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ABSTRACT. Underdetermined Blind Source Separation (UBSS) is an important issue
which is frequently solved by a two-stage approach: estimating mizing matriz and recon-
structing source signals. In this paper, a UBSS model with introduced feature is presented.
The distributed compressed sensing (DCS)-based algorithm is proposed to reconstruct the
sources. In the reconstruction stage, the observations are firstly segmented into a num-
ber of blocks. Then a reconstructing algorithm based on DCS is employed at the stacked
blocks. Finally, the source matriz is obtained from these reconstructed blocks. Compared
with other methods, simulations demonstrate lower complexity of the proposed method
even if the number of sources is larger than 10.

Keywords: Underdetermined blind source separation, Sparsity, Distributed compressed
sensing, Block matrix, Complexity

1. Introduction. The issue of underdetermined blind source separation (UBSS), where
the number of the sources is larger than that of the mixtures, has been extensively re-
searched in recent years. The goal of UBSS is to estimate the unknown sources from the
mixture without prior information of the mixing system. Taking into account a noise-free
instantaneous model, the issue could be described as [1]:

Z = AS, (1)

where A € R is the unknown mixing matrix assumed to be full row rank with ¢ < [,
Z € R%" is the observed data matrix whose row z; is the i-th observed signals with
all times t = 1,2,...,n. S € R™" is the unknown source matrix with [ source s; (i =
1,2,...,1), where s; is a row-vector of size n.

In case of UBSS, estimating the mixing matrix is not sufficient for recovering the sources
since the mixing matrix is not invertible. Sparsity of the sources is required as the prior
information to solve the underdetermined problem. The sparsity of sources means that, at
a given data point ¢, few sources are prominently larger, while the remaining ones are very
close to zero. Particularly, it is called K-sparse if no more than K sources are nonzero
at each data point. Many signals are not sparse in time domain, but they are sparse in
certain transformed domains such as the frequency domain by Fourier transform [1]. In
recent years, a lot of work have been studied about UBSS. The method most broadly
used in UBSS includes two stages which are estimating mixing matrix and recovering
source signals. For the mixing matrix estimation stage, some clustering methods such as
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time-frequency transform [1], k-means clustering method [2], have been proposed. For
the sources recovering stage, there are /;-norm solution method [2], shortest path decom-
position methods [3,4], statistically sparse decomposition principle [5,6], etc. Another
method for UBSS is based on sparse representation, supposing that the sources are sparse
or can be decomposed into the combination of sparse components [4-7]. Employing such
a representation, a novel algorithm was proposed based on compressed sensing (CS) [8],
in which the UBSS model is reformulated into a signal recovery model. An approach
based on multichannel CS theory was proposed for blind speech separation [9], in which
the mixed signals were sampled by CS theory approach. Then the speech sources were
separated and recovered without reconstructing the mixed signals.

Unfortunately, in case of UBSS, the number of sources [ is required to be no larger than
10 [2-5,9], otherwise, these methods are very computationally demanding. On the other
hand, as all the source signals of full length are stacked into a single vector for CS, which
leads to a significant dimension of the measurement, the process of source estimation in
[8] is also computationally demanding if [ > 10 (see Section 4).

The paper considers a realistic case that was not mentioned in traditional UBSS papers,
i.e., not all of the sources are sparse in some environment. For instance, in a party some
people speak intermittently, while background music is played continuously, i.e., the source
from the music is not sparse. The feature is added to UBSS model, that is, some s; are
assumed with all data points being nonzero or significant values. We call these sources
“major sources”.

Besides that, due to the increasing needs in applications, e.g., dozens of radar signals are
needed to be separated for extracting some vital information in a region, it is necessary
to develop efficient and reliable algorithms to solve large size UBSS (e.g., the number
of sources is larger than 10). In order to lower the computational complexity in source
estimation of large size UBSS, multi-signal-based CS algorithms are considered in this
paper. Enlightened by [8], the relationship between DCS and UBSS is explored in this
paper, including their models and algorithms. As a result, a DCS-based algorithm is
proposed in the sources estimation stage of UBSS.

The remainder of the paper is organized as follows. Section 2 presents the relationship
between DCS and UBSS, which results in the DCS-based method for UBSS. Section 3
demonstrates the comparison between our method and other two UBSS methods, in terms
of computational complexity. In Section 4, several numerical experiments are conducted
to illustrate the performance of separation, complexity and application potential of this
method.

2. Relationship between DCS and UBSS.

2.1. Compressed sensing. CS has received great interests in recent years [11]. Assume
that x is an N-dimension signal, it is called K-sparse (or compressible) if x can be closely
approximated by K (< N) coefficients under linear transformations. According to the
CS theory, signal z can be obtained through the linear measurement system as follows:

y = ¢X, (2)

where y € RM*! is the measurement vector with M (< N) data points, ¢ represents an
M x N measurement matrix. The goal of CS is to reconstruct signal via measurement.
The core of reconstructing x is to find its support-set, i.e., the indices of non-zero entries of
x. The CS framework is interesting as it indicates that x can be precisely recovered from
only M = O (KlogN) measurements, implying the potential of prominent cost reduction
in digital data acquisition [12].
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2.2. Distributed compressed sensing (DCS). Here we consider the following DCS
model [10], that is:

y'j:‘I)Xj (j:1,2,...,T), (3)

where column vectors x; € RV*! and y; € RM*! are signal and corresponding measure-
ment respectively.

On the other hand, Equation (3) can be represented as:
Yuxr = PuxnXnxr, (4)

where Y = (y1,y2,...,yr) and X = (x1,Xs,...,Xx7). Note that Equation (4) can be
interpreted as compressed sensing based on multi-signal ensembles.

It is assumed that there exists a known sparse basis ¢ so that each x; can be sparsely
represented by K (K < N) non-zero components. In CS, ¢ and ® should be as orthogonal
as possible so that each measurement contains more different information of original
signals as far as possible [6]. Especially, x; is K-sparse signal in time domain if ¢ = Iy.
Then each x; can be divided into common part and innovation part, i.e.,

Xj=c;j+z;=¢0;+0;) (j=12,...,T), (5)

where c; and z; represent the common part and innovation part of j-th signal respectively.
The common part is common only in the support set and non-zero coefficients of the
innovation parts are different among the sensors. If the signal is sparse in certain transform
domain instead of in time domain, 6; and o; represent the common part coefficients and
innovation part coefficients respectively [10].

If x; is K-sparse, sparsity K can be represented as:

K =K.+ Kj, (6)

where K. and K represent cardinality of the sparse common part and the sparse inno-
vation part, respectively. For all x; (j = 1,2,...,T), they share same K, while having
different K; among them. Then total sparsity of X is written as:

T
Ktotal :Kc+ZK] (7)

i=1

For example, there is a multi-signal ensemble

2 00
X = (x1,X2,X3) = (1) ;1 g , (8)
0 0 5
where
0 2
Xp=C +2 = (1) + 8 ; (9)
0 0
0 0
X9 = Co + 29 = g + g (10)
0 0
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and

o O O

+ (11)

X3:(33—|—Z3:

o O W o

5

Comparing with these three sparse vectors, ¢;, ¢, and c3 share the same nonzero index,
while z, z, and z3 are sparse with different nonzero indexes. That is ¢, cy, c3 are the
common parts, while z;, z, and z3 are the innovation parts. Correspondingly, K, = 1,
K1:K2:K3:1, Ktotal:]-+3:4-

2.3. Relationship between UBSS and DCS. In this paper, the mixing matrix A is
assumed to have been estimated correctly in the mixing matrix estimation stage, i.e., A
is known. For convenience and without loss of generality, source signals are assumed to
be sparse in time domain. We are mainly concerned with the reconstruction of sources in
UBSS.

Firstly, the mixture Z in Equation (1) is divided into & blocks Z; (i = 1,2, ..., k), with
each block containing 7 columns as follows:

Z=(72,2Zy- 7). (12)

Then all blocks are stacked one by one, i.e., Z;; is stacked below Z; (i =1,2,..., k—1).

Thus, all of the blocks form a ck x 7 matrix, which is denoted by Y as below:
Z,

Z

Y = (13)

Zy
Similarly, source matrix S is separated into k£ blocks correspondingly, with each block
containing # columns as follows:

S=1(S1,S:,S ). (14)
All'S; are stacked to be a [k x 7 matrix, which is denoted by X:
S
So
X = : (15)
Sk

Let @ be a k£ x k block diagonal matrix whose diagonal components are all equal to the
mixing matrix A, while other components are ¢ x [ null matrixes, i.e.,

Ac><l Oc><l e Oc><l
d — O.c><l A‘c><l e O.c><l ‘ (16)
Oc><l Oc><l U Ac><l
Then the mixed system Equation (1) can be reformulated as:
Zl Ac><l Oc><l U Oc><l Sl
Z.Z _ O.c><l A‘c><l e O.c><l S.Z (17)
Zy, Ocxi Oci -++ Acxy Sk
—_— - ~ S ——

Y @ X
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The matrix form of Equation (17) is:
Yorxr = PepsinXipxz. (18)

Lety; (j =1,2,..., ) be the j-th column of Y, then Y = (yy,y2,...,y=). Similarly, x;
(j=1,2,..., %) represents j-th column of X, then X = (x1,X3,...,X»).

Since each column of S in Equation (1) is sparse, each x; is also sparse in Equation
(14). Obviously Equation (18) can be interpreted as a DCS model similar to Equation (3),
where @ is the measurement matrix, x; and y; are compressed signal and measurement
respectively. If each column of S is K-sparse with K = K, + Kj, the total sparsity of X,
which is denoted by Kypa, is:

Kiotar = kKo + Y K. (19)
j=1
In CS theory, it requires ® with low coherence to recover x; (j = 1,2,..., %) exactly

from the measurements y; (j = 1,2,...,7) [12]. The coherent of ® is defined as the
largest correlation between any two columns of ®:
/'L(@) = max |< ¢i7 ¢j >| ) (20)

1<i,j<kl,i#j
where < ¢;, ¢; > is the inner product between ¢; and ¢;. CS requires the sensing matrix
® with low coherence, in other word, the coherence of measurement ® should be as small
as possible. Essentially, the magnitude of (@) is only related to A, that is,

p(@) = max |<aja;>], (21)
where a; is the i-th column of A. Gaussian matrices have been proved to satisfy the
condition of coherence [12]. In this paper, Gaussian matrixes are taken as A.

Following the discussion above, the recovering of sources for UBSS model can be inter-
preted as the reconstruction of multi-signal ensemble for DCS model. However, one may
propose that it is not needed to split the data into blocks as the original form (Equation
(1)) is already in the same format as the DCS problem. Thus the data can be processed
block by block or stack them together and solve the problem simultaneously. The question
is, in CS theory, for a K-sparse signal, exact recovery needs its dimension far exceeds its
sparsity [13]. In this paper, if we regard Equation (1) as the DCS problem directly, each
column of S is the target to be recovered. Note that these columns are [-dimensional, so
it requires [ > K for recovering all columns. That means the number of signals [ should
far exceed the sparsity. These limits significantly the applicability of this approach as the
number of signals of UBSS is not a very large value in real-world scenarios. From this
perspective, we transform Equation (1) to Equation (17) so that [k (the dimension of each
x;) far exceeds kK (the sparsity of x;). Thus, the UBSS problem can be solved by DCS
algorithms.

2.4. Sparsity adaptive matching pursuit algorithm for DCS. Sparsity adaptive
matching pursuit (SAMP) algorithm for DCS (referred as DCS-SAMP) was proposed in
[10] as a new iterative greedy algorithm for multi-signal ensembles scenario. DCS-SAMP
can reconstruct input signals from corresponding measurements jointly without any prior
information of their sparseness. The algorithm is enlightened by SAMP algorithms [14]
for single-signal. It has been proved that DCS-SAMP has nice reconstruction accuracy
of the same order as that of linear programming (LP) optimization methods. On the
other hand, DCS-SAMP demonstrates lower computational complexity, compared with
that of orthogonal matching pursuit techniques, especially for exact sparse signals. The
theoretical analysis illustrates that DCS-SAMP can reconstruct arbitrary sparse signals
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correctly in noiseless environment if the sensing matrix satisfies the condition of coherence.
The whole reconstruction based on DCS-SAMP is composed of several stages, with several
iterations at each stage. For each DCS-SAMP stage, only a small number of indices in
the correct support set of the multi-signal ensembles are determined, then a series of
iterations are performed to improve the estimate for higher accuracy. After convergence
at this stage, the size of the estimated list is increased and other coordinates in the support
set, are estimated in next stage. The algorithm iterates continuously until the real support
set, is estimated completely. Then the whole estimations of the multi-signal ensembles are
acquired via solving a least-square problem.

2.5. The DCS-based algorithm for UBSS. For clarity, some notations we propose
are listed as follows.

r: iteration index.

A™: the pseudo-inverse of A.

A;: a submatrix of A which is composed of the columns of A with indices 7 € I.

x(I): a vector composed of the entries of vector x with indices i € I.

F': the finalist of X.

F,: the finalist in the r-th iteration.

s: the step size of DCS-SAMP.

q: stage index.

res,: the residue in the r-th iteration.

B: size of the finalist.

Al ,0_oo: taking co — norm of matrix A row by row.

Mazx(x,b): the set of indices corresponding to the b largest amplitude components of
X.

The main procedure of the DCS-based UBSS can be listed as follows.

Input: mizing matriz A, observation Z, the number of blocks k.

Step 1: separate Z into k£ blocks and stack all blocks to obtain Y according to Equation
(13). Correspondingly, the measurement matrix is generated according to Equation (16).
Thus the whole UBSS model is reformulated to a DCS model. X and Y are equivalent
to the compressed signals and corresponding measurements, respectively.

Step 2: initialize the parameters used in the algorithm as follows: resg =Y, Fy = ¢,
B=pr=1,q¢=1,%=0({=12,...,%).

Step 3: obtain a final test F' in the r-th iteration, i.e., C, = F,_; U Max(“(I)Tresr_lH
row—oos ) (make candidate list), F = Max(||®Z Y|| . f) (final test).

Step 4: generate a new residue based on the final test in Step 3, i.e., res = Y —®,®Y.

Step 5: (i) if the new residue satisfies the halting condition, e.g., ||res||, is smaller than
a given threshold, quit the iteration; (ii) else if ||res||, > [[res,_1]|,, increase the stage
index and update the size of finalist, i.e., ¢ = ¢+ 1, = ¢ x s; (iii) else update the final
list, residue and iteration index, i.e., ;. = F', res, =res, r =r + 1.

Step 6: repeat Step 3 to Step 5 until halting condition is true.
Step 7: the entries of X; (j = 1,2,...,7) with coordinates in the finalist are obtained
by solving a least-square problem, i.e., X;(F) = ®}y;, while other entries are zeros.

Step 8: reformulate X according to Equation (14), thus the estimation of S is obtained.

Note that s is the step size of DCS-SAMP. Except the only requirement s < K, for
signals with decayed magnitudes, small s is preferable while large s is advantageous for
binary signals [10].
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3. The Proposed Method vs. Existing Methods in Terms of Complexity. In
this section, the proposed method is compared with other two methods at the source
reconstruction stage of UBSS, in terms of computational complexity.

If each x; is N-dimensional and the measurement matrix is mx N, let Ky = s-[ Kyp1a1/5],
where [-] denotes the round up operation, the complexity of DCS-SAMP is upper-bounded
by O(KymN) [10]. Note that the size of the measurement matrix is ¢/ x kl in Equation
(18), each x; is kl-dimensional, correspondingly, the complexity of DCS-SAMP is upper-
bounded by O(Kclk?).

For UBSS, some methods have been proposed to separate signals at the stage of recover-
ing source signals, such as the shortest path decomposition method [3,4] and basis pursuit
method [15]. However, these methods are computationally demanding. The principle of
shortest path decomposition method can be explained as follows: firstly, select ¢ columns
from A randomly to form a sub-matrix which is denoted by A, = (A;,,A,,,...,A;),

where i1, 1, ...,%. are the column indices. Obviously, there are ( c sub-matrixes like

A.. Secondly, S is reconstructed according to Equation (22):

{ (Sil (t)v Siy (t)v ey 84 (t))T = (Azmn)_lz(t) (22)
S](t)ZO (j;éil,ig,...,ic) '
!
A™M1 s denoted as the sub-matrix that makes > |s;(¢)| minimum. Finally, the operator
j=1
(AmMn)~1Z(¢) is the estimation of S at the time #. As can be seen, the computational
complexity of shortest path method mainly lies in the calculation of inverse matrix [4].
Practically, with the increase of the number of sources [, calculating (A™®)~1Z(#) is
computationally more demanding. However, the complexity of DCS-SAMP is upper-
bounded by O(K,clk?), there is no significant increase in the computational complexity
of the proposed method for increased [ (see more details in Table 1).

Another reconstructing method, i.e., basis pursuit (BP) essentially belongs to the lin-
ear program method. From [14], if signal x is N-dimensional, BP has a reconstruction
complexity of O(N?). Note that each x; is kl-dimensional in Equation (18), and basis
pursuit is implemented on x1,Xo, ... , Xz respectively. So the total complexity of BP is
O(nl?k?). Since ¢ < I, Ky < nl (nl is the number of entries of source matrix), K,clk? is
significantly less than n/®k?, thus the computational complexity of DCS-SAMP is far less
than that of BP, which shows that the speed of DCS-SAMP is significantly faster than
that of BP at the reconstruction stage.

4. Numerical Simulations. In this section, we conduct several computer simulations to
evaluate the performance of the approach proposed in Section 2. The true source matrix
S is supposed to be known and stored as a reference for comparison with the results
obtained by the proposed method. The ¢ x [ mixing matrix A is created whose entries are
chosen form Gaussian distribution with mean 0 and variance 1. This matrix A generically
satisfies the condition discussed in Section 2. Several trials are conducted to explore the
proposed method, including its intrinsic characteristics and advantages compared with
other approaches for UBSS. In each trial, a different realization of the mixing matrix A
is used.

4.1. Performance of DCS-based UBSS. For convenience and without loss of gener-
ality, we assume the source matrix S is K-sparse in time domain, i.e., at each column of
S, there are only K sources with nonzero entries, while others are zero. The indices of
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the nonzero sources are generated randomly from a discrete uniform distribution, and the
amplitudes of the sources are generated randomly from a standard Gaussian distribution.
We take ¢ = 10, [ = 20, n = 200, k = 10, i.e., there are 20 source signals with 200 data
points. The known source matrix S is created with 1 “major source”. Moreover, each
column of S is assumed to be 3-sparse. Since S is divided into 10 blocks, the total sparsity
is Kyoap = 10+ 200 x 2 = 410. Fifty trials are run to recover S by the proposed method.
To evaluate the performance of the proposed algorithm, the average errors between s;
(j =1,2,...,1) and the corresponding estimations §; (j = 1,2,...,[) are calculated as
follows:
error; = E(|ls; —8;ll,/lls;ll,) (G =1,2,....0). (23)
The smaller the average errors are, the better the performance is. The calculation of
mathematical expectation is replaced by an average over the number of trials. The average
errors of recovery are represented in Figure 1. From Figure 1, all error;s are very close to
zero, which shows the capability of the proposed method for separation with 20 sources.

x 1075 performance of DCS-SAMP-based UBSS

errors

0 L L L L L L
2 4 6 8 10 12 14 16 18 20

the j-th source and the corresponding estimation

FIGURE 1. The average errors between j-th source and the corresponding
estimation §; (j = 1,2,...,[). The numerical values on z-axis denote j-
th source and the corresponding estimation, and those on y-axis represent
average errors between them.

4.2. Comparison with other methods. Assume each column of S is 2-sparse, the in-
dices of nonzero entries at each column are chosen randomly, while ¢ = 8, £ = 10, n = 200.
Table 1 shows the comparison of complexity among shortest path decomposition, BP and
DCS-SAMP for reconstructing source S. In order to obtain a measure of the computa-
tional complexity, the cpu times (second) for each of the methods (as [ is varied) averaged
over 100 trials is tabulated. From Table 1, the proposed method is computationally less
demanding than other two methods and this trend is more obvious as [ is increased, which
indicates the advantages of DCS-based UBSS. It is also observed from Table 1 that there
is no significant increase in the computational complexity of DCS-SAMP and BP with
the increase of [, and the former performs faster than the latter. Using a value of [ > 11,
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TABLE 1. Comparison of averaged cpu times (sec) of three methods

l 9 10 11 12 13 14 15
DCS-SAMP 0.0193 | 0.0234 | 0.0245 | 0.0287 | 0.0291 | 0.0363 | 0.0368
Shortest Path Decomposition | 0.0891 | 0.1822 | 0.6376 | 1.7321 | 3.6243 | 11.2212 | 42.2278
BP 0.8281 | 0.8719 | 1.0612 | 1.0695 | 1.5736 | 1.8659 | 1.9544

shortest path decomposition performs significantly slower than BP, while BP is slightly
worse than shortest path decomposition in terms of cpu time with [ < 11. When there
are 15 source signals, the cpu time of the proposed method is far less than that of other
two methods. When [ varies from 9 to 15, the cpu time of the proposed method is in-
creased by 1 times approximately, while this value is about 473 times for shortest path
decomposition.

4.3. The relationship between successful reconstruction and sparsity. Since the
sparsity of DCS-SAMP is based on cardinality of the sparse common part K. and the
sparse innovation part Kj;, we try to explore the relationship between probability of
successful reconstruction and sparsity. “Successful” is defined for the sum of error;
(j = 1,2,...,1) is no more than 1075 The frequency of success in 100 trials is used
to calculate the probability of success.

4.3.1. The relationship between successful reconstruction and K.. We take ¢ = 8, n = 200,
k = 10 to investigate how the cardinality of the sparse common part K, affects the
probability of successful reconstruction. A known ¢ X [ source matrix S with r (r < 1)
“major sources” while each of other rows having p (p < n) nonzero entries is created.
The indices of r nonzero rows are chosen randomly from discrete uniform distributions.
From Equation (7), K, is rk, and

n

3
Ktotal = Kc + ZKJ - Tk + (l - T)p = pl + (k - p)?" (24)

J=1

Here p is fixed to be 6, and Ky = 60 + (kK — 6)r. For instance, if r = 3, [ = 20,
Kiotar = 6 x 20 4+ (10 — 6) x 3 = 132. Then 100 trials are run to reveal the relationship
between probability of successful reconstruction and [ when r varies. The specific result
is represented in Figure 2.

In Figure 2, r is fixed in each set of trials, and the probability of successful reconstruction
is calculated for the proposed method and different [. From Figure 2, no matter r = 1,
2 and 3, reconstructions are impossible when [ > 30. Particularly, the probability of
successful reconstruction decreases slowly unless [ is more than 20 for » = 1. In case of
r = 3, the curve of probability of successful reconstruction is uniformly lower than that
obtained for » = 1 and 2. Especially, the probability of successful reconstruction is very
small and the curve decreases rapidly for r = 3 as [ increases.

It is also observed from Figure 2 that no matter » = 1, 2 or 3, the probability of success-
ful reconstruction decreases as [ increases. From CS theory, the core of reconstructing x;
(j =1,2,..., %) is to estimate their support sets. Since each x; is a lk-dimensional vector,
the increase of [ results in rapid increase of dimension of x;. For instance, if / is increased
by a factor of 1, the dimension of x; will be increased by a factor of k. For K-sparse
l[? possible support sets for x;. Obviously, it is more computationally
demanding to find the correct support sets with the increase of [.

x;, there are
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the relationship between succesful reconstruction and sparse common part
1@ T
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probability of successful reconstruction

0.1

10 15 20 25 30
the number of sources |

FIGURE 2. Probability of successful reconstruction obtained using the pro-
posed method with p = 6 as [ varies from 1 to 3. The numerical values
on z-axis denote the number of sources and those on y-axis represent the
probability of successful reconstruction.

Moreover, for each value of [, the probability of successful reconstruction reduces sig-
nificantly with the increase of r. Actually, as K;uq = 61 + (k — 6)r, if r is increased by
a value of 1, correspondingly, for a large k, K;uq will be increased by a value of £ — 6.
Larger Kioq prevents z; from being reconstructed correctly. As shown in Figure 2, in the
case of r = 3, reconstruction results are very disappointing.

4.3.2. The relationship between successful reconstruction and K;. The following discus-
sions are focused on how the cardinality of the sparse innovation part K; affects the
probability of success. Compared with 4.3.1, two quantities vary in these simulations: p
and the number of sources signals [. In the Monte Carlo simulations, the parameters are
taken as ¢ = 8, n = 200, k = 10, r = 1, correspondingly, K, = k + (I — 1)p. 100 trials
are performed to observe the probability of successful reconstruction as [ is varied. These
results of probability of successful reconstruction are plotted in Figure 3.

In Figure 3, p is fixed in each set of trials, and the probability of successful reconstruc-
tion is calculated for the proposed method as [ is varied. Figure 3 shows that reconstruc-
tions are impossible for any value of p when [ > 35. For p = 4, the probability stays at
1 until [ > 25, while the largest decrease is obtained by increasing the number of sources
from 25 to 30. In case of p = 16, the probability is very small. The curve decreases
rapidly as [ is increased and it is uniformly lower than curves for p = 4, 8 and 12.

It can also be seen in Figure 3 that, for any value of p, the probability of successful
reconstruction lowers as [ is increased. On the other hand, for each value of [, the prob-
ability of successful reconstruction reduces significantly as p is increased. Similar to the
discussions in 4.3.1, since Ky = k + (I — 1)p, either the increase of [ or the increase of p
leads to fast increase of K;.,;. Particularly, if p is increased by 1, K;,e will be increased
by [ — 1. Correspondingly, if [ is increased by 1, K., will be increased by p, which
results in the rapid increase of K. As mentioned in 4.3.1, larger Ky, keeps x; from
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the relationship between succesful reconstruction and sparse inovation part

—¥— p:6

probability of successful reconstruction

<
<T

~J
20
the number of sources |

FIGURE 3. Probability of successful reconstruction obtained using the pro-
posed method as [ is varied for p = 4, 8, 12 and 16. The numerical values
on z-axis denote the number of sources, and those on y-axis represent the
probability of successful reconstruction.
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FIGURE 4. Plot of six speech source signals

being reconstructed correctly. As shown in Figure 3, when p is equal to 16, the result of
reconstruction is very frustrating.
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4.4. Application for separation of speech signals. In order to evaluate the perfor-
mance of the proposed method in a more realistic case, we demonstrate the separation
process of six speech signals for the convenience of intuitionistic description. These signals
consist of 1000 data points, which are presented in Figure 4. Note that these speech sig-
nals are not sparse in time domain but compressible in frequency domain, discrete cosine
transform (DCT) is applied on each signal. The corresponding coefficients are presented
in Figure 5. It is observed that, for each signal, only few of its coefficients are larger than
zero while others are very close to zero. Taking into account that sparsity is required for
UBSS, instead of mixing these coefficients directly, we keep only a few large coefficients
for each signal. A threshold is selected for this purpose, that is, all coefficients that are
larger than the threshold are kept unchanged and all the others are changed to zero.
That means the smaller the threshold is, the more coefficients that contain information
of signals are kept. However, retaining too many coefficients may lead to insufficiency of
sparsity. Through lots of tests, 0.008 is a feasible threshold for these signals to satisfying
the sufficiency. The thresholded coefficients are the targets to be mixed and separated in
the following steps.

After these pretreatments, the thresholded coefficients are mixed by a random Gaussian
matrix. Then the proposed method is applied to separate these coefficients from observa-
tions and the recovery result is demonstrated in Figure 6. Finally, the separation result
is obtained by using inverse discrete cosine transform (IDCT) and is presented in Figure
7. Comparing Figure 4 with Figure 7, it is observed that the error between each source
signal and corresponding estimation is very small, where the error is defined as Equation
(25), i.e.,

error(j) = lls; = 8;ll,/Isill, (i =1,2.....6), (25)
where s; and §; represent jth source and corresponding estimation respectively. The
errors for each source signal in Figure 4 are 0.0053, 0.0051, 0.0055, 0.0054, 0.0063, 0.0061,
which are acceptable in practice. So the effectiveness of the proposed method is verified
for realistic signal condition.
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FiGurE 5. Plot of DCT coefficients of six source signals
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FicUrRE 6. Thresholded coefficients and corresponding estimations. Blue
dots: thresholded coefficients. Red circle: corresponding estimations.
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FiGUurE 7. The plot of the separated signals by the proposed method

As comparison, BP and subspace pursuit (SP) are also used to settle the UBSS problem.
As a CS algorithm, SP is used for UBSS in the same way as mentioned in [8], i.e., all
sources are connected to be a long vector while the UBSS model is reformulated into a CS
model [8]. Figure 8 and Figure 9 represent the separated signals performed by BP and
SP respectively. The errors based on the three methods are listed in Table 2. Obviously,
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the errors resulted by the proposed method are significantly smaller than that of SP and
BP, which demonstrates the application potential of the proposed method.
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FicUure 8. Plot of the separated signals by BP
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FIGURE 9. Plot of the separated signals by SP

TABLE 2. Separation errors based on three methods

Errors Signal 1 | Signal 2 | Signal 3 | Signal 4 | Signal 5 | Signal 6
Our method | 0.0053 | 0.0051 | 0.0055 | 0.0054 | 0.0063 | 0.0061
BP 0.0278 | 0.0298 | 0.0290 | 0.0283 | 0.0328 | 0.0284

SP 0.0281 | 0.0342 | 0.0335 | 0.0312 | 0.0338 | 0.0301
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5. Conclusions. In this paper, the relationship between UBSS and DCS is interpreted
by equivalent transformation. A DCS-based algorithm is proposed to settle UBSS problem
with introduced feature. In a series of simulations, we demonstrate how the performance
of the proposed method varied with sparsity and the number of sources. The improvement
in computational efficiency of the proposed method with larger source number (larger than
10) can be seen from the simulations, as compared with other UBSS approaches. The
capability to separate compressible speech signals demonstrate the application potential
of our method. Further research is required to develop a computationally efficient version
of the proposed method in noisy environment as well as to better analytically characterize
the performance of the method.
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