented in a segmentation process is limited from the nature of oscillators, and we can-
not systematically tune system parameter values so that dynamic image segmentation is
properly performed because it is difficult to analyze bifurcations of equilibria and periodic
oscillations in a LEGION.
On the other hand, we developed a discrete-time oscillator network [13] that can perform

dynamic image segmentation. The dynamics of the proposed oscillator that is modified on
the basis of a chaotic neuron model [14] is described by a two-dimensional discrete-time
map. Our oscillators can generate oscillatory responses that are formed by periodic points
like relaxation oscillations observed in continuous-time dynamical systems. The proposed
oscillator network consists of a global inhibitor and the discrete-time oscillators arranged
in a grid so that each discrete-time oscillator corresponds to a pixel in a given image.
Dynamics of the global inhibitor is also described by a discrete-time map. According to
the synchronization of the oscillatory responses of discrete-time oscillators, our oscillator
network can perform dynamic image segmentation without the prior information on the
number of image regions like a LEGION. Moreover, the proposed system can significantly
reduce a computational cost to work compared with that of a LEGION because numerical
integration is unnecessary. The type of a periodic point that appears in a steady state
determines the feasibility of dynamic image segmentation. The appearance depends on
parameter values, so we tuned parameter values for dynamic image segmentation based
on the results of bifurcation analysis for periodic points and a fixed point in reduced
models of our systems [15, 16, 17]. It is also an advantage over a LEGION that we can
tune parameter values on the basis of such analyzed results.
The proposed system, however, has a limitation with respect to the number of image

regions to be segmented. To solve this, Musashi et al. [18] have proposed a successive
algorithm of dynamic image segmentation for a given image with the large number of
image regions. To briefly explain the algorithm, images segmented with our dynamic
image-segmentation system are represented as inner nodes in a hierarchical tree structure
in which the root node corresponds to a given (the original) image with a large number
of image regions. Dynamic image segmentation is successively performed for respective
images corresponding to inner nodes. After that it becomes a leaf node if an image
corresponding to an inner node has only one image region, i.e., the successive algorithm
terminates when the tree is complete. Therefore, it is significant and useful to identify
the number of image regions before segmentation processes for pruning useless dynamic
image-segmentation processes in the successive algorithm.
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In this paper, we describe how the topological property of a fixed point, which corre-
sponds to non-oscillatory responses and is unsuitable for dynamic image segmentation,
gives significant information on the structure of regions in a given binary (black and white)
image. In other words, by computing the characteristic multipliers of a fixed point when
it bifurcates, we can identify the number of image regions and background pixels. This
fact is not only informative in image segmentation but also interesting from the viewpoint
of bifurcation theory.

2. Dynamic Image Segmentation System. Figure 1 shows the architecture of our
discrete-time oscillator network for dynamic image segmentation [13]. It consists of a
global inhibitor and N discrete-time oscillators arranged in a grid so that each one corre-
sponds to a pixel in an N -pixel input image. Couplings between neighboring oscillators
and self-feedback connections are formed depending on the feature values of pixels in a
given input image as described below.

A discrete-time oscillator has two internal variables, and the dynamics of the ith
discrete-time oscillator is defined by

xi(t+ 1) = kfxi(t) + di −Wzg(z(t), θz) +
Wx

Mi

∑
j∈Li

g(xj(t) + yj(t), θc) (1)

yi(t+ 1) = kryi(t)− αg(xi(t) + yi(t), θc) + a. (2)

Here, t ∈ Z denotes the discrete time, and di represents the direct current input with a
value set by the feature value of the ith pixel in an input image. We used pixel values
as feature values. Oscillators corresponding to pixels with only a high di value have
self-feedback connections, and connections with neighboring oscillators (DOi and DOj)
are formed only if di ' dj. Thus oscillators with self-feedback connections can generate
oscillatory responses. The third and fourth terms on the right side of (1) correspond to
suppressive input from a global inhibitor and excitatory input from neighboring oscillators,
including itself. Wz and Wx denote coupling strength from a global inhibitor to the ith
oscillator and that from a neighboring oscillator to the ith oscillator, respectively; Li and
Mi correspond to the set of the ith oscillator and its four neighboring ones and the number

DO1
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Figure 1. Architecture of proposed discrete-time oscillator network
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Figure 2. Scheme of dynamic image segmentation using our proposed system

of elements in Li. The dynamics of the global inhibitor is defined as

z(t+ 1) = φ

{
g

(
N∑
k=1

g(xk(t) + yk(t), θf ), θd

)
− z(t)

}
, (3)

so that it can detect one or more oscillators with a higher activity level than that of the
threshold parameter θf and can output a spike simultaneously. g(·, ·) in (1)-(3) represents
the output function of an oscillator or a global inhibitor and is defined by

g(u, θ) =
1

1 + exp(−(u− θ)/ε)
. (4)

In (1)-(4), kf , di, Wz, θz, Wx, θc, kr, α, a, φ, θf , θd, and ε are system parameters.
Let us illustrate the behavior of our system and the scheme of dynamic image seg-

mentation for a binary (black and white) image in Figure 2. We set the values of dis to
the same high values for oscillators corresponding to white pixels and set those in the
other oscillators to zero. In Figure 2, the 1st, 2nd, 7th, and 9th oscillators have self-
feedback connections, and the excitatory coupling between the 1st and 2nd oscillators
is also formed. Oscillators corresponding to only white pixels can generate oscillatory
responses corresponding to periodic points. Also, oscillatory responses of the first and
second oscillators can be synchronized because of the excitatory coupling. The global
inhibitor is connected to all the oscillators and suppresses their activity levels when one
or more oscillators have high activity levels. This causes synchronized responses in di-
rectly coupled oscillators and out-of-phase responses in uncoupled ones. Associating the
amplitude value of the ith oscillator with the ith pixel value at every discrete time enables
the segmented images to be output and exhibited as a time series. This is how our system
works as a dynamic image-segmentation system.

3. Fixed Point and Its Bifurcation. Let x(t) = (x1(t), y1(t), . . . , xN(t), yN(t), z(t))
> ∈

RS, where S = 2N+1. > denotes the transpose of a vector. The dynamics of our discrete-
time dynamical system for an N -pixel image is described as

x(t+ 1) = f(x(t)), (5)
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and equivalently, its iterated map is defined by

f : RS → RS; x 7→ f(x), (6)

where the nonlinear function f = (f1, f2, . . . , fS)
> is described as

f =



kfx1 + d1 −Wzg(z, θz) +
Wx

M1

∑
j∈L1

g(xj + yj, θc)

kry1 − αg(x1 + y1, θc) + a
...

kfxN + dn −Wzg(z, θz) +
Wx

MN

∑
j∈LN

g(xj + yj, θc)

kryN − αg(xn + yn, θc) + a

φ

{
g

(
N∑
k=1

g(xk + yk, θf ), θd

)
− z

}


. (7)

Next, let us define the fixed point and its characteristic multiplier. A point x∗ ∈ RS

satisfying

x∗ − f(x∗) = 0 (8)

becomes a fixed point of f . The characteristic equation of x∗ is defined by

χ(x∗, µ) = det (µE −Df(x∗)) = 0, (9)

where E, Df(x∗), and µ ∈ C correspond to the S × S identity matrix, the Jacobian
matrix of f at x = x∗, and one of the S characteristic multipliers for x∗. Note that all
the elements of Df(x∗) can be analytically computed.

The topological property of a fixed point is determined on the basis of the arrangement
of all characteristic multipliers. When one or more characteristic multipliers of a fixed
point are on the circumference of a unit circle in the complex plane, the topological
property of the fixed point is changed, and then a bifurcation occurs. For example, a
Neimark-Sacker bifurcation occurs if one or more pairs of complex-conjugate characteristic
multipliers are on the circumference. Kawakami [19] has classified the bifurcation types
and has proposed a method to compute bifurcation points.

Next, we introduce the previously analyzed results [15, 16, 17] for bifurcations of a
fixed point observed in reduced models of our system. The reduced models are based on
the fact that plural oscillators in an image region can be reduced to an oscillator if we
assume that the responses of oscillators in an image region are synchronized in-phase.
For example, our system for an image with two image regions is simplified as a model
with a global inhibitor and two oscillators without directly excitatory coupling between
the oscillators; we call it the two-coupled system. Figure 3 plots the bifurcation sets of a
fixed point observed in the two- and three-coupled systems. In the analysis, the values of
the system parameters except for kr and φ were set to kf = 0.5, d1 = d2 = 2, Wz = 15,
θz = 0.5, Wx = 15, θc = 0, α = 4, a = 0.5, θf = 15, θd = 0, and ε = 0.1. The NS1

` denotes
a Neimark-Sacker bifurcation curve of the fixed point, where the subscript number ` was
appended to distinguish between bifurcation sets of the same type. The stable fixed point
exists only in the shaded parameter region and is destabilized at the Neimark-Sacker
bifurcation points. Multiple Neimark-Sacker bifurcations occur at parameter values on
the curve NS1

1 . For example, in the two-coupled system, the number of characteristic
multipliers that are outside of the unit circle is changed from 0 to 4 when the value of kr
passes through the curve NS1

1 from the inside to the outside of the shaded region; in the
three-coupled system, its number is changed from 0 to 6.
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Figure 3. Bifurcation diagram of a fixed point observed in reduced
model [15, 16, 17]

4. Experimental Results and Discussion. Let us consider the relevance between
the arrangement of characteristic multipliers of a fixed point when it bifurcates and the
number of image regions in an input image. To simplify the problem, we treated only
binary (black and white) images, shown in Figures 4(a)-4(c). The dimension numbers in
our system to segment 2× 2, 3× 3, and 20× 20 images are 9, 19, and 801, respectively.
Here, so that double Neimark-Sacker bifurcations of a stable fixed point can occur, we
set kr = 0.88974207 and φ = 0.8 that correspond to a near point at NS1

1 in Figure 3.
We also set di = 2 and dj = 0 in the ith and jth oscillators corresponding to white
and black pixels, respectively. The values of the other parameters were set to the values
described in Section 3. Note that because the occurrence of bifurcations is sensitive to the
change of parameter values, the parameter values should be set to the bifurcation point
as accurately as possible.
First, in our system for the 2×2 image with two white image regions and two black pix-

els, we found a fixed point x∗ = (32.096, −31.565, −1.756, 1.516, −1.756, 1.516, 32.096,
−31.565, 0.222)> at the parameter values; its characteristic multipliers were (0.5, 0.5,
−0.8, 0.964−0.266i, 0.964+0.266i, 0.964+0.266i, 0.964−0.266i, −2.162, −2.162)>. The
numbers of characteristic multipliers inside and outside of a unit circle in the complex
plane are three and two, respectively. The four residual ones consist of two pairs of com-
plex conjugates on the circumference of the unit circle (i.e., those that caused the double

(a) (b) (c)

Figure 4. Black and white images: (a) 2× 2 pixels with two white image
regions, (b) 3 × 3 pixels with three white image regions, and (c) 20 × 20
pixels with 10 white image regions
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Neimark-Sacker bifurcations), which makes this consistent with the analyzed results of
the two-coupled system [15, 17]. Figure 5(a) plots the characteristic multipliers on the
inside, left outside, and circumference of the unit circle as black, red, and blue points,
respectively. Note that some points overlap.

Second, we found a fixed point in our system for the 3 × 3 image with three white
image regions and five black pixels, which can be reduced to a three-coupled system. The
characteristic multipliers of the fixed point were (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.694, −0.8,
0.964−0.266i, 0.964+0.266i, 0.964−0.266i, 0.964+0.266i, 0.964−0.266i, 0.964+0.266i,
−2.162, −2.162, −2.162, −2.162, −2.162)> and are plotted in Figure 5(b). The numbers
of characteristic multipliers on the inside, outside, and circumference of the unit circle in
the complex plane are 8, 5, and 6, respectively. These three pairs of complex-conjugate
characteristic multipliers give rise to triple Neimark-Sacker bifurcations, which is also
consistent with the analyzed results of the three-coupled system [16, 17].

The results lead us to the following hypotheses.

1. The number of pairs of complex-conjugate characteristic multipliers that cause mul-
tiple Neimark-Sacker bifurcations is equal to the number of image regions.
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Figure 5. Arrangement of characteristic multipliers of a fixed point in
proposed system for (a) 2×2 image, (b) 3×3 image, and (c) 20×20 image.
< and = correspond to the real and imaginary part of the complex number.
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2. The number of characteristic multipliers arranged on (−∞,−1) is equal to the num-
ber of black pixels corresponding to background regions.

3. The other characteristic multipliers are arranged inside of a unit circle.

In other words, if we compute the number of pairs of complex-conjugate characteris-
tic multipliers that cause multiple Neimark-Sacker bifurcations of a fixed point, we can
identify the number of image regions to be segmented in a given binary image.
To test the hypotheses, we computed a fixed point and its characteristic multipliers

in our system for the 20 × 20 image with 10 white image regions and 273 black pixels;
the characteristic multipliers are plotted in Figure 5(c). Results showed that the number
of characteristic multipliers arranged on the left outside of the unit circle was 273 and
corresponded to the number of black pixels, and the pairs of complex-conjugate charac-
teristic multipliers was 10, which corresponded to the white image regions. Through our
other experiments for input images with the different number and shape of image regions,
we confirmed that the locations of fixed points and their bifurcation points were almost
unchanged at the same parameter values, i.e., the differences of their locations were neg-
ligibly small. These demonstrate that our hypothesis is effective and suggest that our
method to identify the number of image regions to be segmented in a given binary image
is also effective. However, it is difficult to apply our method to large images. Its feasibility
for large images depends on the performance of computers and an algorithm to compute
eigenvalues of a large matrix.

5. Conclusion. We considered the relevance between the number of image regions to be
segmented in a given binary image and the arrangement of the characteristic multipliers
of a fixed point when the system bifurcates. The results showed that the number of
image regions is the same as the number of characteristic multipliers that cause multiple
Neimark-Sacker bifurcations of a fixed point. This demonstrates the suitability of our
method to identify the number of image regions. Note that our approach is also applicable
to gray-scale images and color images using a discrete-time multi-scaling system [20] that
makes the degradation (posterization) of a given image as pre-processing.
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