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Abstract. This paper deals with the control of a power system with time delay in the
states. The power system is a seventh order synchronous machine infinite bus system.
The linearized model of the system belongs to a class of uncertain linear systems with
states delays. Two control schemes are proposed for the system. The first controller
uses only the instantaneous states for feedback; the second controller combines the effects
of the instantaneous as well as the delayed states. Using Lyapunov theory, it is proven
that both control schemes guarantee the exponential stabilization of the power system.
Detailed simulation results clearly indicate that the proposed control schemes work well.
Keywords: Power system, Delays in the state, Control

1. Introduction. Time delays are present in many physical systems [1]. These time
delays influence the stability of the systems and might degrade the performance of the
system; hence they should be properly considered in the controller design [2,3].

Although time delay exists in the power system measurement and control loops, tra-
ditional power system controllers were generally designed based on local information and
time delays were usually ignored. With the introduction of Wide-Area Measurement Sys-
tem (WAMS) technology, synchronized real-time measurements are provided in the form
of phasor measurement unit (PMU) which can be used for stability studies of power sys-
tems. This leads to a more efficient controller design. However, time delays are present
significantly in these measurements due to transmission channels [3].

Several researchers worked on the control of power systems while considering the time
delay [2-41]. For example, in [4-8] the impact of time delay in the design of power system
stabilizers was discussed. An effective method to eliminate the oscillations introduced by
time-delayed feedback control was proposed in [9,10]. The work in [13] studied the effects
of inclusion of delays on the small signal stability of power systems. The researchers in
[14] designed a control scheme using phasor measurements considering delays for small
signal stability of power systems. The authors in [15] presented a wide-area control system
for damping generator oscillations. Additional studies on the influence of time delay on
power system stability can be found in [11-41] and the references cited therein.

This paper contributes to the development of feedback controllers for power systems
with states delays. Motivated by the work in [42], two control schemes are proposed
for the system. The first controller uses only the instantaneous states for feedback; the
second controller combines the effects of the instantaneous as well as the delayed states.
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Using Lyapunov theory, it is proven that both control schemes guarantee the exponential
stabilization of the power system.
The paper is organized as follows. The next section presents the dynamic model of

the power system. The control problem is formulated in Section 3. Section 4 presents
a robust feedback controller for uncertain linear systems with time delays in the states.
Section 5 proposes a three term robust controller for the system. Detailed simulation
results of the controlled power system are presented and discussed in Section 6. Finally,
some concluding remarks are given in Section 7.
Notations. We use W t, W−1, λ(W ) to denote respectively, the transpose of, the

inverse of, and the eignvalues of any square matrix W . The vector norm is taken to
be the Euclidean norm and the matrix norm is the corresponding induced one; that is

‖W‖ = λ
1/2
M (W tW ), where λM(m)(W ) stands for the operation of taking the maximum

(minimum) eignvalue of W . We use W > 0 (W < 0) to denote a positive- (negative-)
definite matrix W . We use xt to represent a segment of x(τ) on [t − η(t), t], that is
xt : [−η(t), 0] → <n with ‖xt‖∗ = sup ‖x(τ)‖ with t− η∗ ≤ τ ≤ t. Let C−

o denote the
proper left-half of the complex plane. Sometimes, the arguments of a function will be
omitted in the analysis when no confusion can arise.

2. Dynamic Model of the Power System. A synchronous machine infinite bus power
system is depicted in Figure 1. The dynamic model of the power system is derived in this
section. The symbols used in the description of the model are listed below.
δ: the rotor angle with respect to the infinite bus system voltage,
ωo: the synchronous angular speed,
∆ω: the deviation of the rotor angular speed from the synchronous angular speed ωo,
M : the effective inertia constant,
Kd: the equivalent damping factor,
E: the infinite bus voltage,
Eq: the direct q-axis voltage,
E ′

q: the transient q-axis voltage,
Efd: the direct excitation voltage,
E ′

fd: the transient excitation voltage,
id: the d-axis current,
T ′
do: the equivalent transient rotor time constant,

xd: the d-axis reactance,
x′
d: the d-axis transient reactance,

xq: the q-axis reactance,
xe: the reactance of the transmission lines,
PM : the mechanical power,
Pe: the electrical power,
Vt: the terminal bus voltage,
Vref : the reference voltage,
∆V : the difference between the reference voltage and the terminal bus voltage,
UPSS: the power system stabilizer (PSS) control signal,
KA: the amplifier gain constant,
TA: the amplifier time constant,
y: the state of the governor system,
G: the governor control signal.
The dynamic model of the generator is described in terms of the following three first

order differential equations:
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δ̇ = ωo∆ω (1)

∆ω̇ =
1

M
(PM +G+Kd∆ω − Pe) (2)

Ė ′
q =

1

T ′
do

(
Efd − (xd − x′

d)id − E ′
q

)
(3)

where

id =
Eq − E cos δ

xe + xq

(4)

Eq = E ′
q + (xd − x′

d)id (5)

Pe =
E ′

qE sin δ

xe + x′
d

(6)

Combining (4) and (5), one obtains,

id =
E ′

q − E cos δ

xe + xq − xd + x′
d

(7)

Figure 1. Block diagram of the electric power generation unit system

The following dynamic model for the Automatic Voltage Regulator (AVR) and the
exciter is adopted:

Ėfd =
KA

TA

(∆V + UPSS)−
Efd

TA

(8)

where

∆V = Vref − Vt. (9)

The following dynamic model is considered for the governor:

ẏ =
1

Tg

(b∆ω(t− τ)− y) (10)

G = a∆ω(t− τ) + by. (11)
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The dynamic model for the conventional power system stabilizer (PSS) is as follows:

ż1 = z2 (12)

ż2 = − T2

TQ

(z1 + (T2 + TQ)z2 −∆ω(t− τ)) (13)

and

UPSS = −KJ

KA

(
−T1

T2

z1 +
(TQ − T1T2 − T1TQ)

T2

z2 +
T1

T2

∆ω(t− τ)

)
. (14)

The overall model of the power system is given by the above equations. From the
above equations, it can be seen that the model of the power system is of order 7 and it
is nonlinear with state delays. To be able to analyze and control the power system, the
model is linearized around the operating point (δo, ωo, E

′
qo , Efdo , yo, z1o, z2o).

Let ∆δ = δ − δo, ∆ω = ω − ωo, ∆E ′
q = E ′

q − E ′
qo , ∆Efd = Efd − Efdo , ∆y = y − yo,

∆z1 = z1 − z1o and ∆z2 = z2 − z2o. Therefore, the linearized model of the power system
can be written as:

∆δ̇ = ωo∆ω

∆ω̇ =
1

M
(∆PM +∆G+Kd∆ω −∆Pe)

∆Ė ′
q =

1

T ′
do

(
∆Efd − (∆E ′

q + E sin δo∆δ)
xd − x′

d

xe + xq − xd + x′
d

−∆E ′
q

)
∆Ėfd =

KA

TA

(∆V +∆UPSS)−
∆Efd

TA

∆ẏ =
1

Tg

(b∆ω(t− τ)−∆y)

∆ż1 = ∆z2

∆ż2 = − 1

T2TQ

(∆z1 + (T2 + TQ)∆z2 −∆ω(t− τ))

(15)

Further manipulations of the above model yield:

∆δ̇ = ωo∆ω

∆ω̇ =
1

M

(
∆PM + a∆ω(t− τ) + b∆y +Kd∆ω −

E ′
qoE sin δo

xe + x′
d

∆E ′
q

−
E ′

qoE cos δo

xe + x′
d

∆δ

)
∆Ė ′

q =
1

T ′
do

(
∆Efd −

xe + xq

xe + xq − xd + x′
d

∆E ′
q − E sin δo

xd − x′
d

xe + xq − xd + x′
d

∆δ

)
∆Ėfd =

KA

TA

(
∆V +

KJT1

KAT2

∆z1 −
KJ(TQ − T1T2 − T1TQ)

KAT2

∆z2

−KJT1

KAT2

∆ω(t− τ)

)
− ∆Efd

TA

∆ẏ =
1

Tg

(b∆ω(t− τ)−∆y)

∆ż1 = ∆z2

∆ż2 = − 1

T2TQ

(∆z1 + (T2 + TQ)∆z2 −∆ω(t− τ))

(16)
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The outputs of the system are taken to be the deviation of the rotor angle and the
deviation of the rotor angular speed.

Define the states and the inputs of the power system such that:

x =
(
∆δ ∆ω ∆E ′

q ∆Efd ∆y ∆z1 ∆z2
)t

and u = (∆PM ∆V )t

Hence, the linearized model of the power system can be written in a compact form as,

ẋ(t) = Aox(t) +Bou(t) +Dx(t− τ) + ζ(x, t)

z(t) = Eox(t)
(17)

where

Ao =



0 ωo 0 0 0 0 0
K1 Kd/M K2 0 b/M 0 0
K3 0 K4

1
T ′
do

0 0 0

0 0 0 −1
TA

0 K5 K6

0 0 0 0 −1
Tg

0 0

0 0 0 0 0 0 1
0 0 0 0 0 K7 K8


, D =



0 0 0 0 0 0 0
0 a/M 0 0 0 0 0
0 0 0 0 0 0 0
0 K9 0 0 0 0 0
0 K10 0 0 0 0 0
0 0 0 0 0 0 0
0 K11 0 0 0 0 0



Bo =



0 0
1
M

0
0 0
0 KA

TA

0 0
0 0
0 0


, Eo =

[
1 0 0 0 0 0 0
0 1 0 0 0 0 0

]

and, the parameters K1-K11 are defined such that:

K1 = −
E ′

qoE cos δo

M(xe + x′
d)

K2 = −
E ′

qoE sin δo

M(xe + x′
d)

K3 = −E sin δo
xd − x′

d

T ′
do(xe + xq − xd + x′

d)

K4 = − xe + xq

T ′
do(xe + xq − xd + x′

d)

K5 =
KJ T1

TA T2

K6 =
−KJ(TQ − T1T2 − T1TQ)

TA T2

K7 =
−1

T2 TQ

K8 = −T2 + TQ

T2 TQ

K9 = −KJ T1

TA T2
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K10 =
b

Tg

K11 =
1

T2 TQ

Note that the term ζ(x, t) is added in (17) to represent the external disturbances acting
on the system. System (17) belongs to the general class of uncertain linear systems with
state delays. The next three sections deal with the formulation and the design of control
schemes for this class of systems.

3. Formulation of the Control Problem. Consider a class of dynamical systems with
time-varying state-delay of the form:

ẋ(t) = Aox(t) +Bou(t) +Dx(t− η(t)) + ζ(x, t) (18)

0 ≤ η(t) ≤ η∗ and η̇(t) ≤ η+ < 1

x(t) = %d(t) for t ∈ [−η∗, 0]

where t ∈ < is the time, x ∈ <n is the instantaneous state; u ∈ <m is the control input.
The variable η(t) represents the delay of the system with bounds η∗ and η+ which are
assumed to be known. The matrices Ao ∈ <n×n, Bo ∈ <n×m, represent the nominal
system. The uncertainties within the system are represented by a delay factor multiplied
by the matrix D and a current factor contained in the nonlinear vector ζ(x, t).

Remark 3.1. The assumption that η̇(t) ≤ η+ < 1 stems from the need to bound the growth
variations in the delay factor as a time-function. This assumption can be considered quite
realistic and holds for a wide class of uncertain dynamical systems. Thus our design
results are applicable for the class of linear time-delay systems with bounded state-delay
in the manner of (18).

Definition 3.1. The uncertain state-delay system (18) is said to be robustly stable if
the solution x(t) = 0 of system (18) with u(t) = 0 is uniformly asymptotically stable for
all admissible realizations of the uncertainties D and ζ(., .).

Definition 3.2. The uncertain state-delay system (18) is said to be robustly stabiliz-
able with a degree of stability γ > 0 if there exists a feedback control u[x(t)] such that
the resulting closed-loop system is robustly stable and the solution of the controlled system
satisfies:

‖x(τa)‖ ≤ ‖x(τb)‖ exp (−γ(τa − τb)) ∀τa ≥ τb ∈ <+. (19)

Assumptions:
The following structural and growth constraints on ζ(., .) and D are considered.
A1. There exist sufficiently smooth functions h(.) : <n×< → <m and g(.) : <n×< →

<n, such that:
ζ(x, t) = Boh(x, t) + g(x, t) ∀(x, t) ∈ <n ×< (20)

A2. There exist positive constants α and β such that:

‖h(x, t)‖ ≤ α‖x(t)‖
‖g(x, t)‖ ≤ β‖x(t)‖ (21)

A3. There exist functions G ∈ <m×n and L ∈ <n×n such that:

D = BoG+ L (22)

A4. Suppose that λ(Ao) ∈ C−
o . It follows that there exist matrices 0 < P = P t ∈ <n×n

and 0 < Q = Qt ∈ <n×n such that for some κ > 0,

P (Ao + κI) + (Ao + κI)tP = −Q (23)
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For convenience, let

σ(P,Q) := λm(Q)− 2βλM(P )− 2‖LtP‖2 and ω = λM(GGt) (24)

Remark 3.2. One interpretation of A1 and A2 is that the nonlinear uncertainty function
ζ(., .) is mismatched and cone-bounded. The component h(., .) represents the matched part
while the component g(., .) stands for the amount of mismatch.

Remark 3.3. If Ao is not a stable matrix, and the pair (Ao, Bo) is controllable, then one
can easily design u(t) = −Ksx(t) + v(t), where Ks is chosen such that Ao − BoKs is a
stable matrix. In this case, v(t) is the controller to be designed in the next sections.

The following fact will be used in the analysis to follow.
Fact 1. Given any real matrices M1, M2, M3 with appropriate dimensions such that

0 < M3 = M t
3. Then the following inequality holds:

M t
1M2 +M t

2M1 ≤ M t
1M3M1 +M t

2M
−1
3 M2 (25)

4. Design of a Robust Feedback Controller. The design approach is based on Lya-
punov stability theory. For this purpose and in view of A4, we define a quadratic Lya-
punov function candidate V1 such that,

V1(x) = e2κtxt(t)Pox(t) + ρ

∫ t

t−η(t)

e2κτxt
t(τ)xt(τ)dτ ; κ > 0 (26)

where ρ is a weighting factor; xt represents a segment of x(τ) on [t− η(t), t]. Note that

λm(Po)‖x‖2e2κt ≤ V1(x) ≤ (λM(Po) + ρη∗) ‖xt‖2∗e2κt. (27)

In the following analysis, the weighting factor ρ is taken to be:

ρ = 2(1− η+)−1e2κη
∗
(1 + ω). (28)

We will choose the matrix 0 < Qo = Qt
o ∈ <n×n such that 0 < Po = P t

o ∈ <n×n is the
solution of (23) for Q = Qo + ρI. Also let,

σo = σ(Po, Qo) = λm(Qo)− 2βλM(Po)− 2‖LtPo‖2. (29)

Define the Sgn(.) function as the vector signum function defined such that,

Sgn(σ) =


sgn(σ1)
sgn(σ2)

...
sgn(σm)

∀ σ =


σ1

σ2
...
σm


where sgn(σi) = 1 if σi > 0, sgn(σi) = −1 if σi < 0 and sgn(σi) = 0 if σi = 0.

Let W1 be a positive scalar. The following result is established.

Theorem 4.1. Suppose that A1-A4 are satisfied. Then the memoryless state-feedback
control law:

u(t) = −µBt
oPox(t)−W1Sgn(B

t
oPox(t)) (30)

renders the uncertain state-delay system (18) robustly stabilizable with degree κ pro-
vided that,

σo > 0 and µ > µo = 1 +
α2σ−1

o

2
. (31)
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Proof: The time derivative of the Lyapunov function candidate V1(.) in (26) evaluated
along the trajectories of (18) is given by,

V̇1(x) = e2κt [xt(t)Poẋ(t) + ẋt(t)Pox(t) + 2κxt(t)Pox(t)
+ρxt(t)x(t)− ρe−2κη(1− η̇)xt(t− η)x(t− η)]

= e2κt [xt(t) (Po(Ao + κI) + (Ao + κI)tPo + ρI) x(t) + 2xt(t)PoBou(t)
+2xt(t)Poζ(x, t) + 2xt(t)PoDx(t− η)− ρe−2κη(1− η̇)xt(t− η)x(t− η)]

(32)

By substituting (20), (22), (23) and (30) into (32), we get

V̇1(x) = e2κt
[
−xt(t)Qox(t)− 2µxt(t)PoBoB

t
oPox(t)− 2W1x

t(t)PoBoSgn(B
t
oPox(t))

+2xt(t)Poζ(x, t) + 2xt(t)PoDx(t− η)− ρe−2κη(1− η̇)xt(t− η)x(t− η)
]

= e2κt
[
−xt(t)Qox(t)− 2µxt(t)PoBoB

t
oPox(t)− 2W1x

t(t)PoBoSgn(B
t
oPox(t))

+ 2xt(t)Po (Boh+ g) + 2xt(t)Po (BoG+ L)x(t− η)

−ρe−2κη(1− η̇)xt(t− η)x(t− η)
]

(33)

Algebraic manipulation of (33) yields:

V̇1(x) ≤ e2κt
[
−λm(Qo)‖x(t)‖2 − 2µ‖Bt

oPox‖2 + 2xt(t)PoBoh+ 2xt(t)Pog

+ 2xt(t)PoBoGx(t− η) + 2xt(t)PoLx(t− η)

−ρe−2κη∗(1− η+)xt(t− η)x(t− η)
] (34)

Application of Fact 1 to (34), using (21) and rearranging terms gives:

V̇1(x) ≤ e2κt
[
−λm(Qo)‖x(t)‖2 − 2µ‖Bt

oPox‖2 + 2α‖Bt
oPox‖, ‖x‖+ 2βλM(Po)‖x‖2

+ 2xt(t)PoBoB
t
oPox(t) + 2xt(t− η)GtGx(t− η) + 2xt(t)PoLL

tPox(t)

+ 2xt(t− η)x(t− η) −ρe−2κη∗(1− η+)xt(t− η)x(t− η)
]

≤ e2κt
[
−
{
λm(Qo)− 2βλM(Po)− 2‖LtPo‖2

}
‖x‖2 − 2 (µ− 1) ‖Bt

oPox‖2

+ 2 α‖Bt
oPox‖ ‖x‖+

(
2 + 2ω − ρe−2κη∗(1− η+)

)
‖x(t− η)‖2

]
(35)

Using (28), we get from (35) the inequality:

V̇1(x) ≤ −e2κt
(
‖x‖ ‖Bt

oPox‖
)
Ω1

(
‖x‖

‖Bt
oPox‖

)
(36)

Ω1 =

[
σo −α
−α 2(µ− 1)

]
It is readily seen that the positive-definiteness of Ω1 is satisfied when:

σo > 0 and 2 (µ− 1)σo > α2. (37)

Simple rearrangement of (37) entails conditions (31). Therefore, we have for all realiza-
tions of uncertainties and ∀t ∈ <, x ∈ <n, the Lyapunov stability condition:

V̇1(x) ≤ −εe2κt ‖x‖2 ≤ 0 for ε > 0. (38)

By (20)-(22), the solution of the controlled uncertain system (18) is given by:

ẋ(t) =
(
Ao − µBoB

t
oPo

)
x(t) +Bo (h(x, t) +Gx(t− η))

+ g(x, t) + Lx(t− η)−W1BoSgn(B
t
oPox(t)).

(39)
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From the previous analysis, it can be concluded that the solution of (39) satisfies the
state-norm inequality

‖x(τ)‖ ≤

√
λM(Po) + ρη∗

λm(Po)
‖x(ξ)‖ e−κ(τ−ξ), ∀τ ≥ ξ. (40)

In turn, this implies that,

‖x(τ)‖∗ ≤

√
λM(Po) + ρη∗

λm(Po)
‖x(ξ)‖∗ e−κ(τ−ξ) , ∀τ ≥ ξ. (41)

Therefore, we conclude that system (18) is robustly stabilizable by controller (30) and
has a degree of stability κ > 0.

Remark 4.1. The term −W1Sgn(B
t
oPox(t)) is added to the control law in (30) because

it is expected that this term will enhance the robustness of the closed loop system.

Remark 4.2. The case of constant delay where η(t) = η∗ = d and hence η̇ = 0 can be
easily obtained from the previous result. In this case, the dynamic model is given by:

ẋ(t) = Aox(t) +Bou(t) +Dx(t− d) + ζ(x, t) (42)

and we use the proposed controller for robust feedback synthesis based on the Lyapunov
function (26). In this case, set

ρ∗ = 2e2κd(1 + ω) (43)

and choose a matrix 0 < Q∗ = Qt
∗ ∈ <n×n such that 0 < P∗ = P t

∗ ∈ <n×n is the solution
of (23) for Q = Q∗ + ρ∗I. Define

σ∗ = σ(P∗, Q∗) := λm(Q∗)− 2βλM(P∗)− 2‖LtP∗‖2 (44)

Therefore, we obtain the following corollary for W1 > 0.

Corollary 4.1. Suppose that A1-A4 are satisfied. Then the control law:

u(t) = −µBt
oP∗x(t)−W1Sgn(B

t
oP∗x(t))

renders the uncertain system (42) robustly stabilizable with a degree κ provided that

σ∗ > 0, µ > µ∗ = 1 +
α2σ−1

∗
2

(45)

The proof follows the procedure of Theorem 4.1.

5. Design of a Robust Feedback Controller with a Delay Term. Now, we consider
the case of constant delay where η(t) = η∗ = d and hence η̇ = 0. In this case the dynamic
model of the system is given by,

ẋ(t) = Aox(t) +Bou(t) +Dx(t− d) + ζ(x, t). (46)

Let W2 be a positive scalar. We now propose the controller,

u(t) = −µBt
oP̄ x(t) + K̄x(t− d)−W2Sgn(B

t
oP̄ x(t)) (47)

which combines the effect of the instantaneous as well as the delay states. This controller
provides three degrees of freedom: one by the proportional term −µBt

oP̄ x(t) and the other
through the delay term K̄x(t− d) and the third through −W2Sgn(B

t
oP̄ x(t)) term. Note

that the third term is used to enhance the robustness of the closed loop system.
To study the stability behavior in this case, we define a quadratic Lyapunov function

candidate as

V2(x) = e2κtxt(t)P̄ x(t) +

∫ t

t−d

e2κτxt
t(τ)xt(τ)dτ ; κ > 0 (48)
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Choose a matrix 0 < Q̄ = Q̄t ∈ <n×n such that 0 < P̄ = P̄ t ∈ <n×n is the solution of (23)
for Q̄+ I. Let

σ̄ = σ(P̄ , Q̄) := λm(Q̄)− 2βλM(P̄ )− 2‖LtP̄‖2 (49)

ζ = 2(µ− 2) and v = −2(1 + ω) + e−2κd (50)

The stability behavior is established by the following theorem.

Theorem 5.1. Suppose that A1-A4 are satisfied. Then the proportional-delay feedback
control (47) renders the uncertain system (46) robustly stabilizable with degree κ > 0
provided that

λm(Q̄) > 2βλM(P̄ ) + 2‖LtP̄‖2 (51)

µ > µ̄ = 2 +
α2σ̄−1

2
, (52)

‖K̄‖ < k̄ =
√
v/2. (53)

Proof: The time derivative of the Lyapunov function candidate V̇2(.) evaluated along
the solutions of system (46) while using the controller (47) is given by,

V̇2(x) = e2κt
[
xt(t)P̄ ẋ(t) + ẋt(t)P̄ x(t) + 2κxt(t)P̄ x(t) + xt(t)x(t)

−e−2κdxt(t− d)x(t− d)
]

= e2κt
[
xt(t)

(
P̄ (Ao + κI) + (Ao + κI)tP̄ + I

)
x(t)− 2µxt(t)P̄BoB

t
oP̄ x(t)

+2xt(t)P̄BoK̄x(t− d)− 2W2x
t(t)P̄BoSgn(B

t
oP̄ x(t)) + 2xt(t)P̄ ζ(x, t)

+2xt(t)P̄Dx(t− d)− e−2κdxt(t− d)x(t− d)
]

(54)

By substituting (20), (22) and (23) into (54), we get,

V̇2(x) ≤ e2κt
[
−λm(Q̄)‖x(t)‖2 − 2µ‖Bt

oP̄ x‖2 + 2xt(t)P̄BoK̄x(t− d)

+2xt(t)P̄Boh+ 2xt(t)P̄ g + 2xt(t)P̄BoGx(t− d) + 2xt(t)P̄Lx(t− d)

−e−2κdxt(t− d)x(t− d)
] (55)

Application of Fact 1 to (55) and rearranging terms gives:

V̇2(x) ≤ e2κt
[
−λm(Q̄)‖x(t)‖2 − 2µ‖Bt

oP̄ x‖2 + 2xt(t)P̄BoB
t
oP̄ x(t)

+2xt(t− d)K̄tK̄x(t− d) + 2α‖Bt
oP̄ x‖ ‖x‖+ 2βλM(P̄ )‖x‖2

+2xt(t)P̄BoB
t
oP̄ x(t) + 2xt(t− d)GtGx(t− d)

+2xt(t)P̄LLtP̄ x(t) + 2xt(t− d)x(t− d)− e−2κdxt(t− d)x(t− d)
]

≤ e2κt
[
−
{
λm(Q̄)− 2βλM(P̄ )− 2‖LtP̄‖2

}
‖x‖2 − 2 (µ− 2) ‖Bt

oP̄ x‖2
+2α‖Bt

oP̄ x‖ ‖x‖+
(
2 + 2ω + 2‖K̄‖2 − e−2κd

)
‖x(t− d)‖2

]
≤ e2κt

[
−σ̄ ‖x‖2 − ζ ‖Bt

oP̄ x‖2 + 2α‖Bt
oP̄ x‖ ‖x‖

−
(
υ − 2‖K̄‖2

)
‖x(t− d)‖2

]
(56)

Upon using (49) we get the inequality:

V̇2(x) ≤ −e2κt
(
‖x‖ ‖Bt

oP̄ x‖ ‖x(t− d)‖
)
Ω2

 ‖x‖
‖Bt

oP̄ x‖
‖x(t− d)‖

 (57)

where,

Ω2 =

 σ̄ −α 0
−α ζ 0
0 0 υ − 2‖K̄‖2

 .
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The positive definiteness of Ω2 is satisfied when

σ̄ > 0, σ̄ζ − α2 > 0 and υ − 2‖K̄‖2 > 0 (58)

Algebraic manipulation of (58) in view of (49) and (50) gives immediately conditions
(51)-(53). Therefore, we have for all realizations of uncertainties and ∀t ∈ <, ∀x ∈ <n

the Lyapunov stability condition:

V̇2(x) ≤ −εe2κt‖x‖2 ≤ 0 (59)

is satisfied for some ε > 0. The remaining part is obtained in a similar manner to the
proof of Theorem 4.1.

6. Simulation Results. The controllers proposed in the previous two sections are ap-
plied to the power system presented in Section 2. The performances of the system are
simulated using the MATLAB software. The numerical parameters of the power system
are given as follows.

The parameters of the synchronous machine are:

ωo = 314.16rad./sec. M = 6.92 Kd = −0.027
xd = 1.24p.u. xq = 0.743p.u. x′

d = 0.022p.u.
xe = 0.8p.u. PM = 0.437p.u. E = 1.0p.u.
T ′
d0 = 5.0sec. δo = 20o E ′

qo = 1.05p.u.

The parameters of the AVR and excitation system are:

KA = 250 TA = 0.001sec. Vref = 1.0p.u.

The parameters of the governor system are:

a = −0.001238 b = −0.17 Tg = 0.25sec.

The parameters of the conventional PSS are:

KJ = 12 TQ = 2.5sec. T1 = 0.1sec. T2 = 0.03sec.

The initial condition of the system is taken as, xo = [0.7859 0 1.0291 1.2075 0 0 0].
The time delay τ is 0.7. It should be noted that since the delay factor τ occurs in the
dynamics of the governor and the PSS, it can be estimated using off-line computation. The
disturbance used is ζ(t) = [sin (2πft) cos (2πft) sin (2πft) cos (2πft) sin (2πft)
cos (2πft) sin (2πft)] with f = 50Hz.

To show the need for controlling the power system with delays in the states, the lin-
earized model of the system given by (16) is simulated when the time delay τ = 0.7. The
simulation results are presented in Figures 2-4. Figure 2 shows the deviation of the rotor
angle versus time; Figure 3 depicts the deviation of the rotor angular speed versus time.
Figure 4 shows the deviation of the direct q-axis voltage versus time. It is clear from these
figures that the uncontrolled system is unstable.

6.1. Simulation results of the power system controlled using the first control
scheme. This subsection presents the simulation results of the power system when it
is controlled using the control scheme given by Equation (30). The parameters of the
controller are taken to be µ = 0.08 and W1 = 0.8.

Since the proposed controller assumes that the system matrix Ao is a stable matrix,
the MATLAB command eig is used to compute the eigenvalues of Ao. The eigenvalues of
Ao are found to be [−0.048+ j7.377,−0.048− j7.377,−0.857,−1000,−33.33,−0.4,−4.0]
where j2 = −1. Therefore, the matrix Ao is a stable matrix and the required condition is
satisfied.
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Figure 2. The deviation of the rotor angle δ(t) versus time (no control)
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Figure 3. The deviation of the rotor angular speed ω(t) versus time (no control)

The following procedure is used to implement the control scheme given by Equation
(30).
Step 1: Given the power system represented by (16), the parameters α and β are

selected such that (21) is satisfied. Note that these parameters depend on the uncertainties
present in the system.
Step 2: Find G and L such that (22) is satisfied. Note that the choice of G and L is

not unique.
Step 3: Compute ω using the equation ω = λM(GGt).
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Figure 4. The deviation of the direct q-axis voltage Eq(t) versus time (no control)
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Figure 5. The deviation of the rotor angle δ(t) versus time (first controller)

Step 4: Select κ; one should start with a small value of κ and then increase this value
incrementally. Note that κ represents some sort of stability margin.

Step 5: Using the bounds η∗ and η+, compute ρ from Equation (28). For constant
time delay τ , η∗ = η = τ and η+ = 0

Step 6: Choose Qo > 0 such that Po is the solution of (23) with Q = Qo + ρI.
Step 7: Compute σo using Equation (29).
Step 8: Choose µ such that (31) is satisfied.
Step 9: Simulate and analyze the performance of the system when the memoryless

state-feedback controller (30) is used.
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At first, the system is simulated assuming that the system has no uncertainties. The
simulation results are presented in Figures 5-7. Figure 5 shows the deviation of the rotor
angle versus time; Figure 6 depicts the deviation of the rotor angular speed versus time.
Figure 7 shows the deviation of the direct q-axis voltage versus time. The figures show
that the deviations in the rotor angle and in the rotor angular speed converge to zero
in less than 1.5 seconds. The deviation of the direct q-axis voltage converges to zero in
about 2 seconds. Therefore, it can be concluded that the first control scheme works well
when applied to the power system with state delays and without uncertainties.

0 0.5 1 1.5 2 2.5
−20

−15

−10

−5

0

5
x 10

−3

time (Seconds)

C
ha

ng
e 

in
 r

ot
or

 a
ng

ul
ar

 s
pe

ed
 (

ra
d/

se
c)

Figure 6. The deviation of the rotor angular speed ω(t) versus time (first controller)

0 0.5 1 1.5 2 2.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (Seconds)

C
ha

ng
e 

in
 E

q 
(p

u 
V

ol
ta

ge
)

Figure 7. The deviation of the direct q-axis voltage Eq(t) versus time (first controller)
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Next, the performance of the uncertain linearized power system is simulated. The
uncertainties are taken to be ζ(t). For these uncertainties, the parameters α, β, G and L
are taken such that α = 0.002184, β = 0.003783, G and L are such that

G =

[
0.02 −0.841 0 0 0 0 0
0 0 0 0 0 0 0

]
.

L =



0 0 0 0 0 0 0
0.00289 0.1214 0 0 0 0 0

0 0 0 0 0 0 0
0 −0.0004 0 −0.0001 0 0.005 −0.09
0 −0.68 0 0 0 0 0
0 0 0 0 0 0 0
0 0.1333 0 0 0 0 0


.

The simulation results are presented in Figures 8-10. Figure 8 shows the deviation of
the rotor angle versus time; Figure 9 depicts the deviation of the rotor angular speed
versus time. Figure 10 shows the deviation of the direct q-axis voltage versus time. The
figures show that the deviations in the rotor angle and in the rotor angular speed converge
to zero in less than 2.2 second. The deviation of the direct q-axis voltage converges to
zero in about 2.0 seconds.

Therefore, it can be concluded that the proposed first controller is robust with respect
to uncertainties in D and ζ(., .) satisfying assumptions A1-A3.

6.2. Simulation results of the power system controlled using the second control
scheme. This subsection presents the simulation results of the power system when it
is controlled using the control scheme given by Equation (47). The parameters of the
controllers are taken to be µ = 0.08, W1 = 0.8 and K̄ :

K̄ =

[
0.16 0.0003 0 0 0 0 0
0.0003 .01 0 0 0 0 0

]
.
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Figure 8. The deviation of the rotor angle δ(t) versus time (first controller
+ uncertainties)
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Figure 9. The deviation of the rotor angular speed ω(t) versus time (first
controller + uncertainties)
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Figure 10. The deviation of the direct q-axis voltage Eq(t) versus time
(first controller + uncertainties)

A procedure similar to the procedure presented in the previous subsection is used to
implement the control scheme given by Equation (47).
Again, the system is simulated assuming that the system has no uncertainties. The

simulation results are presented in Figures 11-13. Figure 11 shows the deviation of the
rotor angle versus time; Figure 12 depicts the deviation of the rotor angular speed versus
time. Figure 13 shows the deviation of the direct q-axis voltage versus time. The figures
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show that the deviations in the rotor angle and in the rotor angular speed converge to zero
in less than 1.7 seconds. The deviation of the direct q-axis voltage converges to zero in
about 2.0 seconds. Therefore, it can be concluded that the second control scheme works
well when applied to the power system with state delays and without uncertainties.

Next, the performance of the uncertain linearized power system is simulated. The
simulation results are presented in Figures 14-16. Figure 14 shows the deviation of the
rotor angle versus time; Figure 15 depicts the deviation of the rotor angular speed versus
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Figure 11. The deviation of the rotor angle δ(t) versus time (second controller)
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Figure 12. The deviation of the rotor angular speed ω(t) versus time
(second controller)
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Figure 13. The deviation of the direct q-axis voltage Eq(t) versus time
(second controller)
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Figure 14. The deviation of the rotor angle δ(t) versus time (second con-
troller + uncertainties)

time. Figure 16 shows the deviation of the direct q-axis voltage versus time. The figures
show that the deviations in the rotor angle and in the rotor angular speed converge to
zero in almost 1.5 seconds. The deviation of the direct q-axis voltage converges to zero in
less than 2 seconds.
Therefore, it can be concluded that the proposed second controller is robust with respect

to uncertainties in D and ζ(., .) satisfying assumptions A1-A3.
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Figure 15. The deviation of the rotor angular speed ω(t) versus time
(second controller + uncertainties)
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Figure 16. The deviation of the direct q-axis voltage Eq(t) versus time
(second controller + uncertainties)

6.3. Comparison of the performances of the proposed control schemes. For
performance comparison purposes Figures 17-22 were generated. Figures 17-19 show the
simulation results of the two controllers without uncertainties, while Figures 20-22 show
the simulation results of the two controllers with uncertainties applied to the system
parameters.

Figure 17 and Figure 20 show the deviation of the rotor angle versus time; Figure 18
and Figure 21 depict the deviation of the rotor angular speed versus time. Figure 19 and
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Figure 17. The deviation of the rotor angle δ(t) versus time (two controllers)
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Figure 18. The deviation of the rotor angular speed ω(t) versus time (two controllers)

Figure 22 show the deviation of the direct q-axis voltage versus time. These figures clearly
indicate that the second controller gave better results than the first controller. This is
an expected result as the second controller contains the extra term K̄x(t− d); this term
feeds back the delayed state of the system which enhances the performance of the system.

7. Conclusion. The control of a power system with state-delay and mismatched uncer-
tainties is investigated in this paper. Two control schemes are proposed to achieve the
exponential stability of the system. The first controller uses the instantaneous states for
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Figure 19. The deviation of the direct q-axis voltage Eq(t) versus time
(two controller)
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Figure 20. The deviation of the rotor angle δ(t) versus time (two con-
trollers + uncertainties)

feedback; the second controller combines the effects of the instantaneous as well as the
delayed states. The exponential stability of the closed loop system is shown using Lya-
punov theory. The simulation results clearly show that the control schemes work well.
Moreover, simulation results show that the proposed controllers are robust to mismatched
and cone-bounded uncertainties.

Future work will address the design of observer based controllers for uncertain power
systems with state delays.
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Figure 21. The deviation of the rotor angular speed ω(t) versus time (two
controllers + uncertainties)
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Figure 22. The deviation of the direct q-axis voltage Eq(t) versus time
(two controller + uncertainties)
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