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ABSTRACT. Although sampling-based path planning algorithms have been shown robust
performances in many cases, they still suffer from many drawbacks. Inefficiency in
online/sensor-based planning purposes, generating far-from-optimum paths, high running
time, failure in difficult environments and generating unstable variant results in differ-
ent runs are some of the existing problems with sampling-based methods. We propose
an online sampling-based path planning algorithm which employs a fuzzy-tabu controller
to evaluate the generated samples and select better ones in order to improve the perfor-
mance of the planner. Furthermore, a genetic algorithm-based optimization framework
is developed to optimize the parameters of the controller. The genetic optimizer takes
place before the planner starts any planning task and attempts to optimize the fuzzy-tabu
controller parameters and also the parameters of the planner. We simulate the proposed
algorithm to analyze its performance and to compare it with existing sampling-based algo-
rithms. The proposed algorithm generates relatively short paths in less than few seconds
while results variations between different runs are considerably low.

Keywords: Online path planning, Sampling-based, Fuzzy-tabu controller, Genetic op-
timizer, Result variation

1. Introduction. Path planning for a mobile robot is a procedure to move the robot
from an initial position to a goal configuration inside an environment filled by arbitrary
shaped obstacles, while avoiding any collision with them. Canny [1] proved that the path
planning problem is NP-Complete. In most of the path planning applications, there is no
prior information about the environment, e.g., positions of the obstacles and surrounding
boundaries. This class of path planning problems is called sensor-based or online path
planning. There are a variety of researches in this field resulting in different approaches,
each with their specific characteristics, advantages and drawbacks [2-8]. In this class
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of path planning, the motion decisions are made as the robot moves and obtain new
information from the environment.

Sampling-based approaches are a well-known class in the field of robot motion planning
with important benefits and applications. In this type of algorithms, the planner generates
collision free positions to capture the workspace connectivity and then, connects them in
order to guide the robot from the start to the goal. Although, these approaches are
not complete [9], they follow a weaker but still interesting form of completeness called
Probabilistic Completeness which guarantees if a feasible path exists, the planner will
eventually find it [10]. Sampling-based motion planning methods can be generally divided
into two main groups namely, roadmap-based and tree-based approaches. Roadmap-based
algorithms generate collision-free samples inside the configuration space and connect some
of them together in order to capture the connectivity of the environment. Once the
roadmap was created, the planner is ready to get the positions of the start and the
goal configurations and find a collision-free path between them by means of a graph
search technique, e.g., A* algorithm [11]. These algorithms are typically used as multi-
query planner which can solve the motion planning problem for any given start and goal
configurations. A well-known roadmap-based planner is probabilistic roadmap, PRM
[12]. PRM approach generates a number of collision-free samples inside the workspace
and connects each sample to its NV closest neighbors by a straight line. Afterward, by
adding the start and goal configurations to the graph, it will be used for any given query.
Most of the other roadmap-based approaches are based on PRM. The Randomized Bridge
Builder, RBB [13], attempts to find two close samples inside the obstacles configurations
and add their midpoint to the roadmap if it belongs to the collision-free space. The
Gaussian sampler [14] generates a sample inside the obstacles area and uses a Gaussian
distribution to find a collision-free node close to it. There are many other roadmap-based
algorithms which aim to increase the efficiency of the PRM method either by improving
the sampling strategy or connection method [15-17].

Tree-based algorithms were developed for quickly solving one particular path planning
problem. In this type of algorithms, the roadmap structure is replaced by a tree structure.
The tree is normally rooted at the start position and grows by generating random samples
and connecting them to one of the tree’s nodes. One of the first and most important tree-
based structures is Rapidly Exploring Random Tree, RRT [18]. RRT normally generates a
collision-free sample and expands the tree in the direction of this sample through its closest
node with a fixed step size, and repeats this procedure until the size of the tree reaches a
desired amount. Then the constructed tree is used to find a feasible path. RRT approach
can be improved by constructing two trees rooted at start and goal positions in order
to shorten the convergence time of the algorithm. This extension of the original RRT
is called RRT-bidirectional. Several extensions for tree-based planners were developed
during the last decade. RRT-Connect [19], builds two RRTs rooted at start and goal
positions and uses a heuristic to grow the trees. In the original RRT algorithm, the
sampling domain is the Voronoi regions of each existing node of the tree while, DD-RRT
[20] algorithm incorporates the Voronoi domain and the visible domain to improve the
RRT method for solving Bug Trap problem. This approach defines a visibility radius for
each generated node of the tree and generates new random nodes in the vicinity of tree’s
nodes. In the AD-RRT method [21], this visibility radius is subject to change during
the tree construction to update its value and improve the performance of the planner
as the number of calls for the collision detector is reduced. A simple tree-based planner
was proposed in [22] which approximates connected regions of free space with volumes
instead of points. This approach considers balls centered at each node and new samples
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FIGURE 1. The performance of two sampling-based algorithms: (a) proba-
bilistic roadmap (PRM) with 200 nodes and (b) rapidly exploring random
trees (RRTs) with step size equal to 0.2. Start and goal configurations are
illustrated by white and black squares respectively.

will be generated outside these balls. Figure 1 shows the performance of PRM and RRT
algorithms in a chess board environment.

Over the last years, there has been a lot of work in improving sampling-based motion
planning algorithms. Although the performance of the sampling-based algorithms are
efficient in many cases and these planners have solved different path planning problems,
they still have important drawbacks which result in poor performances in some situations.

The followings are some of the important inefficiencies of sampling-based methods.

(1)

(2)

(5)

Sampling-based approaches are mostly designed for offline planning where the en-
vironments are completely known for the planner [9]. Hence, they cannot be used
in their original form for planning in unknown environments.

Sampling-based algorithms attempt to find a feasible path for a given query and
they usually ignore the results optimality. In most of the cases, the resulted paths
are far from optimum. There are some postprocessing packages in the literature
which are used to shorten the resulted paths but they increase the running time of
the planner and also, it is not possible to use a postprocessing method for online
planning purposes [10].

The running time of a sampling-based planner strongly depends on the planner
parameters including the number of generated samples and the connection strategy.
For instance, increasing the number of generated samples provides shorter paths
while it increases the runtime of the planner extensively [23].

There are some cases in which the sampling-based algorithms fail to return an
answer in a reasonable amount of time. Difficult types of environments including
narrow passages, mazes and bug traps are presented in the literature as examples
of poor performance of the sampling-based methods.

According to the randomized nature of these approaches, the results are not stable.
The length of generated paths and the runtime of the planner vary in different
executions of the algorithm.

In this paper we propose a sampling-based path planning algorithm which incorporates
the data of the robot’s sensory system in the sampling procedure. The proposed algorithm
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improves the performance of the sampling-based methods in the abovementioned terms.
The first drawback is improved by restricting the sampling area to the visible region for
the robot and the planner, only considers the points on the vision circle of the robot
for sampling. Then, a fuzzy controller is applied which uses the tabu search heuristic
rules in order to evaluate the generated samples and shorten the generated path’s length
and runtime of the planner. Furthermore, a genetic algorithm optimization framework is
designed to optimize the parameters of the fuzzy-tabu controller. The optimized controller
will improve the performance of the planner in difficult environments and also reduces
the variations of the results in different executions of the planner.

Designing a fuzzy logic controller with evolutionary algorithms is an extensively studied
field. These studies can be divided into three categories [24] including genetic-fuzzy
systems, particle swarm optimization and ant colony optimization. Genetic-fuzzy systems
employ genetic algorithm for designing and optimizing a fuzzy system. A relatively general
classification of genetic-fuzzy systems was provided in [25] where these approaches were
divided into three main groups namely genetic tuning, genetic learning and a hybrid model
of both tuning and learning.

In this paper we design a hybrid optimization model which deals with both tuning and
learning. This hybrid model takes place before the algorithm starts the path planning.
It optimizes the parameters of the membership functions of inputs and output of the
fuzzy-tabu controller and also rearranges the rules in order to improve the efficiency of
the overall approach. Also, the hybrid genetic optimization model will consider some
of the path planning algorithm parameters in the optimization process. The rest of the
paper is organized as follows. In Section 2, the performance of the fuzzy-tabu controller
is described. The hybrid genetic optimization model is proposed in Section 3. Simulation
studies and analysis are illustrated and studied in Section 4 and a conclusion is given in
Section 5.

2. Fuzzy-Tabu Controller. We consider a circular robot which is equipped with a
number of range sensors. As illustrated in Figure 2, the sensory system of the robot
is able to perform a complete 360° scan of the surrounding area inside the vision range
circle (VRC) of the sensors and determine free space (S¥) and obstacle’s space (S9). We
formulate the vision of the robot based on [9], as follows.

Vs(xc,yc,e) : (]R2 X ¢) — Ra ¢ = [Oa 27T] (1)
min,, (7 X [cos(8;), sin(6;)]7) if v x [cos(6;),sin(6;))]T < VRmax

Vs(ze,ye, b)) = (such that, [zc,yc] + 7 x [cos(8;),sin(6;)]" € ST) (2)
VR ax otherwise

where [x¢, yc] is the coordinates of the robot’s current configuration, VR, is the sensor’s
maximum vision range and v is a positive scalar. A plot of Vg versus 6 is presented in
Figures 2(b) and 2(d) and in Figures 2(c) and 2(e) the differential of resulted curves
[0(Vs)/0(0)] is plotted to illustrate the visible vertices of obstacles and boundaries of the
environment as the sharp peaks of the differential curves.

Vertices = {zy, ¥y } (3)
v | | ze cos(6)
such that: yv | | ve +Vs(wo, 70, 0) [ sin(f) ] (4)

0(Vs)/0(0) = 0

The sampling area is the visible and collision-free parts of the VRC, using uniform
sampling distribution. After the sampler succeeds in finding a collision-free sample, the
fuzzy-tabu controller (FTC) takes place to evaluate the generated samples.
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FIGURE 2. The performance of the robot’s sensory system: (a) the vision
range in two points C; and Cy, (b) and (d) the magnitudes of rays emitted
from the robot’s at C; and C; versus the angle respectively, (c¢) and (e) the
differential of the Vg curve represents the visible vertices of the obstacles
and workspace boundaries.

FTC employs the structure of tabu search heuristic to guide the search procedure
by creating two tabu lists including short tabu list (STL) and long tabu list (LTL).
STL includes three fuzzy variables which should be calculated for the generated sample
including g, which is the normalized subtraction of the sample’s distance to the goal
and robot’s current position distance to the goal; ;} as the normalized distance between
the generated sample and the previous position of the robot and yg¢, which is calculated
as the normalized subtraction of the sample’s distance to the start position and robot’s
current position distance to the start position. These variables are being calculated for
the generated sample as follows. Note that D[A, B] is the Euclidean distance between
points A and B. Figure 3 illustrates the elements of STL.

pg = 0.5 + (D[Sample, Goal] — D[Current, Goal])/2 X VRyax, g € [0,1]
wp = D[Sample, Current]/ VR pax, wh €10,1]
ps = 0.5+ (D[Sample, Start] — D[Current, Start])/2 X VRmax, te €[0,1]
STL = {ug, 1, &}

The elements of LTL are the last m successfully visited positions of the robot which
cannot be visited again. This list is updated during the planning as follows.

LTL ={P\, P, ..., P,}, P;is the last jth successfully visited position of the robot.

FTC uses these two lists to evaluate the generated sample. The input of the fuzzy
system is the elements of STL and its output will be the risk of the moving the robot to
the new sample. Figure 4 presents the membership functions and decision surfaces of the
fuzzy system.

The planner uses the input variables to apply three simple rules. First, the robot’s
distance to the goal needs to be decreased continuously; second, the robot is prohibited
to get close to its previous position and third, the robot is forced to get farther from
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FiGURE 3. The fuzzy-tabu controller variables when the robot is placed at
C: (a) calculating the value of ;1 by measuring the distance of the sample
to the goal (black lines), (b) uj is calculated by measuring the distance
between the sample and the previous position of the robot (black lines), (c)

& is formed by measuring the distance of the sample to the start position
(black lines).
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FIGURE 4. Membership functions and decision surfaces for the fuzzy-tabu
controller. All membership functions are trapezoid.

the start position continuously. Using the elements of LTL helps the robot to visit each
position once.

After the evaluation, if the output of the fuzzy controller is less than a predefined value
Ryax, and it does not belong to the L'TL, then the sample will be considered as the next
position of the robot. R,.. is the maximum allowed risk for robot’s destinations. This
phase of the algorithm is based on the local search phase of the conventional tabu search.
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FIGURE 5. The performance of the fuzzy-tabu controller: (a) the resulted
path for a given path planning problem, (b)-(e) the changes in decision
variables during the planning process

In most of the cases, by the end of this phase, the planner succeeds in finding a new
position for the robot. Otherwise, based on the rules of tabu search, the search is inten-
sified and the elements of STL should be discarded one by one in order to expand the
search area. In this situation, ug, pb, and pd components will be ignored respectively,
hoping to find a sample with a suitable risk. At the end of this level, all of the STL ele-
ments have been discarded and the only restriction on the sampling area is the elements
of LTL. Finally, if the algorithm failed to find a sample, then search is diversified and
all restriction criteria will be ignored and the algorithm performs similar to the conven-
tional sampling-based methods. Figure 5 shows a path planning problem which has been
solved by the proposed algorithm, along with the controller variable plots which show
their changes during the path planning.

As presented in Figure 5, only in the fourth iteration, search is diversified as the Risk
of the fourth iteration is more than the R, while in other iterations, the controller
succeeded in finding samples with risk below the maximum allowed risk. More detail
about using tabu search in sampling-based path planning is presented in [26].

3. Genetic Optimization. For any fuzzy system, there are two important concepts
including interpretability and accuracy. These concepts are inconsistent and attempting
to improve one of them may result in worsening the other [27]. Some of the optimization
methods focus on improving the interpretability while, some others aim to improve the
accuracy of the fuzzy systems. For designing an optimization system which consider
both concepts, first, the main objective (interpretability or accuracy) is tackled defining
specific model structure to be used and therefore, setting the fuzzy modeling approach
and deriving the model. Then, the modeling components are improved to compensate
for the initial difference between both concepts. We consider an optimization framework
which attempts to improve both interpretability and accuracy. Accuracy is improved by
tuning the parameters of trapezoid fuzzy membership functions and also using nonlinear
scaling factors to change the shape of the membership functions. For improving the
interpretability of the fuzzy model, we design a rule selection process which optimizes the
number of rules in the reasoning procedure.
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3.1. Tuning the fuzzy membership functions. As mentioned before, in the initial
fuzzy-tabu controller, we have three input variables and one output, all with trapezoid
membership functions. The genetic optimization model considers the parameters of these
functions as a part of the optimization variables. Generally, a trapezoid membership
function can be defined as follows.

(x—a)/(f—a) fa<z<p

)1 if <z <y
firap(*) = (6—a2)/(6—v) ify<z<é 9
0 otherwise

As presented in Figure 4, for each input variable we have eight tuning parameters
and for the output, we have fourteen parameters. Hence, we have 28 parameters for
tuning. We also use a nonlinear scaling factor (NSF) for each membership function to
vary its compatibility degree to the fuzzy set by raising the membership function value
to a positive scalar. We choose this nonlinear scaling factor from the interval of (0, 10].
Figure 6 presents the effect of the NSF on a trapezoid membership function.

. ] f(x) . more-or-less f(x) |

Jerv f(x)

(a) (b) (c)

FIGURE 6. The effect of nonlinear scaling factor (NSF) on the fuzzy mem-
bership functions: (a) different values for w creates different membership
functions, (b) when w = 2, we have the ‘very’ hedge and (c) for w = 0.5,
the resulted hedge is called ‘more-or-less’.

As presented in Figure 6, when this factor is equal to 0.5 and 2, we have the more-or-
less and very hedges respectively. Totally we have 14 membership functions for input and
output variables and hence, we need 14 variables as the nonlinear scaling factors.

pnsr(z) = [p(@)]”,  w € 0,10] (10)
poery(2) = [u(@))” (11)
Hmore—or—less(l‘) = M(IL’) (12)

Totally, for the tuning part of the genetic optimizer, there are fifty four parameters in
which the first forty are being used for tuning the positions of the trapezoid membership
functions and the last fourteen will change the shapes of them. We need to define some
linear constraints for these variables in order to avoid any variable domain error. We define
two sets of linear constraints including range constraints and position constraints. Range
constraints keep the variables inside the interval of membership functions as follows.

a; €[0,1], andi=1,2,...,40 (13)
a; €[0,10], and i = 41,42, ..., 54 (14)
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Position constraints limit the variables to keep the structure of the resulted membership
functions true.

pe s {on < ag, a3 < a4 < as, 05 < ag and ar < ag} (15)
ph e {ag < agg,ann < apg, anp < agz, a3 < oy and a5 < e} (16)
ph s {onr < augyang < g, g < Qop, oy < agg, and ags < ag} (17)

Risk : {aas < g, o7 < rog, (rag < g, (ag < izp, g1 < (iga, iz < (ig3,

sy < g, gs < Qisg, gp < Qia7, Qg7 < gg, and agg < aup} (18)

Totally, we have 40 range constraints and 26 position constraints in the final genetic
optimization model.

3.2. Rule selection. Tuning of membership functions usually needs an initial model with
a large number of rules to get an appropriate level of accuracy. Generally, to obtain a good
number of initial rules, methods ensuring covering levels higher than needed are used. In
this way, we could obtain rules that are being needed at first and could be unnecessary
once the tuning is applied or rules that could impede the tuning of the remaining ones
in order to obtain the global optimum in terms of the accuracy. Thus, we can define
the following classes of rules with respect to this global optimum in the complete set
of rules. Erroneous rules degrade the system performance (rules that are not included
in the most accurate final solution); Redundant or irrelevant rules do not significantly
improve the system performance; Complementary rules complement some others slightly
improving the system performance; and important rules should not be removed to obtain
a reasonable system performance [28].

For improving the interpretability of the fuzzy model, we designed a set of rule selection
binary variables as the weight of each fuzzy rule. If the corresponding variable for a rule
is equal to zero, then that rule will not be considered in the final fuzzy reasoning system.
As described before, our fuzzy controller has 3 input variables and for each one, there are
three membership functions which make 27 rules and accordingly 27 rule selection binary
variables.

a; € {0,1}, and i = 55,56, ...,81 (19)

Based on the fitness functions which will be described later, the algorithm is able to
distinguish between different types of rules.

3.3. Path planner parameters. Beside the tuning and rule selection parameters, we
include two parameters of the path planner in the genetic optimization model including
Rinax and Iterya, which are the maximum allowed risk for a generated sample and the
maximum number of iterations before the algorithm returns failure respectively.

Ripax € [0,1],  Ttermay € [10,10°] (20)

Choosing the values for these parameters is an important part of the planning. As
presented in Figure 7, these two parameters are contradictory and by increasing the value
of one of them, we need to decrease the other one in order to keep the path planner
efficient.

Choosing higher values for R, results in longer paths with shorter running time while,
higher values for Itern., creates shorter paths with high computation and long running
time. Therefore, we include these two parameters in the optimization model so they can
change with the rest of the algorithm’s parameters and their optimum values will be deter-
mined along with the other parameters of the planner. Totally, the genetic optimization
model includes 83 variables covering tuning variables (aq, ag, ..., a4g), nonlinear scaling
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FIGURE 7. The changes in path length and running time of the planner
for different values of Ryax and Iterpay: (a) and (b) increasing the value of
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the planner, (c) and (d) higher values for Ry results in longer paths but
with lower running times.
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FIGURE 8. Test environment for defining the fitness function: (a) convex,
(b) concave, (c¢) maze and (d) Mix workspaces

factors (cuy, o, . - ., as4), rule selection variables (ass, asg, - - ., g1 ), and path planner vari-
ables (ags, ags).

3.4. Fitness function. The optimization procedure, attempts to optimize the perfor-
mance of the fuzzy controller for path planner. Hence, the fitness function needs to be
related to the path planning problem. On the other hand, our path planning algorithm is
designed for handling unknown environments where there is no prior information about
the parameters of the environment and it is not possible to run the optimization during
the path planning process. For setting a suitable fitness function, we design four test
environments as presented in Figure 8, including convex, concave, maze-like and Mix
environment.

The fuzzy path planner parameters will be optimized in these test environments and
the resulted optimized fuzzy controller will be used for path planning tasks in the actual
cases.
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We design two scenarios for fitness function. In the first scenario (MinRisk), the fitness
function is defined as the sum of the risks of the generated samples when the planner
is producing optimum path obtained from the Visibility Graph approach. In Figure 8§,
the optimal paths (lines) and different positions of the robot on these paths (circles) are
shown on the optimum paths for each test environment. The genetic optimizer attempts to
minimize the total risks of the generated positions based on the visibility graph’s resulted
paths.

L. 4 i
Fitness Function™mfsk — Z ) Zm . Risk;; (21)
1= 1=

where m; is the number of iterations in the sth environment and Risk;; is the output of
the fuzzy controller for the ith iteration of the jth environment.

In the second scenario (OptPath), the path planner will be executed in each test envi-
ronments and the fitness function is defined as the mean square error of the path lengths
of the algorithm in each test environments.

4 2
Fitness Function®Ptfeh — 1/8 {Zizl (PLi — PLZOpt) ] (22)

where PL; and PLZQ]”lt are the path length of the algorithm’s results and the optimal path
length in the ith test environment respectively. Figure 9 shows the optimization results
in each test environment.

As can be seen in Figure 10, the genetic optimizer tuned the membership functions for
both input and output variables. Also, the optimizer changed the shape of the membership
functions by means of the nonlinear scaling factors. The optimal values for R, and
Itery,x are presented in Table 1.

Like any algorithm, our proposed model is sensitive to some of its parameters and one
of the main reasons for developing an optimization method is to determine the optimum
values for these parameters in order to have the best performance of the model. There are
some other parameters like the shapes and numbers of the membership functions which
the algorithm seems to have a robust performance regarding to them. As the genetic

(a) (b)

FIGURE 9. The optimization results in test environments. Line 1 are the
optimal paths, Line 2 are the resulted paths from the original controller,
Line 3 correspond to the first fitness function (MinRisk) and Line 4 are
resulted from the second fitness function (OptPath).

TABLE 1. The optimized values for planner variables

Rmax Ite,rmax
Initial FLC 60 % 100

MinRisk FLC | 51.83 % | 657

OptPath FLC | 43.41 % | 218
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FiGURE 10. The results of the genetic optimization process on the fuzzy
membership functions: (a) the initial controller, (b) the optimized controller
based on MinRisk fitness function and (c¢) the optimized controller based
on the OptPath fitness function

algorithm normally uses a random initial answer, the set-up procedure for the algorithm’s
parameters is taking place automatically as the optimizer keeps running the algorithm.

The genetic optimizer increases the value of [tery., while it reduces Ry... Figure 11
presents the decision surfaces for initial, MinRisk and OptPath FLCs.

4. Simulation Studies. We simulate our proposed approach in five classes of environ-
ments including convex, maze, narrow passage, bug trap and concave environments. As
described before, the proposed path planning algorithm is based on randomized sampling
and therefore, the generated paths for a given problem will be different in each execution
as the sampler chooses random positions for evaluation. For each class, the algorithm
runs 100 times. The simulations were in MatLab R2008b using a 2 GHz Intel Core 2
Duo Processor. As presented in the flowchart of the proposed approach in Figure 12, the
genetic optimizer modifies the fuzzy controller of the path planner and takes place before
the planner starts any navigation tasks.

We use the initial, MinRisk and OptPath fuzzy controllers in the sampling-based path
planner in all designed environments to analyze the effects of the genetic optimizer on the
generated path length and running time of the algorithm. Figure 13 shows the results
of the path planning in some environments using the optimized fuzzy-tabu controller
with the second fitness function (OptPath). The resulted algorithm generates safe and
relatively short paths without getting trapped in any local minima. Unlike the studied
sampling-based algorithms, the proposed approach solves the path planning problems in
difficult environments without any failure.

Table 2 shows the comparison results for our algorithm and 8 different sampling-based
approaches including PRM, RBB, Gaussian sampling, RRT, RRT-bidirectional, RRT-
Connect, DDRRT-bidirectional and ADRRT-bidirectional for 100 runs. We choose these
algorithms for comparison studies because their main objective is to improve the perfor-
mance of the sampling-based approaches in terms of path length and running time.
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FIGURE 11. The results of the genetic optimization process on the fuzzy
decision surfaces: (a) the initial controller, (b) the optimized controller
based on MinRisk fitness function and (c¢) the optimized controller based

on the OptPath fitness function
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FiGure 12. The flowchart of the proposed algorithm
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(d) (e) (f)

FiGUurE 13. Simulations of the optimized algorithm with the second fitness
function (OptPath) in 6 different workspaces including: (a) chess plate, (b)
maze, (¢) narrow 1, (d) narrow 2, (e) bug trap and (f) local minima

TABLE 2. Simulation results for studied variables

Envi Chess Maze Narrow 1 Narrow 2 Bug Trap |Local Minima
nvironment _ B
\ (OPL = 13.9) | (OPL = 45.2) | (OPL = 44.2) | (OPL = 35.4) | (OPL = 18.8) | (OPL = 15.9)
Algorithm Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std

Path Length | 15.03 | 0.93 | 50.86 | 1.01 | 48.64 | 1.29 | 37.62 | 0.46 | 22.82 | 3.14 | 18.60 0.62

Nif;’gg I(<A:)20 Runtime (s) | 1055 | 0.19 | 7.47 | 0.15 | 7.40 | 0.05 | 7.58 | 0.12 | 7.25 | 017 | 7.64 | 0.05
: Failure 0% 0% 65% 80% 20% 0%

RBB (AY) Path Length | 14.99 | 0.82 | 50.52 | 0.73 | 48.97 | 1.06 | 37.81 | 1.0I | 30.50 | 0.81 | 19.35 | 0.74

N =300,K =20, | Runtime (s) | 1141 | 0.24 | 7.49 | 0.15 | 7.54 | 0.09 | 7.65 | 0.05 | 7.36 | 0.05 | 2.30 | 0.02
P(Bridge) = 0.8 Failure 0% 0% 20% 60% 10% %

Gaussian (A*) Path Length | 18.45 | 1.80 | 57.51 | 1.62 | 51.47 | 0.99 | 42.66 2.58 23.73 | 2.55 | 23.57 1.60
N =300,K =20 Runtime (5) 14.40 | 0.62 7.59 0.05 7.66 0.07 7.80 0.06 7.13 0.09 7.71 0.06
o=0.1 Failure 0% 1% 0% 5% 25% %
Path Length | 18.24 | 1.86 | 57.41 | 1.19 | 56.25 | 2.39 | 48.63 1.13 32.45 | 2.63 | 23.37 2.23

St}:;‘zl Runtime (s) 12.32 I 7.95 |137.87 i 6.11 |316.32| 6.58 | 250.69 | 3.08 |316.25| 3.08 8.74 3.96
Failure 0% 23% 83% 23% 55% %

RRT-bi Path Length | 18.46 | 2.45 | 61.46 | 2.50 | 55.31 | 1.09 | 47.13 2.95 38.55 | 4.47 | 27.30 3.08

Step = 1 Runtime (s) 3.64 0.95 | 26.25 | 9.25 [211.07| 5.03 | 102.51 | 108.30 | 22.42 | 19.49 | 3.40 0.96

Failure 0% 0% 68% 0% 0% %
Path Length | 22.09 | 3.83 | 6243 | 2.01 | 56.04 | 1.84 | 42.74 2.35 38.67 | 7.60 | 25.29 4.11
RRT-Connect Runtime (S) 1.63 1.03 4.24 1.81 [168.32 | 4.35 | 53.27 4.19 8.13 9.57 0.44 0.19

Failure 0% 0% 63% 0% 0 %
Path Length | 16.58 | 2.27 | 63.82 | 2.88 | 62.06 | 3.14 | 54.76 2.93 38.97 | 3.59 | 22.99 2.71

PN

D[}){ER(']TI-I)I Runtime (s) 2.88 0.65 8.68 4.44 | 173.55 | 2.22 | 23.52 | 3.02 3.66 1.38 | 2.54 0.38
' Failure 0% 0% 44% 0% 0% 0%

ADRRT-bi Path Length | 16.05 | 0.69 | 57.87 | 2.86 | 59.37 | 2.36 | 44.51 1.17 37.64 | 3.44 | 22.42 2.49

o — 0.05 Runtime (s) 2.64 0.53 6.22 1.84 [143.18 | 2.03 9.78 0.73 2.71 0.34 2.31 0.21

Failure 0% 0% 36% 0% 0 0%
Path Length | 14.62 | 0.34 | 47.17 | 0.45 | 46.74 | 0.77 | 36.79 | 0.04 | 21.16 | 0.81 |17.50 0.24
Runtime (S) 0.07 | 0.02 0.81 | 0.02 | 0.86 | 0.04 | 0.87 0.03 1.12 | 0.08 | 0.12 0.02

Failure 0% 0% 0% 0% 0 0%

PN

Our Algorithm
Step = 0.5

N

As the second fitness function provides better solutions, we only add its results in Table
2 and ignore the resulted controller from the first fitness function. As can be seen in Table
2, each of the studied algorithms has poor performance at least in one environment while,
the proposed method performs efficiently in all environments without any failure. The
average path lengths, average runtimes and standard deviations of the proposed algorithm



GENETIC-BASED OPTIMIZED FUZZY-TABU CONTROLLER 2199

PRM (A~ RBB (A" = Gaussian (A"
%, 2 (A7) %30 (A%) £ (A7)
g 2 &
& 2 825 25
L
= £ =
T T 1 2wl ply ﬂ AV VNWMMVA _ f'u'dl\ ﬂv
16 Ao Anh i ettt A 15 i sl A At A 1 Vi A h i
A e B e S B R et e\ el T P
t 0 20 30 40 50 60 70 80 90 100 D 10 20 30 40 & 60 70 80 90 100 00 20 W 40 0 50 70 80 90 10
(a) lterations (b) Iterations (C) Iterations
RRT RRT-bi RRT-Connect
%) 30 % 30 g % k|
[ = c
@2 LR A 9%
£ £ £
3o Mﬂﬂwﬂ A A AJ\WJ\VJ\W 3 20 wnM )\M Wi W ‘\ Auw g @
VWIS TRV A U VY
t 10 20 30 40 50 60 70 80 90 100 0 10 20 30 4 50 € 70 8 90 1w 010 20 30 40 0 80 70 B0 90 100
lterations Iterations Iterations
(d) (e) (f)
S % DDRRT-bi S 3 ADRRT-bi | S Our Algorithm
=21 f=21 o
(= c c
825 &2 &2
£ » A fh\ £ £
© I ol
o .ﬂAIMM\ /\m f MAMA o " Ton I\ o
15 T VYT U W PRIV IV (B ANARM N i 16 e e e g e
© 0 20 30 40 50 60 70 8§ 90 100 D 10 20 30 40 5 60 0 80 90 100 0 10 20 30 40 50 B0 70 B0 90 100
(g) lterations (h) Iterations (|) Iterations

FIGURE 14. Path length variations for 100 executions of the studied plan-
ners for the chess plate environment as presented in Figure 13(a). Note
that all graphs are plotted in the range of [0, 35] for the vertical axis.

are considerably lower than the other studied algorithms. The standard deviation (Std)
of the studied algorithm’s path length and runtime shows the stability of the proposed
algorithm. Figure 14 shows the variations of generated path lengths for studied algorithms
for 100 executions in the workspace of Figure 13(a).

According to Table 2, in a simple convex environment like the chess board, all of
the simulated algorithms generate relatively short paths in reasonable amounts of time.
Although the RRT-Connect algorithm generates longer paths than the others because of
its greedy heuristic rule which reduces the runtime but results in longer paths. In a maze-
like environment, the average runtime of the Gaussian sampling approach shows that the
near obstacle sampling strategy of this approach increases the runtime of the planner.
Other algorithms can solve a maze problem in a short time with relatively short paths. In
narrow passages, most of the algorithms have some problems in finding a feasible answer
in a reasonable amount of time. The only successful approaches in this class of problems
are RBB and Gaussian sampling. In a bug trap, only DDRRT-bi and ADRRT-bi have
successful performances while the other algorithms fail to find an answer and if they
don’t, the results are far from the optimum values. Considering the facts that each of the
studied approaches has poor performances in some of the environments and they cannot
be applied without complete information about the environments, we can see that the
proposed algorithm has a robust ability to deal with the lack of information about the
environments and to plan in difficult environments. Moreover, the proposed algorithm
returns near-optimal paths in less than few seconds while the variation of the results in
different executions in considerably low.

The variation in the length of the generated paths for our proposed algorithm is less
than the other studied algorithms because of the performance of the fuzzy-tabu controller.
This controller always selects the positions with the risk less than the maximum allowed
risk (Rmax) and therefore, it guides the sampling-based planner to generate paths with
relatively close lengths in different runs.

Another important factor is the variation of running time of the planner in different
runs. Figure 15, presents the variation of the running time for all studied algorithms in
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FI1GURE 15. Running time variations for 100 executions of the studied plan-
ners for the chess plate environment as presented in Figure 13(a). Note that
each graph is plotted in the range of its own vertical bounds.

TABLE 3. Performance comparison of the original controller, the optimized
controller with the first fitness function (MinRisk) and the optimized con-
troller with the second fitness function (OptPath). OPL is the length of the
optimal path.

Our Algorithm (Original) Our Algorithm (MinRisk) Our Algorithm (OptPath)
Environment | Path Length | Runtime PL Path Length | Runtime PL Path Length | Runtime PL
Mean | Std | Mean | Std | OPL  [Mean | Std | Mean | Std | OPL  [Mean | Std | Mean | Std | OFL
Chess 15.11| 0.41 | 0.08 | 0.10 | 108.71 | 14.92 | 0.38 | 0.12 |0.03|107.34 | 14.62 | 0.34 | 0.07 [0.02 | 105.18
Maze 48.33 | 0.39 | 0.83 [0.09 | 106.92 | 47.84 | 0.46 | 0.83 |0.07 |105.84 | 47.17 | 0.45 | 0.81 |0.02 | 104.36
Narrow 1 48.04 | 0.81 | 0.91 [0.14 | 108.69 | 47.49 | 0.74 | 0.88 | 0.06 | 107.44 | 46.74 | 0.77 | 0.86 | 0.04 | 105.75
Narrow 2 38.57 | 0.11 | 0.97 [0.13 |108.95 | 37.23 | 0.09 | 0.90 |0.05|105.17 | 36.79 | 0.04 | 0.87 |0.03 | 103.93
Bug Trap 23.81 | 0.83 | 1.13 |0.14 |126.65 | 22.07 | 0.73 | 1.18 [ 0.09(117.39 | 21.16 | 0.81 | 1.12 | 0.08 | 112.55
Local Minima | 18.08 | 0.34 | 0.21 [0.09 | 113.50 | 17.93 | 0.31 | 0.19 | 0.08 | 112.55 | 17.50 | 0.24 | 0.12 | 0.02 | 109.86

the same environment as Figure 13(a). The standard deviation of the runtime for our
algorithm in the Chess environment is 0.02 which is the smallest Std among all consid-
ered algorithms. The main reason for this low runtime is the fact that unlike the other
sampling-based algorithms, our planner does not attempt to capture the connectivity of
the environment completely. It only samples inside the visible area and tries to move the
robot closer to the goal, farther from the start position, and farther from the previous
positions.

Table 3 shows the simulation results for the initial fuzzy-tabu controller, the optimized
controller with the first fitness function (MinRisk) and the second fitness function (Opt-
Path).

Based on the simulation results, the second fitness function (OptPath) performs more
efficiently. It generates path in less than 2 seconds while the path lengths are relatively
close to the optimal path lengths.

The simulation results indicate that the optimized controller improves the performance
of the proposed online sampling-based approach and succeeds in guiding the robot in any
type of environment with very low variation of the results in different runs.
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5. Conclusion. In this paper, we proposed a novel sampling-based path planning al-
gorithm for guiding a mobile robot in an unknown environment. The drawbacks of the
existing sampling-based algorithms were classified into five groups including (1) inability
of planning in unknown environments, (2) the optimality problem of the generated paths,
(3) high running time of the planner, (4) failure in difficult situations like narrow passage
and bug trap, and (5) high variation of the results in different runs. We incorporated sev-
eral intelligent components to overcome the abovementioned drawbacks. The proposed
algorithm acquires information from the robot’s sensory system and restricts the sampling
area to the visible regions for the robot. A fuzzy controller was designed to evaluate the
generated samples and choose better ones in terms of path length and runtime. This fuzzy
controller employs the tabu search heuristic rules in the evaluation procedure to handle
planning in difficult environments. Furthermore, a genetic-based optimization framework
was designed to optimize the controller parameters. The resulted algorithm performs
successfully in any type of environments without failure while the average path lengths
and runtimes are considerably lower than the other sampling-based algorithms. Also, the
variations of the results in different runs are tremendously lower than the other studied
approaches.
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