
International Journal of Innovative
Computing, Information and Control ICIC International©2013 ISSN 1349-4198
Volume 9, Number 2, February 2013 pp. 821–839

PASSWORD CRACKING BASED ON LEARNED PATTERNS
FROM DISCLOSED PASSWORDS

Hsien-Cheng Chou1, Hung-Chang Lee2, Hwan-Jeu Yu1, Fei-Pei Lai1,3

Kuo-Hsuan Huang4 and Chih-Wen Hsueh1

1Department of Computer Science and Information Engineering
3Graduate Institute of Biomedical Electronics and Bioinformatics

National Taiwan University
No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
{d96922034; flai }@csie.ntu.edu.tw; ecpro@seed.net.tw

2Department of Information Management
Tamkang University

No. 151, Yingzhuan Road, Tamsui District, New Taipei City 25137, Taiwan
hclee@mail.im.tku.edu.tw

4Department of Computer Science and Engineering
Tatung University

No. 40, Zhongshan North Road, 3rd Section, Taipei 104, Taiwan
khhuang@ttu.edu.tw

Received December 2011; revised April 2012

Abstract. Password-based authentication systems are still the most commonly used
mechanism for protecting sensitive information despite being vulnerable to dictionary
based attacks. To guard against such attacks, many organizations enforce complicated
password-creation rules and require that passwords include numeric and special charac-
ters. This study demonstrates that as long as passwords are not difficult to remember,
they remain vulnerable to “smart dictionary” attacks. In this study, a password anal-
ysis platform is developed to formally analyze commonly used passwords and identify
frequently used password patterns and their associated probabilities. Based upon these
patterns, we establish a model consisting of a Training set, a Dictionary set and a Test-
ing set (TDT model) to generate probabilistic passwords sorted in decreasing order. The
model can be used to dramatically reduce the size of the password space to be searched.
Simulation results show that the number of passwords cracked using the TDT model is
1.43 and 2.5 times higher compared with the John-the-Ripper attack and Brute-force at-
tack, respectively. We also design a hybrid password cracking system combining different
attacks to verify the effectiveness of the proposed method. After applying the TDT model,
the number of passwords cracked increased by up to 273%.
Keywords: Password cracking, Dictionary attack, Brute-force attack, TDT model

1. Introduction. Identity authentication or access control through passwords is still a
widely used method of ensuring system security, despite the increased use of alternative
techniques such as graphical passwords [1], smart card, and biometrics. However, pass-
word based security is vulnerable to the dictionary attack [2]. In order to force users to
create strong passwords, system administration policies often enforce several complex rules
intended to force users into creating strong passwords [3,4]. Under such rules, users may
be required to use numeric or special characters, have to enter passwords of a minimum
length, and avoid words found in a dictionary. Users often struggle to create passwords
that meet these requirements. However, it also becomes difficult to crack such passwords
using a dictionary attack.

821

822 H.-C. CHOU, H.-C. LEE, H.-J. YU, F.-P. LAI, K.-H. HUANG AND C.-W. HSUEH

For example, consider the password 'computer123!'. If password rules were not enforced,
a user may simply have selected 'computer' as their password. However, in order to satisfy
the requirements of the system administration policy, they may have to append numeric
characters '123' and a special character '!'. In this way, security is enhanced because the
difficulty of cracking the password increases from 268 to 6812.
In addition to enforcing high password complexity, many password-based cryptosystems

execute multiple iterations in their core encryption algorithm to defend against the Brute-
force attack. In other words, they execute the core encryption algorithm many times to
increase password complexity and cracking time. Take the WORD software as an example,
where an attacker can crack more than 30,000 passwords per second for the 2003 edition
using a dual quad-core 2.33GHz Intel computer. However, it is only able to crack around
400 passwords per second for the 2007 edition. Therefore, taking WORD 2007 as an
example, for a lowercase string of length 8, it may take 16.5 years (268/400 ∗ 86400 ∗ 365)
to crack using the Brute-force attack.
These examples suggest that due to rapidly changing user habits for password selection

and enhancements in the encryption algorithm, the dictionary attack and brute-force
attack face an enormous challenge. This paper, looking from the attacker’s standpoint,
aims to overcome this problem and design a good method for generating highly efficient
passwords for cracking. The proposed method makes the dictionary attack stronger by
overcoming its shortcomings and also overcomes the limitations of the brute-force attack.
In this paper, we analyze user habits in creating passwords, and design an effective

password attack method. First, we design a password analysis platform using Flex [5,6]
with Cygwin [7]. It uses regular expressions to categorize and analyze disclosed passwords
to understand how users create passwords. By analyzing the disclosed passwords, we are
able to determine how users incorporate the required character types in their passwords
and summarize some frequently used password patterns with their associated probabilities.
We then create a model comprising a Training set, a Dictionary set and a Testing set,
called the TDT model. This model can generate passwords and sort them in decreasing
order of probability. Finally, we devise a hybrid password cracking system, which is a
three stage sequence comprising a dictionary attack, the TDT model attack, and a brute
force attack. We then simulate and apply this system to cracking UNIX access passwords.
This paper is organized as follows. Section 2 describes related research on password

attacks. Section 3 proposes pattern analysis from disclosed passwords. Section 4 analyses
the strategy for generating passwords. Section 5 presents the simulation results. Section
6 demonstrates the effectiveness and comparisons with other related researches. Section
7 contains conclusion and future work.

2. Related Work. Techniques for cracking or acquiring passwords include social engi-
neering, phishing and shoulder surfing. However, most current identity authentication
attacks (focusing on passwords) are still based on the dictionary attack or on brute-force
methods. Other attacks such as time-memory tradeoff [8,9] are gradually gaining im-
portance as computing power and storage space increases. However, this attack requires
substantial computational time and effort to build Rainbow tables [10] and thus has not
been widely deployed. In addition, an effective defense has been mounted against Rain-
bow tables by exploiting the fact that some hash functions are combined with a random
salt (for example salted SHA-1), which causes the same passwords to produce different
hash values.

PASSWORD CRACKING 823

Actually, many companies such as Elcomsoft, Passware, and Wwwhack have developed
password recovery software for documents files that use character strings for data encryp-
tion, such as Word, Excel, PDF, RAR, and ZIP encryption files. However, most of these
password recovery packages are still based on the dictionary attack or brute-force attack.

The effectiveness of dictionary attack and brute-force attack has been challenged by
the increasing awareness and emphasis on secure password policies. In addition, many
password-based cryptosystems have incorporated more complicated protection mecha-
nisms into existing encryption algorithms to defend against a brute-force attack, increas-
ing the time required for every password guess in a brute-force attack. The MD5 crypt
is one such example [11]. The MD5 hash can be brute-forced in a reasonable amount of
time. However, applying the MD5 hash a thousand times increases the times required
to crack the hash by the same factor. To overcome this protection method, password
crackers have to design a good guessing mechanism that can guess effectively and obtain
results in a limited amount of time.

Castelluccia [12] and Narayanan [13] proposed a password-cracking technique based on
a Markov model, in which password guesses are based on the contextual frequency of
characters. Weir et al. [14,15] presented a novel password-cracking technique that used
the text structure from training data while applying mangling rules to the text itself. The
authors found their technique to be more effective than the John the Ripper tool [16].
In a separate study, Zhang et al. [17] found Weir’s algorithm to be the most effective
among the techniques they used. In 2011, Kelley et al. [18] applied Weir’s algorithm
and a variation of the Markov model to generate simulated passwords and evaluate their
strength.

However, Weir’s algorithm inherently depends on common dictionaries. Weir et al.
used three different dictionaries to generate passwords. Their method will not be effective
if users have used words that are not in these dictionaries as passwords. For example,
if the password is '!qazxsw@', based on the meaningless sequence of characters 'qazxsw',
then Weir’s algorithm will not be able to crack the password. Although 'qazxsw' is not
a meaningful word, it is a keyboard pattern. This paper applies a variation of Weir’s
algorithm to generate more passwords more efficiently. We analyzed the patterns found
in disclosed passwords, and developed the TDT model to generate passwords. These
generated passwords were then used to crack UNIX access passwords.

3. Pattern Analysis from Disclosed Passwords. User’s password usually comes from
printable characters. These characters are used in forming the passwords. We define the
elements and password patterns obtained from the disclosed passwords.

3.1. Basic elements and patterns of disclosed passwords. The basic elements of
user’s disclosed passwords are the printable characters. These characters available on a
keyboard can be categorized into four different types, i.e., numeric (N), lowercase (L),
uppercase (U) and other (O). Table 1 shows all the 94 printable characters and their
type.

Table 1. Basic elements and types of users’ passwords

Type Character Number Basic Elements
Numeric (N) 10 0123456789
Lowercase (L) 26 abcdefghijklmnopqrstuvwsyz
Uppercase (U) 26 ABCDEFGHIJKLMNOPQRSTUVWXYZ
Other (O) 32 ∼ `!@#$% ∧ &*() −+=[]\{}|;’:',./<>?

824 H.-C. CHOU, H.-C. LEE, H.-J. YU, F.-P. LAI, K.-H. HUANG AND C.-W. HSUEH

In order to describe and analyze the disclosed passwords comprising of N , L, U and O
strings, a terminology is defined as follows.

Definition 3.1. (N+, Nn) A Number string (denoted N+) is a continuous sequence of
characters of N type. A Number string of length n (denoted Nn) is a continuous sequence
of characters of N type of length n.

Definition 3.2. (Element) An element of type Nn is an instance of Number string Nn

found in a disclosed password.

For example, from an instance of disclosed passwords like '12348888', we obtain an
element '12348888' of type N8, which also belong to N+. By Definition 3.1, N+ represents
either one of N1, N2, N3, . . ., Ni and denotes a super class among N1, N2, N3, . . ., Ni.

Lemma 3.1. The same definition also applies to Lowercase string (L+, Ln), Uppercase
string (U+, Un) and other string (O+, On). An Alpha string (A+, An) is a continuous
sequence of characters of L or U types.

Users create their passwords as patterns based on a combination among the strings of
character types, defined as follows:

Definition 3.3. (Password pattern and pattern class) The password pattern of a password
is the combination of strings of character type (N , L, U and O) in a password. It is
represented in terms of the combinations strings of Nn, Ln, Un and On, where the subscript
n represents the length of the corresponding type. The pattern class represents a set of
password patterns and is a combination of strings of N+, L+, U+ and O+.

For example, the password pattern of the password 'Password10!!' is 'U1L7N2O2' since
the password consists of four elements, i.e., 'P', 'assword', '10', and '!!'. These elements
belong to patterns U1, L7, N2, O2, respectively. Furthermore, the password pattern
'U1L7N2O2' is an instance of pattern class 'U+L+N+O+'.
Some examples are presented in Table 2. We can see that most passwords are based on

Alpha strings; they consist of Lowercase or Uppercase strings. Number strings or Other
strings of variable length are inserted before or appended after the Alpha strings. Some
Alpha strings are dictionary words, such as 'password', 'computer', 'tiger', and 'count'.
Other passwords are based on the keyboard layout, e.g., 'qwerty', 'qazwsx'. In Section
3.2, we develop a password analysis platform to analyze users’ disclosed passwords in
detail.

Table 2. Some instances from users’ disclosed passwords

Instance Pattern Class Password Pattern Elements
password1 L+N+ L8N1 password, 1
computer88 L+N+ L8N2 computer, 88
13tmein N+L+ N2L5 13, tmein
jester6# L+N+O+ L6N1O1 jester, 6, #
Count!!!! U+L+O+ U1L4O4 C, ount, !!!!

qwerty2009 L+N+ L6N4 qwerty, 2009
AAaa1211&& U+L+N+O+ U2L2N4O2 AA, aa, 1211, &&
@merican O+L+ O1L7 @, merican
95celica N+L+ N2L6 95, celica
8qazwsx9 N+L+N+ N1L6N1 8, qazwsx, 9

PASSWORD CRACKING 825

3.2. Statistics of password patterns. In October 2008, a phishing attack was launched
to obtain the email addresses and passwords of Rockyou users [19]. The phishing attack
received much publicity, and the 14,344,389 passwords obtained were made available for
download. However, the downloaded password corpus did not contain any information
about associated Rockyou usernames. In the paper, we use these passwords as disclosed
real password data for further analysis.

To analyze the password corpus more systematically, we developed a password analysis
platform using Flex [5,6] with Cygwin [7]. The Cygwin package provides a complete UNIX
environment from within a Windows PC. After installing Cygwin, Flex will be able to
complete all flex assignments on a PC. Flex is normally used to partition a stream of
characters into tokens. It takes a specification that associates regular expressions with
actions as input. By using this password analysis platform with regular expressions, we
analyze the passwords from Rockyou as described next.
Pattern Class, Password Pattern, and Element

According to our statistics, there are 141,278 pattern classes in Rockyou. However, 160
of these pattern classes are composed of continuous sequences of one to four character
types, which cover 97.51% of these passwords in RockYou. For example, the password
class of 'abc123' is 'L+N+', consisting of two character types. The reason is that overly
complex passwords are difficult for users to remember. Therefore, we focus on calculating
possible combinations of continuous sequences of one to four character types.

With our password analysis platform, we represent these 160 combinations by regular
expressions, and use Flex to obtain statistics. Table 3 lists the top fifteen pattern classes
in RockYou disclosed passwords.

Table 3. Top fifteen pattern classes from Rockyou

Pattern Class Occurrences Percentage of Total
L+N+ 4,720,184 32.91%
L+ 3,726,129 25.98%
N+ 2,346,744 16.36%

N+L+ 499,167 3.48%
L+N+L+ 388,157 2.71%
U+N+ 325,941 2.27%

U+L+N+ 236,331 1.65%
U+ 229,875 1.6%

L+O+L+ 172,279 1.2%
L+O+N+ 144,129 1.0%

L+N+L+N+ 123,344 0.86%
L+O+ 122,560 0.85%

N+L+N+ 118,877 0.83%
U+L+ 98,515 0.69%

L+N+O+ 65,164 0.45%

From Table 3, the top three pattern classes account for 75.25% of all passwords. This
indicates that most users use a combination of Lowercase and Number strings, or just
Lowercase strings or Number strings as their passwords. The top ranked 'L+N+' pattern
class comprises 32.91% of the total. The statistical information regarding password class
gives us a more detailed look into how users incorporate the four character types into
passwords. For the 'L+N+' pattern class, we further calculate the password patterns
according to various lengths of the Lowercase and Number strings. The result is shown

826 H.-C. CHOU, H.-C. LEE, H.-J. YU, F.-P. LAI, K.-H. HUANG AND C.-W. HSUEH

in Table 4. The most popular password pattern is 'L6N2', consisting of Lowercase string
of six characters followed by Number string of two characters. The probability assigned
to each password pattern is

Probability(x) =
xnum

Ktot

where xnum is the number of occurrences of that particular password pattern x, and Ktot

is the total number of 'L+N+' pattern class. For instance, the probability of password
pattern 'L6N2' is 420318/4720184 = 8.91%. The same statistical information is recorded
for each of the pattern class.
After obtaining the statistics of password patterns for each of the pattern class, we

can sort the password patterns according to their probabilities. Next, we parse the pass-
words according to the previously defined four strings (N,L, U,O) and then count their
probabilities respectively.

Table 4. Top ten password patterns in 'L+N+' pattern class from Rockyou

Password Patterns Occurrences Percentage of 'L+N+'

L6N2 420,318 8.91%
L5N2 292,306 6.19%
L7N2 273,624 5.80%
L4N4 235,360 4.99%
L4N2 215,074 4.56%
L8N2 213,109 4.51%
L6N1 193,097 4.10%
L7N1 189,847 4.02%
L5N4 173,559 3.68%
L6N4 160,592 3.40%

Number strings in Passwords
The selection of Number strings in passwords often represents something of significance,

such as birthday, telephone number or special date. The patterns of Number strings are
been classified dependent upon their lengths in passwords. Table 5 describes the statistics
of length between one and ten in Number strings. The pattern of length two is the most
frequent as its occurrence is 24.38%. 65.35% of these patterns have lengths between one
and four for Number strings. Each pattern of Number strings is analyzed to determine
which elements are most frequently seen in passwords. Table 6 shows the top ten elements
of length two of pattern 'N2'. The most frequent element is '12', with an occurrence of
4.81%. Similar statistics are recorded for each of pattern in Number strings.
Other strings in Passwords
Other strings are also important in password generation. The same process that is

detailed above for Number strings is repeated for Other strings. The patterns of length
between one and ten in Other strings occur a total of 301,096 times. Table 7 displays the
frequencies of each pattern of length between one and ten for Other Strings. It is clear
that pattern of length one occurs more frequently than any others do. Table 8 describes
the most frequent element of length one occurring in pattern 'O1'. The same statistics
are collected for the other patterns of Other strings and recorded.
Alpha Strings in Passwords
Alpha strings are the main components in creating a password, which are comprised of

Lowercase strings and Uppercase strings. In order to enhance the strength of passwords,
usually the passwords formed by familiar Alpha strings are combined with Number strings

PASSWORD CRACKING 827

Table 5. Patterns of length between one and ten in Number strings

Patterns of Number Strings Occurrences Percentage of Total
N2 2,131,337 24.38%
N4 1,330,610 15.22%
N1 1,321,553 15.12%
N3 928,760 10.63%
N6 776,436 8.88%
N7 608,993 6.97%
N8 523,130 5.98%
N10 503,930 5.77%
N9 343,396 3.93%
N5 272,088 3.11%

Table 6. Elements of length two of pattern 'N2' in Number strings

Elements of Length Two Occurrences Percentage of 'N2'

12 102,590 4.81%
13 76,775 3.60%
11 65,201 3.06%
22 58,058 2.72%
23 57,825 2.71%
07 55,693 2.61%
21 55,192 2.59%
01 53,608 2.52%
10 53,510 2.51%
14 53,300 2.50%

Table 7. Patterns of length between one and ten in Other strings

Patterns of Other Strings Occurrences Percentage of Total
O1 238,652 79.26%
O2 38,780 12.88%
O3 16,184 5.37%
O4 3,544 1.18%
O6 1,260 0.42%
O5 1,177 0.38%
O7 623 0.21%
O8 452 0.15%
O9 226 0.08%
O10 198 0.07%

and Other strings. For example, password 'computer123', consists of the Alpha string
'computer' and Number string '123'. In this paper, we take Alpha strings as the basis
and associate them with Number strings and Other strings to generate new passwords.
Therefore, we parse out the Alpha strings from Rockyou and use the set as the Dictionary
set, which is illustrated in Section 4. The total number of unique Alpha strings from
Rockyou is 5,521,967.

According to our observation for these parsed Alpha stings, many users still select
familiar dictionary words. In order to count the number of dictionary words in Alpha

828 H.-C. CHOU, H.-C. LEE, H.-J. YU, F.-P. LAI, K.-H. HUANG AND C.-W. HSUEH

Table 8. Elements of length one in pattern 'O1'

Elements of Length One Occurrences Percentage of 'O1'

! 64,602 27.07%
. 42,446 17.79%
* 33,950 14.23%
@ 13,995 5.86%
$ 10,941 4.58%

8,393 3.52%
- 6,922 2.90%
? 6,447 2.70%
(6,085 2.55%
) 4,818 2.02%

Table 9. Statistics of dictionary words in alpha strings in Rockyou

Alpha strings Numbers of Occurrences Percentage of Total
Dictionary words 1,254,021 8.74%

strings, we collected 869,228 dictionary words from Dic-0294 [20] for reference. To enhance
the efficiency of comparison, the MD5 hashing algorithm is used to process the large
number of Alpha strings. Tests show this provides a ten-time speedup. The statistics are
given in Table 9. It proved that many users still select weak dictionary words to form
their passwords.
Keyboard Strings in Passwords
In this paper, we also analyze the password patterns generated by the keyboard po-

sitions. The Keyboard strings refer to passwords formed by relative keyboard positions
and associated finger movements. Its examples include 'keyboard neighbor' and 'key-
board parallel n', which are parallel patterns of length n. In this paper, such passwords
are referred to as Keyboard strings, and represented by the symbol K. For example, the
Keyboard string '1qa2ws' is formed by a keyboard parallel 3 pattern on the keyboard.
Using Flex, we overcome the limitation on recursive expressions, and use regular expres-
sions to analyze keyboard neighbor and parallel relationships. The statistics are given
in Table 10. Notice that although the percentage of keyboard strings is not high, with
increasing awareness and emphasis on password security, more and more users choose this
structure for their passwords.

Table 10. Statistics of keyboard strings in Rockyou

Keyboard String Example Numbers of Occurrences Percentage of Total
Keyboard Neighbor asdfvcxz 20,739 0.15%
Keyboard Parallel 3 1qa2ws 1898 0.013%
Keyboard Parallel 4 0okm9ijn 780 0.0054%
Keyboard Parallel 5 12345qwert 231 0.0016%

Using our password analysis platform, we analyzed the passwords from Rockyou and
found 176 common and popular password patterns through Flex. These patterns cover
96.3% of the passwords in RockYou corpus. With this analysis platform, the patterns of
users’ disclosed passwords can be analyzed quickly. Moreover, this platform is also easy
to maintain and extend as password patterns can be added and removed. For instance,
if in the future we find more than four character types change used in passwords, e.g.,

PASSWORD CRACKING 829

'!!!Password88##', containing 'O3U1L7N2O2', i.e., a continuous sequence of five character
types, we just need to add the regular expression that describes the new pattern to Flex
before performing analysis. In Section 4, we use these statistics of the password patterns
as a basis to generate efficient passwords for reducing the number of guesses and increasing
the hit rate.

4. Strategy for Generating Passwords. From statistics of disclosed passwords for
RockYou described in Section 3, we summarize some common patterns for selecting pass-
words.

1) Many passwords are composed of Lowercase and Number strings, i.e., 'L+N+', the
Lowercase strings are likely appended by Number strings.

2) Number or Other strings are inserted before or appended after Alpha strings, e.g.,
'jessica!!' belongs to 'L8O2' pattern, the Alpha string 'jessica' is appended with the
Other string '!!'.

3) Alpha strings include Keyboard strings, e.g., 'qwerty123' belongs to 'K6N3' pattern,
containing the Keyboard string 'qwerty'.

4) Alpha strings include dictionary words, e.g., 'football1234' belongs to 'L8N4' pattern,
containing the dictionary word 'football'.

Instead of trying to create rules that mimic these common password patterns, we assign
probabilities to these patterns, and then use those probabilities directly to generate very
fine-grained rules, and thus generate passwords for cracking.

4.1. TDT model. Based on the analysis of the disclosed passwords in Section 3, we
create the TDT model consisting of the Training set, Dictionary set and Testing set, to
generate the passwords. Three sets in the model are defined as follows.

Definition 4.1. (Training set, Dictionary set and Testing set) The Training set specifies
users’ disclosed passwords. The Dictionary set specifies dictionary words, Alpha strings
or Keyboard strings. The Testing set specifies the cracking targets, which are plaintext
passwords. If a password is used in the Training set, we ensure that it is not included in
the Testing set.

The TDT model uses the Training set to create password rules, and use these rules along
with the Dictionary set to generate passwords. Then it uses the generated passwords to
crack passwords in the Testing set. Note that a password is considered ‘cracked’ if our
method generates a guess that matches a password in the Testing set. The framework of
the TDT model is shown in Figure 1 and is described below.

1) Disclosed passwords collection: In our method, user disclosed passwords are used as
the Training set, collected from various sources (e.g., specific websites) or from broken
passwords of target. For this study, we simply use the Rockyou password corpus as the
Training set.

2) Establishing UDP rules: When sufficient passwords have been collected, the Training
set is used to create user disclosed passwords rules (shortened as UDP rules).

3) Passwords generation: The passwords could be generated using the UDP-rules along
with the Dictionary set. The Dictionary set consists of the commonly used dictionary
words or Alpha and Keyboard strings parsed from the Training set.

4) Password cracking and feedback: The generated passwords are used to crack passwords
from the Testing set. Once passwords have been cracked, they can be fed back to
the Training set. When the Training set is updated, we repeat steps 2-4, to update
UDP rules and generate new passwords. Through this repeated learning and training

830 H.-C. CHOU, H.-C. LEE, H.-J. YU, F.-P. LAI, K.-H. HUANG AND C.-W. HSUEH

Figure 1. The framework of TDT model

process, we can optimize the accuracy of the UDP rules and enhance the guessing
ability of the model.

4.2. Establishing UDP rules. Each password in the Training set is parsed. The parsed
strings in a password that have Number strings and Other strings are called ‘leaf nodes’
and those having Lowercase, Uppercase, and Keyboard strings are called ‘inner nodes’.
Leaf nodes are categorized based on character types and their length. Their probabil-
ities are calculated based on the number of times they occur in the Training set. The
probability of each leaf node is calculated as follows.

number of occurrences of specific leaf node of length k

nk

where nk is the total number of strings of length k. For example, if the Number strings
of length 3 are ‘123’ and ‘456’, and they occur in the Training set 100 and 60 times
respectively, then the probability for string '123' is 100/160 = 0.625 and that for string
'456' is 60/160 = 0.375. Inner nodes are used as dictionary words and added to the Dic-
tionary set. At this point, dictionary words in the Dictionary set do not have probabilities
associated with them, so we set the probability for inner nodes is 1.0.
Moreover, we use the symbols Nn, Ln, Un, On, Kn defined in Section 3 to represent each

password pattern, where N stands for Number, L for Lowercase, U for Uppercase, O for
Other, andK for Keyboard, and the subscript n represents the length of the corresponding
symbols. For example, the password pattern of 'abc123' is 'L3N3'. Based on this rule,
passwords with the same patterns will be merged, and the probability of each pattern can
be calculated. Thus, we can calculate the probability of each password pattern and find
which among them are used more frequently.
We describe this process through a simple example. Assume that there are eight pass-

words in the Training set as shown in Figure 2. For leaf nodes, we categorize them
by length, and then calculate their probabilities. Among strings of length = 1, the
Other string '@' appears twice, and '!' appears once. Therefore, the probability of '@' is
2/3 = 0.67, while that of '!' is 1/3 = 0.33. Using the same method, we can find the
probabilities of Number strings of length three and four, as shown in Figure 2(a). Inner
nodes are used as dictionary words, as explained in Section 4.3. In addition, after con-
verting the eight passwords into their patterns, we merge these patterns and obtain five
distinct patterns, as shown in Figure 2(b). For example, the three passwords 'abc123',

PASSWORD CRACKING 831

'cat789' and 'man666' all have the 'L3N3' pattern, so its probability is 3/8 = 0.375. Note
that the higher the probability of a pattern, the more frequently it is used by users.

4.3. Generating passwords. Using the UDP rules created in Section 4.2, we gener-
ate passwords with the help of a Dictionary set. The Dictionary set mainly consists of
commonly used dictionary words, or the inner nodes parsed from the Training set. By
constructing the Dictionary set, we can gain a larger coverage of the target set of pass-
words. The core idea of this paper is to generate highly efficient passwords by using the
Dictionary set as the basis and combining it with rules generated from the Training set.
An example Dictionary set is shown in Figure 3. In addition to the eight inner nodes
parsed from the Training set in Section 4.2, we added the three words ‘princess’, ‘nicole’
and ‘you’ to the Dictionary set.

Figure 2. Examples of generated UDP rules using a training set

Figure 3. The dictionary set

832 H.-C. CHOU, H.-C. LEE, H.-J. YU, F.-P. LAI, K.-H. HUANG AND C.-W. HSUEH

Next, we use the Dictionary set and the UDP rules to generate passwords and calculate
their probabilities. The formal mathematical definition is as follows.

Theorem 4.1. Assume that P (βx) be the probability of the pattern of a password x, which
βx = t1t2t3. . .tn is the pattern of a password x, consisting of t1, t2, t3, . . ., tn inner or leaf
nodes. Let v`i (ti) be the probability of the i-th inner or leaf nodes of length ` in the
Training set. Therefore, the probability of generated password x is given by

P (x) = P (βx) ·
n∏

i=1

v`i (ti), ti ∈ {inner nodes, leaf nodes}

We use the generated password 'abc456' as an example. Since the string 'abc' in the
Dictionary set matches 'L3' in the password pattern 'L3N3', it must be combined with
Number strings in the form of 'N3' to generate a password. Therefore, the probability of
generated password 'abc456' is

P (abc456) = P (βabc456 = t1t2 = L3N3) · v`1 (L3) · v`2 (N3)

= 0.375 · 1.0 · 0.4
= 0.15

For the same method, we calculate the probability of each password based on the
respective probabilities of Number strings '123' '789' and '666', as shown in Table 11.

Table 11. Probability of generated passwords using dictionary set and
UDP rules

Dictionary set
Pattern Number String Probability of Generated

Probability Probability Generated Passwords Passwords

abc
L3N3 456

0.375 ∗ 0.4 = 0.15 abc456
0.375 0.4

abc
L3N3 123

0.375 ∗ 0.2 = 0.075 abc123
0.375 0.2

abc
L3N3 789

0.375 ∗ 0.2 = 0.075 abc789
0.375 0.2

abc
L3N3 666

0.375 ∗ 0.2 = 0.075 abc666
0.375 0.2

Since the probability of each generated password can be calculated, we sort the prob-
abilities of generated passwords in decreasing order and apply a threshold θ. Therefore,
the generated passwords from the TDT model are

Dυ,θ =

{
X : P (β) ·

n∏
i=1

υli (ti) ≥ θ, ti ∈ {inner nodes, leaf nodes}

}
Table 12 shows the top twenty passwords along with their probabilities, as generated

using the UDP rules in Section 4.2 along with our Dictionary set. The threshold θ is
set as 0.075. One of the advantages of our method is the ability to sort the generated
passwords according to their probabilities. In this way, based on user requirements, we
can set a probability threshold and filter out passwords having low probabilities, and thus
reduce the guessing space. When a password is successfully cracked by our method, we
can move the password back to the Training set, and rebuild the UDP rules. Through
this repeat training mechanism, the generated passwords become better adapted to the
targets, increasing the hit rate.

PASSWORD CRACKING 833

Table 12. Top 20 generated passwords using UDP rules and dictionary set

Rank
Generated

Probability Rank
Generated

Probability
passwords passwords

1 abc456 0.375 ∗ 0.4 = 0.15 11 password456 0.25 ∗ 0.4 = 0.1
2 cat456 0.375 ∗ 0.4 = 0.15 12 princess456 0.25 ∗ 0.4 = 0.1
3 man456 0.375 ∗ 0.4 = 0.15 13 Hero@ 0.125 ∗ 0.67 = 0.084
4 you456 0.375 ∗ 0.4 = 0.15 14 abc666 0.375 ∗ 0.2 = 0.075
5 computer1970 0.125 ∗ 1.0 = 0.125 15 abc789 0.375 ∗ 0.2 = 0.075
6 football1970 0.125 ∗ 1.0 = 0.125 16 abc123 0.37 ∗ 0.2 = 0.075
7 password1970 0.125 ∗ 1.0 = 0.125 17 cat666 0.375 ∗ 0.2 = 0.075
8 princess1970 0.125 ∗ 1.0 = 0.125 18 cat789 0.375 ∗ 0.2 = 0.075
9 computer456 0.25 ∗ 0.4 = 0.1 19 cat123 0.375 ∗ 0.2 = 0.075
10 football456 0.25 ∗ 0.4 = 0.1 20 man666 0.375 ∗ 0.2 = 0.075

5. Experiments and Results.

5.1. Password generation and cracking. For a better computational complexity, we
divided the 14,344,389 leaked Rockyou passwords randomly into 28 subsets using the GNU
shuf tool. Each such subset consisted of 500,000 passwords. For convenience, we selected
the first and last subset as the Training set and Testing set respectively, called Rockyou1
and Rockyou28. The Dictionary set used is Dic-0294, which is a commonly used password
cracking dictionary [20]. This dictionary contains 869,228 unique words. To evaluate
performance, we selected Rockyou28, Myspace, and Phpbb plaintext passwords as the
Testing set. The overall structure of TDT model is shown as Figure 4. The Myspace and
Phpbb plaintext passwords are also created by attackers who had performed a phishing
attack against users but failed to secure their collection server. Researchers proceeded to
log into the malicious server and gathered the passwords from the hacker before the hacker
could shut it down. The complete Myspace and Phpbb contained 36,764 and 184,380
plaintext passwords respectively. A summary is given in Table 13, and experiment results
are presented in Figure 5.

Figure 4. Overall structure of TDT model

Figure 5 shows that our method is more efficient for password cracking. When the
number of generated passwords is between 50 and 450 million, the hit rate for Myspace is
27-33%, for Phpbb is 26-31%, and for Rockyou28 is 20-28%. The results show that the hit
rate for Rockyou28 is lower than that for Myspace and Phpbb. In other words, password
strength in the Rockyou28 set is higher than that in Myspace and Phpbb. Password
strength differs with users’ cultural backgrounds, age, password creation requirements,
importance of the password protected material, etc.

834 H.-C. CHOU, H.-C. LEE, H.-J. YU, F.-P. LAI, K.-H. HUANG AND C.-W. HSUEH

Table 13. The training, dictionary and testing sets

Set Name Number
Training set Rockyou1 500,000
Dictionary set Dic-0294 869,228

Testing set
Rockyou28 500,000
Myspace 36,764
Phpbb 184,389

Figure 5. Percentage of passwords cracked

In Figure 5, we only use common used dictionary words (Dic-0294) as the basis for
the Dictionary set. This procedure is suitable when we know nothing about the target
passwords (i.e., the Testing set). However, we may have access to some passwords of
specific targets from various channels. Having access to the partial list of target passwords,
these passwords may be used to generate rules, and to parse the inner nodes from these
passwords, combining them with the Dictionary set. In the above experiment, since
Rockyou1 and Rockyou28 originate from the same source (Rockyou), we can assume they
both have similar underlying password creation habits. Therefore, we consider Rockyou1
as the cracked passwords of Rockyou (i.e., the Training set), and consider Rockyou28 as
the uncracked passwords of Rockyou (i.e., the Testing set). After parsing the inner nodes
from Rockyou1 and combining them with the Dictionary set, the generated passwords
should help increase the hit rate for Rockyou28.
To verify this prediction, we parsed out 284,903 inner nodes that included Lowercase,

Uppercase, and Keyboard strings from Rockyou1, and call it Rockyou1 dic. These strings
are added to Dic-0294 to form a new Dictionary set, which contained 1,154,131 dictionary
words. The structure is shown in Figure 6 and the number of sets is listed in Table 14. We
repeated the same experiments again and the experimental results are shown in Figure
7. When the number of generated passwords is between 50 and 450 million, the hit rate
compared with Figure 5, increases from 27-33% to 30-36% for Myspace, from 26-31% to
29-34% for Phpbb, and from 20-28% to 32-41% for Rockyou28. It is apparent that the
performance on Rockyou28 shows the most improvement. This experiment shows that
our UDP model can be customized for a specific target. When we add the inner nodes
of Rockyou1 to the Dictionary set, the generated passwords have a higher chance of

PASSWORD CRACKING 835

Figure 6. Overall structure of TDT model

Table 14. The training, dictionary and testing sets

Set Name Number
Training set Rockyou1 500,000

Dictionary set
Dic-0294 869,228

1,154,131
Rockyou1 dic 284,903

Testing set
Rockyou28 500,000
Myspace 36,764
Phpbb 184,389

Figure 7. Percentage of passwords cracked. The Dictionary set consists
of Dic-0294 and Rockyou1 dic.

matching passwords in Rockyou28. This implies that if we know some password patterns
of a specific target, the hit rate of password cracking can be improved.

To summarize the experimental results from Section 5.1, our method is suitable for two
situations, described as follows:

• “Generalization” condition: where nothing is known about the target passwords.
The Training set includes disclosed passwords (such as from Rockyou1) and the
Dictionary set only includes commonly used dictionary words (e.g., Dic-0294). Figure
5 shows that using this information to crack passwords of Myspace, Phpbb and
Rockyou28, a hit rate of 20%-33% can be achieved for 50 and 450 million generated
passwords.

836 H.-C. CHOU, H.-C. LEE, H.-J. YU, F.-P. LAI, K.-H. HUANG AND C.-W. HSUEH

• “Customization” condition: where some information about the target passwords is
known. The Training set includes the cracked target passwords (such as Rockyou1)
and the Dictionary set includes the inner nodes parsed from these previously cracked
passwords, as well as commonly used dictionary words (e.g., Dic-0294). Figure 7
shows that this method increases the hit rate of Rock28 from 20-28% to 32-41%.

5.2. Experimental observations. Figure 8 shows a comparison of our method with the
John-the-Ripper cracker tool [16] and Brute-force attack. The experiment used Rockyou28
as the Testing set. The result shows that the same number of generated passwords, our
method cracked significantly more passwords than the John-the-Ripper and Brute-force
attack. For example, for 300 million generated passwords, our method cracked 143% of the
passwords cracked using John-the-Ripper, and 250% of those cracked using Brute-force
attack.

Figure 8. Comparison with john-the-ripper and brute-force attack

Based on the above experimental results, the advantages of the proposed method are
as follows:

1) The proposed method has self-training and learning capabilities. When more passwords
of the target are known, more accurate passwords can be generated using the training
and learning process.

2) Experiments showed that many users still use Alpha strings as the basis of their pass-
words, which are combined with variable-length Number or Other strings at the be-
ginning or end of the Alpha strings.

3) In the past, people often used dictionary words for Alpha strings. However, Alpha
strings among the disclosed passwords are increasingly keyboard words or other mean-
ingless words. The proposed method is good at guessing such words as we add these
words to the Dictionary set.

4) Based on the same number of generated passwords, our method can crack more pass-
words than the John-the-Ripper and Brute-force attack, as shown in Figure 8.

5) This method is designed for the English language at present. However, it can also be
extended to other languages such as Chinese and Spanish.

6. Application. This section describes a hybrid password cracking system to crack ac-
cess passwords collected from UNIX. Within this system, we introduce a new stage called
TDT-model attack, which uses the passwords generated by TDT model.

PASSWORD CRACKING 837

6.1. Effectiveness. The design goal of the hybrid password cracking system is to crack
encrypted target passwords by incrementally increasing the size of the password crack-
ing space. Therefore, the system consists of three attack stages: the Dictionary attack
followed by the TDT-model attack, and the Brute-force attack; this system is called the
DTB password cracking system, as shown in Figure 9. The cracking strategy is to crack
encrypted passwords using the Dictionary attack and the TDT-model attack first in finite
time, and to then run the Brute-force attack when some encrypted passwords have not
been cracked. The system can be used in DTB mode where all stages are enabled or in
DB mode where only the TDT-model attack stage is disabled.

Figure 9. The system architecture of DTB password cracking system

UNIX Access Password Attack
We collected 382 encrypted access passwords for the UNIX system using the John-the-

Ripper cracker tool [16]. These passwords are of 13-byte values generated by the DES
cryptosystem. Then, we proceeded to crack the passwords in DTB and DB modes. The
results showed that, in the same 5-hour experiments, 226 passwords and 155 passwords
are cracked in DTB mode and DB mode, respectively. After the Dictionary attack, in the
same period of time, the number of passwords cracked with the TDT-model increases by
71 and by up to 273% [(75+37)/41]. The details are shown in Table 15, where the time
taken to crack the passwords is given in brackets.

Table 15. Number of UNIX passwords cracked

DTB Password DTB mode DB mode
Cracking Dictionary TDT-model Brute-force Dictionary Brute-force
System attack attack attack attack attack

Number of 114 75 37 114 41
Passwords (12min) (13min) (4hr 35min) (12min) (4hr 48min)
Cracked 226 155

6.2. Comparison. Among the dictionary-based password cracking methods, Weir et al.
[14,15] focused primarily on creating a probabilistic context-free grammar to generate
word-mangling rules based on previously disclosed passwords. In 2011, Kelley et al. [18]
proposed an efficient technique for evaluating password strength that is also based on
the Weir’s algorithm. However, Weir’s algorithm will not be effective if users have not
used passwords in their inherently common dictionaries. In the TDT model, we utilized
Number, Lowercase, Uppercase, Other and Keyboard strings to generate rules. Moreover,

838 H.-C. CHOU, H.-C. LEE, H.-J. YU, F.-P. LAI, K.-H. HUANG AND C.-W. HSUEH

the TDT model may parse Lowercase, Uppercase, and Keyboard strings from the target’s
known passwords and combine these strings with the set of dictionary words, effectively
generating “customized” passwords for the target. In addition, cracked passwords in the
TDT model can be fed back into the Training set, and training rules can be reapplied.
Table 16 showed a comparison of the methods of Weir, Kelley, and the TDT model.

Table 16. Comparisons of dictionary-based password cracking methods

Method Weir Kelley TDT model

Feature
Password structure
formally modeled using
a context-free grammar.

Measured password
strength by simulating
Weir’s algorithms.

Developed the
probability-based password
cracking algorithm, a
superset of Weir’s patterns;
verified in real cracking
system.

Execution Offline. Offline. Offline/Online.

Flexibility
‘General’ passwords
generated.

‘Specific’ passwords
generated through different
composition policies.

‘Customized’ passwords
can also be generated.

Limitation
Password generation
depend inherently on
common dictionaries.

Password strength depends
on the specific algorithm.

Password generation based
on known password
patterns.

Figure 10 compares the cracking performance of the Weir method and our TDT model.
The Myspace list containing 36,764 passwords used in the experiment was divided equally
into a Training set and a Testing set. Dic-0294 was used as the Dictionary set. The
performance of the TDT Model is clearly better than the Weir method.
Passwords generated using the TDT model are based on users’ disclosed passwords and

dictionary words, and can be used widely for cracking password-based cryptosystems.
To resist attacks, many current password-based cryptosystems not only strengthen their
cryptographic security, but also force users to create ‘strong’ passwords, which must
at least be a combination of two character types and have a minimum length of eight
characters. The strong passwords fall within the password space of the TDT model, and
therefore, the cracking time is reduced.

Figure 10. Comparison between the Weir method and TDT model

PASSWORD CRACKING 839

7. Conclusion and Future Work. We developed a password analysis platform to for-
mally analyze disclosed passwords, and establish the TDTmodel for generating passwords.
Based on the probabilistic patterns of the TDT model, the passwords generated are sorted
in decreasing order of probability; this is known as the TDT-model attack. We also design
a hybrid password cracking system consisting of the Dictionary attack, TDT-model attack
and Brute-force attack to verify the effectiveness of the TDT model. Experimental results
show that this hybrid model is effective for cracking UNIX access passwords and there is
a performance improvement of up to 273% from using the TDT-model attack. In future
work, we plan to focus on letter replacement, such as replacing ‘a’ in a dictionary word
with ‘@’ to further strengthen passwords by providing more flexibility and generality. The
effectiveness of this strategy with other languages may also be studied.

Acknowledgement. The authors gratefully acknowledge the helpful comments and sug-
gestions of the reviewers, which have improved this paper. The paper received a grant
from the National Science Council, NSC 100-2219-E-002-032.

REFERENCES

[1] H. Gao, X. Liu, S. Wang, H. Liu and R. Dai, Design and analysis of a graphical password scheme,
International Conference of Innovative Computing, Information and Control, Xi’an, China, pp.675-
678, 2009.

[2] S. Delaune and F. Jacquemard, A theory of dictionary attacks and its complexity, Proc. of the 17th
IEEE Computer Security Foundations Workshop, 2004.

[3] J. Yan, A. Blackwell, R. Anderson and A. Grant, Password memorability and security: Empirical
result, IEEE Security and Privacy Magazine, vol.2, no.5, pp.25-31, 2004.

[4] R. V. Yampolskiy, Analyzing user password selection behavior for reduction of password space, Proc.
of the IEEE International Carnahan Conferences on Security Technology, pp.109-115, 2006.

[5] Flex, The Fast Lexical Analyzer, http://flex.sourceforge.net/, 2007.
[6] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation,

Addison Wesley, 1979.
[7] G. J. Noer, Cygwin32: A Free Win32 Porting Layer for UNIX® Applications, 1998.
[8] P. Oechslin, Making a faster cryptanalytic time-memory trade-off, Advances in Cryptology –

CRYPTO, pp.617-630, 2003.
[9] V. L. L. Thing and H. M. Ying, A novel time-memory tradeoff method for password recovery, 2009.
[10] O. Billet and H. Gilbert, Cryptanalysis of rainbow, Security and Cryptography for Networks, vol.4116,

pp.336-347, 2006.
[11] Security Issues with MD5, http://en.wikipedia.org/wiki/MD5#Security.
[12] C. Castelluccia, M. Dürmuth and D. Perito, Adaptive password-strength meters from Markov mod-

els, Proc. of the Network and Distributed System Security Symposium, 2012.
[13] A. Narayanan and V. Shmatikov, Fast dictionary attacks on passwords using time-space tradeoff,

Proc. of the 12th ACM Conference on Computer and Communications Security, 2005.
[14] M. Weir, S. Aggarwal, B. de Medeiros and B. Glodek, Password cracking using probabilistic context-

free grammars, Proc. of the 30th IEEE Symposium on Security and Privacy, pp.391-405, 2009.
[15] C. M. Weir, Using Probabilistic Techniques to Aid in Password Cracking Attacks, Ph.D. Thesis,

Florida State University, 2010.
[16] Openwall Project, John the Ripper Password Cracker, 2010.
[17] Y. Zhang, F. Monrose and M. K. Reiter, The security of modern password expiration: An algo-

rithmic framework and empirical analysis, Proc. of the 17th ACM Conference on Computer and
Communications Security, pp.176-186, 2010.

[18] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer, N. Christin, L. F. Cranor
and J. Lopez, Guess again (and again and again): Measuring password strength by simulating
password-cracking algorithms, Tech. Rep. CMU-CyLab-11-008, Carnegie Mellon University, 2011.

[19] Rockyou Users, http://www.skullsecurity.org/wiki/index.php/Passwords.
[20] http://www.linux-pour-lesnuls.com/traduc/Dictionnaires/dic-0294/dic-0294.txt.

