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Abstract. The problem considered in this study is the observability robustness of Takagi
-Sugeno (TS) fuzzy-model-based control systems. Where a nominal TS-fuzzy-model-based
control system is locally observable (i.e., where each fuzzy rule in the system has a full
row rank for its observability matrix), a sufficient condition is proposed to preserve the
assumed property when system uncertainties are considered. The proposed sufficient con-
dition preserves the assumed property by indicating the explicit relationships of bounds
on system uncertainties. A robustly global observability condition is also presented for
uncertain TS-fuzzy-model-based control systems. Finally, the proposed sufficient condi-
tions are applied in the example of a nonlinear mass-spring-damper mechanical system
with system uncertainties.
Keywords: Fuzzy system models, Fuzzy control, Robust observability, Takagi-Sugeno
(TS) fuzzy model, System uncertainties

1. Introduction. The fuzzy-model-based representation proposed by Takagi and Sugeno
[1], known as the TS fuzzy model, has proven effective in many nonlinear control systems
([2-8] and references therein). The robust controllability of the uncertain TS-fuzzy-model-
based control systems has also been studied by Chen et al. [9]. On the other hand, most
applications of TS fuzzy control systems presented in the literature, however, assume
that states are available for controller implementation, which may not be true in prac-
tice. Therefore, some researchers have proposed that the nominal TS-fuzzy-model-based
control systems should be assumed to be locally observable (i.e., each fuzzy rule for a
nominal TS-fuzzy-model-based control system should be assumed to have a full row rank
for its observability matrix) when designing observer-based fuzzy parallel-distributed-
compensation controllers (see, e.g., [10-16] and references therein).

In practice, however, obtaining accurate values may be difficult, if not impossible,
for some system parameters due to inaccurate measurements or due to inaccessible or
variable system parameters and sensor and actuator positions. These system uncertainties
may negate the observability property of the TS-fuzzy-model-based control systems. The
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literature includes many studies of observability problems in various fuzzy systems [17-
25]. A recent comprehensive literature review shows that the issue of robustly local
and global observability has not been studied in uncertain TS-fuzzy-model-based control
systems. Specifically, although the observability problem has been studied in various fuzzy
systems, the problem of robustly local and global observability has not been considered
in TS-fuzzy-model-based control systems.
This study presents a novel approach for measuring robustly local and global observ-

ability in TS-fuzzy-model-based control systems with system uncertainties. Under the
assumption that the nominal TS-fuzzy-model-based control systems are locally observ-
able, a sufficient condition is proposed to preserve the assumed property when system
uncertainties are introduced. The presented approach uses a simple algebraic derivation,
and the proposed sufficient condition explicitly indicates how the relationships among
bounds on system uncertainties preserve the assumed property. A robustly global observ-
ability condition is also presented for uncertain TS-fuzzy-model-based control systems.
An application of the proposed sufficient conditions is demonstrated in the example of a
nonlinear mass-spring-damper mechanical system with both elemental parameter uncer-
tainties and displacement-sensor position variations.
This paper is organized as follows. Section 2 presents an analysis of robust observability

in uncertain TS-fuzzy-model-based control systems and the sufficient criteria for both
robustly local and robustly global observability. Section 3 gives an illustrative example
to demonstrate the applicability of the proposed sufficient criteria. Finally, Section 4
concludes the study.

2. Robust Observability Analysis. When applying the sector nonlinearity approach
to fuzzy model construction, both the fuzzy set of the premise part and the linear dynamic
model with system uncertainties of the consequent part in the exact TS fuzzy control
model with system uncertainties can be derived from a given nonlinear control model
with system uncertainties [2]. The TS-fuzzy-model-based control system with system
uncertainties for the nonlinear control system with system uncertainties can be obtained
in the following form:
R̃i: IF z1 is Mi1 and . . . and zg is Mig,

THEN ẋ (t) = (Ai +∆Ai)x (t) + (Bi +∆Bi) u (t) (1)

and y (t) = (Ci +∆Ci)x (t) , (2)

with the initial state vector x (0), where R̃i (i = 1, 2, . . . , N) denotes the i-th implica-

tion; N is the number of fuzzy rules; x (t) = [x1 (t) , x2 (t) , . . . , xn (t)]
T denotes the

n-dimensional state vector; y (t) = [y1 (t) , y2 (t) , . . . , ym (t)]T denotes the m-dimensional

output vector; u (t) = [u1 (t) , u2 (t) , . . . , up (t)]
T denotes the p-dimensional input vector;

zi (i = 1, 2, . . . , g) are the premise variables; Ai, Bi and Ci (i = 1, 2, . . . , N) are the con-
sequent constant matrices n × n, n × p and m × n, respectively; ∆Ai, ∆Bi and ∆Ci

(i = 1, 2, . . . , N) are uncertain matrices in the system matrices Ai, the input matrices Bi

and the output matrices Ci, respectively, of the consequent part of the i-th rule due to in-
accurate measurements, inaccessibility of system parameters, output-sensor measurement
variations, or parameter variations, and Mij (i = 1, 2, . . . , N and j = 1, 2, . . . , g) are the
fuzzy sets.
Many interesting problems arise from a few uncertainties entering into many entries

of the system, input and output matrices [26-29]. The proposed approach presents the
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uncertain matrices ∆Ai, ∆Bi and ∆Ci in the forms

∆Ai =
m̄∑
k=1

εik Aik, ∆Bi =
m̄∑
k=1

εik Bik, and ∆Ci =
m̄∑
k=1

εik Cik, (3)

respectively, where εik (i = 1, 2, . . . , N and k = 1, 2, . . . , m̄) are the elemental parametric
uncertainties and where Aik, Bik and Cik are the given n× n, n× p and m× n constant
matrices, respectively, which are prescribed a priori to denote information that is linearly
dependent on the elemental parametric uncertainties εik, in which i = 1, 2, . . . , N and
k = 1, 2, . . . , m̄.

2.1. Robustly local observability. For the uncertain TS-fuzzy-model-based control
system in (1) and (2), this subsection assumes that each fuzzy-rule-nominal model ẋ (t) =
Aix (t) + Biu (t) and y (t) = Cix (t) denoted by {Ai, Ci} is observable (i.e., each fuzzy-
rule-nominal model {Ai, Ci} has a full row rank for its observability matrix). Due to
inevitable uncertainties, each fuzzy-rule-nominal model {Ai, Ci} is perturbed into the
fuzzy-rule-uncertain model {Ai +∆Ai, Ci +∆Ci} . The considered problem is determin-
ing the condition under which each fuzzy-rule-uncertain model {Ai +∆Ai, Ci +∆Ci} for
the TS-fuzzy-model-based control system in (1) and (2) remains observable. Before in-
vestigating the uncertain TS-fuzzy-model-based control system in (1) and (2) in terms of
the robustness of observability, several definition and lemmas must be introduced.

Definition 2.1. [3]: The TS-fuzzy-model-based control system is locally observable if each
fuzzy-rule model {Ai +∆Ai, Ci +∆Ci} (i = 1, 2, . . . , N) is observable.

Lemma 2.1. The system model ẋ(t) = Ax(t) + Bu(t) and y (t) = Cx (t) is observable if
and only if the n2 × n(n+m− 1) matrix

Q =



In 0 • • • 0 0 • • • 0 CT

−AT In • • • 0 0 • • • CT 0
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
0 0 • • • In 0 • • • 0 0
0 0 • • • −AT CT • • • 0 0


(4)

has rank n2, where A ∈ Rn×n, C ∈ Rm×n and In denotes the n× n identity matrix.

Proof: In the above matrix Q of (4), add the product of AT and the first (block) row
to the second row. Then add the product of AT and the second row to the third row, and
so on. The resulting matrix is

In 0 • • • 0 0 • • • 0 CT

0 In • • • 0 0 • • • CT ATCT

• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
0 0 • • • In 0 • • • • (An−2)

T
CT

0 0 • • • 0 CT ATCT • • • (An−1)
T
CT


. (5)

The observability matrix
[
CT ATCT • • • (An−1)

T
CT

]
is of rank n if and only

if the matrix in (5) has rank n2 (i.e., the matrix in (4) has rank n2) [30]. Therefore, we
have the stated result.
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Lemma 2.2. [31]: The matrix measures of matrices W̄ and V̄ , namely µ(W̄ ) and µ(V̄ ),
respectively, are well defined for any norm and have the following properties:

(i) µ(±I) = ±1, for the identity matrix I;
(ii) −

∥∥W̄∥∥ ≤ −µ(−W̄ ) ≤ Re(λ(W̄ )) ≤ µ(W̄ ) ≤
∥∥W̄∥∥, for any norm ‖•‖ and any

matrix W̄ ∈ Cn×n;
(iii) µ(W̄ + V̄ ) ≤ µ(W̄ ) + µ(V̄ ), for any two matrices W̄ , V̄ ∈ Cn×n;
(iv) µ(γW̄ ) = γµ(W̄ ), for any matrix W̄ ∈ Cn×n and any non-negative real number γ;

where λ(W̄ ) denotes any eigenvalue of W̄ , and Re(λ(W̄ )) denotes the real part of λ(W̄ ).

Lemma 2.3. For any γ < 0 and any matrix W̄ ∈ Cn×n, µ(γW̄ ) = −γµ(−W̄ ).

Proof: This lemma can be immediately obtained from property (iv) in Lemma 2.2.

Lemma 2.4. Let N̄ ∈ Cn×n. If µ(−N̄) < 1, then det(I + N̄) 6= 0.

Proof: Since µ(−N̄) < 1, property (ii) in Lemma 2.2 gets Re(λ(N̄)) ≥ −µ(−N̄) > −1.
This implies that λ(N̄) 6= −1. Therefore, we have the stated result.
According to Lemma 2.1, for the uncertain TS-fuzzy-model-based control system in (1)

and (2), each fuzzy-rule-uncertain model {Ai +∆Ai, Ci +∆Ci} in (1) and (2) is observ-
able if and only if the n2 × n(n+m− 1) matrix

Q̃i = Qi +
m̄∑
k=1

εikEik (6)

has a full row rank n2, where

Qi =



In 0 • • • 0 0 • • • 0 CT
i

−AT
i In • • • 0 0 • • • CT

i 0
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
0 0 • • • In 0 • • • 0 0
0 0 • • • −AT

i CT
i • • • 0 0


(7)

and

Eik =



0 0 • • • 0 0 • • • 0 CT
ik

−AT
ik 0 • • • 0 0 • • • CT

ik 0
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
0 0 • • • 0 0 • • • 0 0
0 0 • • • −AT

ik CT
ik • • • 0 0


. (8)

Let the singular value decomposition of Qi be

Qi = Ui

[
Si 0n2×n(m−1)

]
V H
i , (9)

where Ui ∈ Rn2×n2
and Vi ∈ Rn(n+m−1)×n(n+m−1) are the unitary matrices, V H

i denotes
the complex-conjugate transpose of matrix Vi, Si = diag[σi1, . . . , σin2 ], and σi1 ≥ σi2 ≥
· · · ≥ σin2 > 0 are the singular values of Qi.
The sufficient criterion presented next ensures that the uncertain TS-fuzzy-model-based

control system in (1) and (2) is robustly locally observable.
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Theorem 2.1. Suppose that each fuzzy-rule-nominal model {Ai, Ci} is observable. The
uncertain TS-fuzzy-model-based control system in (1) and (2) is robustly locally observable
if the following conditions simultaneously hold true:

m̄∑
k=1

εikφik < 1, (10)

where i = 1, 2, . . . , N ;

φik =

{
µ
(
−S−1

i UH
i EikVi[In2 , 0n2×n(m−1)]

T
)
, for εik ≥ 0;

−µ
(
S−1
i UH

i EikVi[In2 , 0n2×n(m−1)]
T
)
, for εik < 0;

the matrices Eik, Si, Ui and Vi (i = 1, 2, . . . , N) are defined by (8) and (9), respectively,
and In2 denotes the n2 × n2 identity matrix.

Proof: Since each fuzzy-rule-nominal model {Ai, Ci} (i = 1, 2, . . . , N) is observable,
matrix Qi in (7) has a full row rank (i.e., rank(Qi) = n2) according to Lemma 2.1. We
know that

rank(Qi) = rank
(
S−1
i UH

i QiVi

)
. (11)

Thus, instead of rank(Q̃i), we can discuss the rank of[
In2 0n2×n(m−1)

]
+

m̄∑
k=1

εikRik, (12)

where Rik = S−1
i UH

i EikVi, for i = 1, 2, . . . , N and k = 1, 2, . . . , m̄. Since a matrix has rank
of at least n2 if it has at least one nonsingular n2 × n2 submatrix, a sufficient condition
for the matrix in (12) to have rank n2 is the nonsingularity

Gi = In2 +
m̄∑
k=1

εikR̄ik, (13)

where R̄ik = S−1
i UH

i EikVi[In2 , 0n2×n(p−1)]
T, for i = 1, 2, . . . , N .

According to Lemmas 2.2 and 2.3 and (10),

µ

(
−

m̄∑
k=1

εikR̄ik

)
=µ

(
−

m̄∑
k=1

εik

(
S−1
i UH

i EikVi

[
In2 , 0n2×n(p−1)

]T))

≤
m̄∑
k=1

µ
(
−εik

(
S−1
i UH

i EikVi

[
In2 , 0n2×n(p−1)

]T))
=

m̄∑
k=1

εikφik

< 1.

(14)

Thus, from Lemma 2.4, we have

det(Gi) = det

(
In2 +

m̄∑
k=1

εikR̄ik

)
6= 0. (15)

Hence, matrix Gi in (13) is nonsingular. That is, matrix Q̃i in (6) has a full row rank
of n2. According to the above results and Lemma 2.1, the local observability of the
uncertain TS-fuzzy-model-based control system in (1) and (2) is ensured. Thus, the proof
is completed.
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Additionally, this study considers the following uncertainty forms for the parametric
uncertainty matrices ∆Ai, ∆Bi and ∆Ci [2]:

∆Ai = MAi
∆NAi

, ∆Bi = MBi
∆NBi

and ∆Ci = MCi
∆NCi

, (16)

for i = 1, 2, . . . , N , where MAi
, MBi

, MCi
, NAi

, NBi
and NCi

are known constant real
matrices with appropriate dimensions, and ∆ is an unknown matrix function where

∆ ∈ Ω := {∆ |‖∆‖ ≤ 1, the elements of ∆ are Lebesgue measurable} .

Following the same procedures for the proof given in Theorem 2.1 gets the following
corollary for ensuring that the uncertain TS-fuzzy-model-based control system in (1) and
(2) with the uncertainty forms in (16) is robustly locally observable.

Corollary 2.1. Suppose that each fuzzy-rule-nominal model {Ai, Ci} is observable. The
uncertain TS-fuzzy-model-based control system in (1) and (2) with the uncertainty forms
in (16) is robustly locally observable if the following conditions simultaneously hold true:

αiβ1iβ2i < 1, (17)

where αi = ‖Fi‖, β1i =
∥∥S−1

i UH
i

∥∥, β2i =
∥∥∥Vi[In2 , 0n2

1×n(m−1)]
T
∥∥∥, and

Fi =


0 0 • • • 0 0 • • • 0 (MCi

∆NCi
)T

−(MAi
∆NAi

)T 0 • • • 0 0 • • • (MCi
∆NCi

)T 0
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
0 0 • • • 0 0 • • • 0 0
0 0 • • • −(MAi

∆NAi
)T (MCi

∆NCi
)T • • • 0 0

 , (18)

for i = 1, 2, . . . , N ; matrices Si, Ui and Vi (i = 1, 2, . . . , N) are defined in (9), and In2

denotes the n2 × n2 identity matrix.

2.2. Robustly global observability. The resulting TS-fuzzy-model-based control sys-
tem with parametric uncertainties inferred from (1) and (2) is represented as

ẋ(t) =
N∑
i=1

hi(z) ((Ai +∆Ai)x(t) + (Bi +∆Bi)u(t)), (19a)

and

y(t) =
N∑
i=1

hi(z) ((Ci +∆Ci)x(t)), (19b)

where z = [z1, z2, . . . , zg]
T denotes the g-dimensional premise vector, hi(z) = wi(z)/

N∑
i=1

wi(z), wi(z) =
g

Π
j=1

Mij(zj), and Mij(zj) are the membership grades of zj in the

fuzzy sets Mij (i = 1, 2, . . . , N and j = 1, 2, . . . , g). Thus, hi(z) ≥ 0 and
N∑
i=1

hi(z) = 1.

According to Lemma 2.1, the resulting uncertain TS-fuzzy-model-based control system
in (19) is robustly globally observable if and only if the n2 × n(n+m− 1) matrix

Q̃ =
N∑
i=1

hi(z)Qi +
N∑
i=1

m̄∑
k=1

hi(z)εikEik

=
N∑
i=1

hi(z)
(
Q̄+Di

)
+

N∑
i=1

m̄∑
k=1

hi(z)εikEik
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= Q̄+
N∑
i=1

hi(z)Di +
N∑
i=1

m̄∑
k=1

hi(z)εikEik (20)

has full row rank n2, where Q̄ is any given n2 × n(n +m − 1) constant matrix having a
full row rank, Qi and Eik are as given in (7) and (8), respectively, and Di = Qi − Q̄.

Let the singular value decomposition of Q̄ be

Q̄ = Ū
[
S̄ 0n2×n(m−1)

]
V̄ H , (21)

where Ū ∈ Rn2×n2
and V̄ ∈ Rn(n+m−1)×n(n+m−1) are the unitary matrices, V̄ H denotes the

complex-conjugate transpose of matrix V̄ , S̄ = diag[σ̄1, . . . , σ̄n2 ], and σ̄1 ≥ σ̄2 ≥ · · · ≥
σ̄n2 > 0 are the singular values of Q̄. A sufficient criterion is presented for ensuring that
the resulting uncertain TS-fuzzy-model-based control system in (19) is robustly globally
observable.

Theorem 2.2. The resulting uncertain TS-fuzzy-model-based control system in (19) is
robustly globally observable if the following condition holds true:

N∑
i=1

µ(−Λ̄i) +
N∑
i=1

m̄∑
k=1

εikφ̄ik < 1, (22)

where Λ̄i = S̄−1ŪHDiV̄ [In2 , 0n2×n(m−1)]
T; Ω̄ik = S̄−1ŪHEikV̄ [In2 , 0n2×n(m−1)]

T;

φ̄ik =

{
µ(−Ω̄ik), for εik ≥ 0;
−µ(Ω̄ik), for εik < 0;

matrices Eik, Di, S̄, Ū and V̄ are as defined in (8), (20) and (21); and In2 denotes the
n2 × n2 identity matrix.

Proof: We know that

rank(Q̄) = rank(S̄−1ŪHQ̄V̄ ). (23)

Thus, instead of rank(Q̃), we can discuss the rank of

[
In2 0n2×n(m−1)

]
+

N∑
i=1

hi(z)Λi +
N∑
i=1

m̄∑
k=1

hi(z)εikΩik, (24)

in which Λi = S̄−1ŪHDiV̄ and Ωik = S̄−1ŪHEikV̄ . Since a matrix has at least rank n2 if
it has at least one nonsingular n2 × n2 submatrix, a sufficient criterion for the matrix in
(24) to have rank n2 is the nonsingularity

G = In2 +
N∑
i=1

hi(z)Λ̄i +
N∑
i=1

m̄∑
k=1

hi(z)εikΩ̄ik, (25)

where Λ̄i = S̄−1ŪHDiV̄ [In2 , 0n2×n(m−1)]
T and Ω̄ik = S̄−1ŪHEikV̄ [In2 , 0n2×n(m−1)]

T.
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According to Lemmas 2.2 and 2.3 and (22),

µ

(
−

N∑
i=1

hi(z)Λ̄i −
N∑
i=1

m̄∑
k=1

hi(z)εikΩ̄ik

)

≤
N∑
i=1

hi(z)µ(−Λ̄i) +
N∑
i=1

m̄∑
k=1

hi(z)µ(−εikΩ̄ik)

≤
N∑
i=1

µ(−Λ̄i) +
N∑
i=1

m̄∑
k=1

µ(−εikΩ̄ik)

=
N∑
i=1

µ(−Λ̄i) +
N∑
i=1

m̄∑
k=1

εikφ̄ik

< 1.

(26)

Thus, Lemma 2.4 gets

det(G) = det

(
In2 +

N∑
i=1

hi(z)Λ̄i +
N∑
i=1

m̄∑
k=1

hi(z)εikΩ̄ik

)
6= 0. (27)

Therefore, matrix G in (25) is nonsingular. That is, matrix Q̃ in (20) has the full row
rank n2. Therefore, the above results and Lemma 2.1 ensure the global observability of
the resulting uncertain TS-fuzzy-model-based control system in (19). Thus, the proof is
completed.
On the other hand, following the same proof procedures given in Theorem 2.2 gets the

following corollary for ensuring that the uncertain TS-fuzzy-model-based control system
in (1) and (2) with the uncertainty forms in (16) is robustly globally observable.

Corollary 2.2. The resulting uncertain TS-fuzzy-model-based control system in (19) with
the uncertainty forms in (16) is robustly globally observable if the following condition holds
true:

N∑
i=1

µ
(
−Λ̄i

)
+

N∑
i=1

αiβ̄1β̄2 < 1, (28)

where Λ̄i = S̄−1ŪHDiV̄ [In2 , 0n2×n(m−1)]
T; αi = ‖Fi‖; β̄1 =

∥∥S̄−1ŪH
∥∥; β̄2 =

∥∥∥V̄ [In2,

0n2
1×n(m−1)]

T
∥∥∥; matrices Fi, Di, S̄, Ū and V̄ are defined by (18), (20) and (21); In2

denotes the n2 × n2 identity matrix.

Remark 2.1. The proposed sufficient conditions (10) and (22) give the explicit rela-
tionship of the bounds on εik for preserving observability. Additionally, the bounds on εik,
which are obtained by using the proposed sufficient conditions, are not necessarily symmet-
ric with respect to the origin of the parameter space regarding εik, in which i = 1, 2, . . . , N ,
and k = 1, 2, . . . , m̄.

Remark 2.2. The proposed robustly global observability conditions in (22) and (28) are
very conservative. Therefore, approaches to deriving the relaxed robustly global observ-
ability conditions and to using the evolutionary algorithm to choose a suitable matrix Q̄
[32-36] for reducing the conservatism of the proposed conditions are worthy of further
study.

Remark 2.3. Recent works in the literature have tended to focus on the controller de-
sign problem of uncertain TS-fuzzy-model-based control systems. Although the literature
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on robust control theory agrees that LMI obtains good results, it cannot solve the rank
preservation problem considered here. The LMI is also difficult to use for determining
the robustly local and global observability of uncertain TS-fuzzy-model-based control sys-
tems with uncertainties. Researchers have studied observability problems in various fuzzy
systems (e.g., [17-25]). Until now, however, no studies have discussed the robustly local
and global observability of uncertain TS-fuzzy-model-based control systems. Additionally,
although the observability problem has been studied in various fuzzy systems, the problem
of robustly local and global observability in uncertain TS-fuzzy-model-based control systems
has not been reported. Therefore, we present a new algebraic approach for studying the
robustly local and global observability of uncertain TS-fuzzy-model-based control systems.
Since the recent literature shows no comparable approaches, a performance comparison is
not possible. Therefore, only an illustrative example is given to demonstrate the applica-
bility of the sufficient criteria proposed here.

3. Illustrative Example. Consider the nonlinear mass-spring-damper mechanical sys-
tem in Lee et al. [38]. The dynamic equation for the nonlinear mass-spring-damper
mechanical system with elemental parametric uncertainties is

M̄ÿ(t) + ḡ(y(t), ẏ(t)) + f̄(y(t)) = ϕ(ẏ(t))u(t), (29)

where M̄ is the mass, u(t) is the force, y(t) is the displacement, ẏ(t) is the velocity,
ḡ(y(t), ẏ(t)) is the nonlinear or uncertain term with respect to the damper, f̄(y(t)) is the
nonlinear or uncertain term with respect to the spring, and ϕ(ẏ(t)) is the nonlinear or
uncertain term with respect to the input term. Here, the assumptions are that y(t) ∈
[−1.5 1.5], ẏ(t) ∈ [−1.5 1.5], ḡ(y(t), ẏ(t)) = (1 + c1)ẏ(t), f̄(y(t)) = (0.01 + c2)y(t) +
0.1y3(t), and ϕ(ẏ(t)) = 1 + 0.13ẏ3(t), where ck (k = 1, 2) are parametric uncertainties.
The parameters in this example are set as M̄ = 1.0 kg, −0.1 ≤ c1 ≤ 0.11, and −0.2 ≤
c2 ≤ 0.18.

Therefore, by using the sector nonlinearity approach for fuzzy model construction [2],
the uncertain nonlinear system in (29) can be represented by the following exact TS
fuzzy model with system uncertainties, in which the output uncertain matrices ∆Ci

(i = 1, 2, 3, 4) are also considered due to variations in the displacement-sensor position:
R̃1: IF z1 is M11 and z2 is M12,

THEN ẋ (t) = (A1 +∆A1) x (t) +B1u (t) , (30a)

and y (t) = (C1 +∆C1)x (t) ; (30b)

R̃2: IF z1 is M21 and z2 is M22,

THEN ẋ (t) = (A2 +∆A2) x (t) +B2u (t) , (31a)

and y (t) = (C2 +∆C2)x (t) ; (31b)

R̃3: IF z1 is M31 and z2 is M32,

THEN ẋ (t) = (A3 +∆A3) x (t) +B3u (t) , (32a)

and y (t) = (C3 +∆C3)x (t) ; (32b)

R̃4: IF z1 is M41 and z2 is M42,

THEN ẋ (t) = (A4 +∆A4) x (t) +B4u (t) , (33a)

and y (t) = (C4 +∆C4)x (t) ; (33b)
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where z1 = y2 (t), z2 = ẏ3 (t), x(t) = [y(t) ẏ(t)]T, x(0) = [−1 − 1]T, ∆Ai =
3∑

k=1

εikAik,

∆Ci =
3∑

k=1

εikCik, A1 = A2 =

[
0 1

−0.01 −1

]
, A3 = A4 =

[
0 1

−0.235 −1

]
, B1 = B3 =[

0
1.43875

]
, B2 = B4 =

[
0

0.56125

]
, C1 = C2 = C3 = C4 =

[
1 0

]
, Ai3 =

[
0 0
0 0

]
,

A11 = A21 = A31 = A41 =

[
0 0
0 1

]
, A12 = A22 = A32 = A42 =

[
0 0
1 0

]
, C13 = C23 =

C33 = C43 =
[
1 0

]
, Ci1 = Ci2 =

[
0 0

]
, M11 = M21 = 1 − z1

2.25
, M31 = M41 = z1

2.25
,

M12 = M32 = 0.5+ z2
6.75

,M22 = M42 = 0.5− z2
6.75

, εi1 ∈ [−0.1 0.11], εi2 ∈ [−0.2 0.18], and
εi3 ∈ [−0.01 0.9], where i = 1, 2, 3, 4, and where uncertainties εi3 result from variations
in the displacement-sensor measurement.
Applying the proposed conditions in (10) for the robustly local observability then gets

3∑
k=1

ε1kφ1k ≤ 0.16778 < 1,

for ε11 ∈
[
0 0.11

]
, ε12 ∈

[
0 0.18

]
, and ε13 ∈

[
0 0.9

]
;

(34a)

3∑
k=1

ε1kφ1k ≤ 0.17778 < 1,

for ε11 ∈
[
0 0.11

]
, ε12 ∈

[
−0.2 0

]
, and ε13 ∈

[
0 0.9

]
;

(34b)

3∑
k=1

ε1kφ1k ≤ 0.18778 < 1,

for ε11 ∈
[
0 0.11

]
, ε12 ∈

[
−0.2 0

]
, and ε13 ∈

[
−0.01 0

]
;

(34c)

3∑
k=1

ε1kφ1k ≤ 0.17778 < 1,

for ε11 ∈
[
0 0.11

]
, ε12 ∈

[
0 0.18

]
, and ε13 ∈

[
−0.01 0

]
;

(34d)

3∑
k=1

ε1kφ1k ≤ 0.16071 < 1,

for ε11 ∈
[
−0.1 0

]
, ε12 ∈

[
0 0.18

]
, and ε13 ∈

[
0 0.9

]
;

(34e)

3∑
k=1

ε1kφ1k ≤ 0.17071 < 1,

for ε11 ∈
[
−0.1 0

]
, ε12 ∈

[
−0.2 0

]
, and ε13 ∈

[
0 0.9

]
;

(34f)

3∑
k=1

ε1kφ1k ≤ 0.18071 < 1,

for ε11 ∈
[
−0.1 0

]
, ε12 ∈

[
−0.2 0

]
, and ε13 ∈

[
−0.01 0

]
;

(34g)

3∑
k=1

ε1kφ1k ≤ 0.17071 < 1,

for ε11 ∈
[
−0.1 0

]
, ε12 ∈

[
0 0.18

]
, and ε13 ∈

[
−0.01 0

]
;

(34h)
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3∑
k=1

ε2kφ2k ≤ 0.17778 < 1,

for ε21 ∈
[
0 0.11

]
, ε22 ∈

[
0 0.18

]
, and ε23 ∈

[
0 0.9

]
;

(35a)

3∑
k=1

ε2kφ2k ≤ 0.17778 < 1,

for ε21 ∈
[
0 0.11

]
, ε22 ∈

[
−0.2 0

]
, and ε23 ∈

[
0 0.9

]
;

(35b)

3∑
k=1

ε2kφ2k ≤ 0.18778 < 1,

for ε21 ∈
[
0 0.11

]
, ε22 ∈

[
−0.2 0

]
, and ε23 ∈

[
−0.01 0

]
;

(35c)

3∑
k=1

ε2kφ2k ≤ 0.17778 < 1,

for ε21 ∈
[
0 0.11

]
, ε22 ∈

[
0 0.18

]
, and ε23 ∈

[
−0.01 0

]
;

(35d)

3∑
k=1

ε2kφ2k ≤ 0.16071 < 1,

for ε21 ∈
[
−0.1 0

]
, ε22 ∈

[
0 0.18

]
, and ε23 ∈

[
0 0.9

]
;

(35e)

3∑
k=1

ε2kφ2k ≤ 0.17071 < 1,

for ε21 ∈
[
−0.1 0

]
, ε22 ∈

[
−0.2 0

]
, and ε23 ∈

[
0 0.9

]
;

(35f)

3∑
k=1

ε2kφ2k ≤ 0.18071 < 1,

for ε21 ∈
[
−0.1 0

]
, ε22 ∈

[
−0.2 0

]
, and ε23 ∈

[
−0.01 0

]
;

(35g)

3∑
k=1

ε2kφ2k ≤ 0.17071 < 1,

for ε21 ∈
[
−0.1 0

]
, ε22 ∈

[
0 0.18

]
, and ε23 ∈

[
−0.01 0

]
;

(35h)

3∑
k=1

ε3kφ3k ≤ 0.17638 < 1,

for ε31 ∈
[
0 0.11

]
, ε32 ∈

[
0 0.18

]
, and ε33 ∈

[
0 0.9

]
;

(36a)

3∑
k=1

ε3kφ3k ≤ 0.18638 < 1,

for ε31 ∈
[
0 0.11

]
, ε32 ∈

[
−0.2 0

]
, and ε33 ∈

[
0 0.9

]
;

(36b)

3∑
k=1

ε3k(t)φ3k ≤ 0.18774 < 1,

for ε31 ∈
[
0 0.11

]
, ε32 ∈

[
−0.2 0

]
, and ε33 ∈

[
−0.01 0

]
;

(36c)



816 W.-H. HO, S.-H. CHEN AND J.-H. CHOU

3∑
k=1

ε3kφ3k ≤ 0.17774 < 1,

for ε31 ∈
[
0 0.11

]
, ε32 ∈

[
0 0.18

]
, and ε33 ∈

[
−0.01 0

]
;

(36d)

3∑
k=1

ε3kφ3k ≤ 0.16931 < 1,

for ε31 ∈
[
−0.1 0

]
, ε32 ∈

[
0 0.18

]
, and ε33 ∈

[
0 0.9

]
;

(36e)

3∑
k=1

ε3kφ3k ≤ 0.17931 < 1,

for ε31 ∈
[
−0.1 0

]
, ε32 ∈

[
−0.2 0

]
, and ε33 ∈

[
0 0.9

]
;

(36f)

3∑
k=1

ε3kφ3k ≤ 0.18067 < 1,

for ε31 ∈
[
−0.1 0

]
, ε32 ∈

[
−0.2 0

]
, and ε33 ∈

[
−0.01 0

]
;

(36g)

3∑
k=1

ε3kφ3k ≤ 0.17067 < 1,

for ε31 ∈
[
−0.1 0

]
, ε32 ∈

[
0 0.18

]
, and ε33 ∈

[
−0.01 0

]
;

(36h)

3∑
k=1

ε4kφ4k ≤ 0.16778 < 1,

for ε41 ∈
[
0 0.11

]
, ε42 ∈

[
0 0.18

]
, and ε43 ∈

[
0 0.9

]
;

(37a)

3∑
k=1

ε4kφ4k ≤ 0.17778 < 1,

for ε41 ∈
[
0 0.11

]
, ε42 ∈

[
−0.2 0

]
, and ε43 ∈

[
0 0.9

]
;

(37b)

3∑
k=1

ε4kφ4k ≤ 0.18778 < 1,

for ε41 ∈
[
0 0.11

]
, ε42 ∈

[
−0.2 0

]
, and ε43 ∈

[
−0.01 0

]
;

(37c)

3∑
k=1

ε4kφ4k ≤ 0.17778 < 1,

for ε41 ∈
[
0 0.11

]
, ε42 ∈

[
0 0.18

]
, and ε43 ∈

[
−0.01 0

]
;

(37d)

3∑
k=1

ε4kφ4k ≤ 0.16071 < 1,

for ε41 ∈
[
−0.1 0

]
, ε42 ∈

[
0 0.18

]
, and ε43 ∈

[
0 0.9

]
;

(37e)

3∑
k=1

ε4kφ4k ≤ 0.17071 < 1,

for ε41 ∈
[
−0.1 0

]
, ε42 ∈

[
−0.2 0

]
, and ε43 ∈

[
0 0.9

]
;

(37f)
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3∑
k=1

ε4kφ4k ≤ 0.18071 < 1,

for ε41 ∈
[
−0.1 0

]
, ε42 ∈

[
−0.2 0

]
, and ε43 ∈

[
−0.01 0

]
;

(37g)

3∑
k=1

ε4kφ4k ≤ 0.17071 < 1,

for ε41 ∈
[
−0.1 0

]
, ε42 ∈

[
0 0.18

]
, and ε43 ∈

[
−0.01 0

]
.

(37h)

The results for (34)-(37) confirm that the uncertain TS-fuzzy-model-based control sys-
tem in (30)-(33) is robustly locally observable.

However, entering the presented robustly global observability criterion in (22) in the
constant matrix Q̄ = (Q1 +Q2 +Q3 +Q4)/4, gets

4∑
i=1

µ(−Λ̄i) +
4∑

i=1

3∑
k=1

εikφ̄ik ≤ 0.90472 < 1,

for εi1 ∈
[
0 0.11

]
, εi2 ∈

[
0 0.18

]
, and εi3 ∈

[
0 0.9

]
;

(38a)

4∑
i=1

µ(−Λ̄i) +
4∑

i=1

3∑
k=1

εikφ̄ik ≤ 0.94472 < 1,

for εi1 ∈
[
0 0.11

]
, εi2 ∈

[
−0.2 0

]
, and εi3 ∈

[
0 0.9

]
;

(38b)

4∑
i=1

µ(−Λ̄i) +
4∑

i=1

3∑
k=1

εikφ̄ik ≤ 0.97609 < 1,

for εi1 ∈
[
0 0.11

]
, εi2 ∈

[
−0.2 0

]
, and εi3 ∈

[
−0.01 0

]
;

(38c)

4∑
i=1

µ(−Λ̄i) +
4∑

i=1

3∑
k=1

εikφ̄ik ≤ 0.93609 < 1,

for εi1 ∈
[
0 0.11

]
, εi2 ∈

[
0 0.18

]
, and εi3 ∈

[
−0.01 0

]
;

(38d)

4∑
i=1

µ(−Λ̄i) +
4∑

i=1

3∑
k=1

εikφ̄ik ≤ 0.87644 < 1,

for εi1 ∈
[
−0.1 0

]
, εi2 ∈

[
0 0.18

]
, and εi3 ∈

[
0 0.9

]
;

(38e)

4∑
i=1

µ(−Λ̄i) +
4∑

i=1

3∑
k=1

εikφ̄ik ≤ 0.91644 < 1,

for εi1 ∈
[
−0.1 0

]
, εi2 ∈

[
−0.2 0

]
, and εi3 ∈

[
0 0.9

]
;

(38f)

4∑
i=1

µ(−Λ̄i) +
4∑

i=1

3∑
k=1

εikφ̄ik ≤ 0.94780 < 1,

for εi1 ∈
[
−0.1 0

]
, εi2 ∈

[
−0.2 0

]
, and εi3 ∈

[
−0.01 0

]
;

(38g)

4∑
i=1

µ(−Λ̄i) +
4∑

i=1

3∑
k=1

εikφ̄ik ≤ 0.90780 < 1,

for εi1 ∈
[
−0.1 0

]
, εi2 ∈

[
0 0.18

]
, and εi3 ∈

[
−0.01 0

]
.

(38h)

The results for (38) confirm that the uncertain TS-fuzzy-model-based control system
in (30)-(33) is robustly globally observable. However, although the robustly global ob-
servability criterion ensures that the uncertain TS-fuzzy-model-based control system is
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robustly and globally observable, the data obtained data in (34)-(38) show that the cri-
terion for robustly global observability is more conservative than that for robustly local
observability.

4. Conclusions. In this study of the robust observability problem for uncertain TS-
fuzzy-model-based control systems, the problem of rank preservation for robust observ-
ability of uncertain TS-fuzzy-model-based control systems is converted to a nonsingularity
analysis problem. Under the assumption that each fuzzy rule of a nominal TS-fuzzy-
model-based control system has a full row rank for its observability matrix, a sufficient
criterion was proposed for preserving the assumed property when the system uncertain-
ties are included in the nominal TS-fuzzy-model-based control systems. The proposed
sufficient criterion indicates the explicit relationships of bounds on system uncertainties
that are needed to preserve the assumed property. The criterion for the robustly global
observability of the TS-fuzzy-model-based control system is also presented. A nonlinear
mass-spring-damper mechanical system with both elemental parameter uncertainties and
displacement-sensor measurement variations is also given to illustrate the application of
the proposed sufficient criteria.
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