International Journal of Innovative
Computing, Information and Control ICIC International ©)2015 ISSN 1349-4198
Volume 11, Number 2, April 2015 pp. 555-568

COOPERATIVE WEB PROXY CACHING FOR MEDIA OBJECTS
BASED ON PEER-TO-PEER SYSTEMS

WAHEED YASIN, HAMIDAH IBRAHIM, NUR [ZzURA UDZIR
AND NOR AsiLAH WATI ABDUL HAMID
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia

43400 Serdang, Selangor D.E., Malaysia
waheedos80@yahoo.com; { hamidah.ibrahim; izura; asila }@Qupm.edu.my

Received April 2014; revised August 2014

ABSTRACT. Web prozxy caches are used to improve the performance of the World Wide
Web (WWW). Many advantages can be gathered from caching such as improving the
hit rates, reducing network traffic, and alleviating loads on origin servers. On the other
hand, retrieving the same object many times consumes the network bandwidth. Thus, in
order to overcome this limitation, in this work, a cooperative web caching approach for
media objects based on peer-to-peer systems is proposed. Tow performance metrics are
used that are Hit Ratio (HR) and Byte Hit Ratio (BHR). A simulation is carried out to
study the affects of cooperative caching on the performance of web proxy caching policies.
The results show that cooperative caching improves the performance of web proxy caching
policies in delivering media objects.

Keywords: Web proxy, Simulation, Caching policies

1. Introduction. Web proxy caching is the process of storing web objects close to the
end-users. Thus, it reduces web objects delivering latency to the end-users. Furthermore,
it utilizes the network bandwidth which is a key point for network administrators. Also,
it contributes in alleviating loads on origin servers [1].

Web caching might be performed in three different stages that are browser stage, proxy
stage, and web server stage [2]. In our previous work [3], we have presented the affects of
caching in browser stage on the performance of web objects delivery.

Retrieving the same media objects from the origin servers consumes the network band-
width. Thus, an approach based on cooperative web caching is needed in order to utilize
the network bandwidth and to alleviate the load on origin servers.

The aim of this work is to present a cooperative web caching policy for media objects
based on peer-to-peer systems.

In this work, we will take the advantages of both systems client-server and peer-to-peer
systems where peers’ caches contents are shared in order to enhance the performance of
web caching policies. The proposed approach is evaluated by trace-driven simulation and
compared with the most relevant web proxy caching policies.

This paper is organized as follows. Section 2 presents an overview of web caching. The
proposed approach is presented in Section 3. The experiment is presented in Section 4.
The results and discussion are presented in Section 5. Section 6 presents recent related
works. Section 7 presents the conclusions and the future works.

2. Web Caching. The process of storing data in an intermediate media is called web
caching and it is used for responding to future queries rather than fetching data from
origin sources.

555

556 W. YASIN, H. IBRAHIM, N. I. UDZIR AND N. A. W. ABDUL HAMID

A cache hit indicates that the system responds to the query from the cache; while a
cache miss indicates that the cache does not have the required data. Many benefits can be
achieved from applying caching such as reducing the load of the system and the latency.
Moreover, it utilizes the network bandwidth.

In this section, the benefits and limitations of web caching are presented. Furthermore,
cache replacement factors are presented in addition to some web caching policies.

2.1. Web caching benefits. Many benefits can be gathered from applying web caching
system in the network. The main benefits of web caching are listed below:

e Web caching allows responding to users’ queries from the cache storage which results
in reducing the latency. That is because the response time which is consumed to
deliver the web objects from the cache is less than the consumed time for delivering
them from the origin server.

e Web caching reduces the system load because there is no need to generate new
information. A consistent copy of this information can be retrieved from the cache.

e Retrieving same web objects from the origin server many times wastes the outgoing
link (uplink). Thus, web caching is used to save the consumption of the network
bandwidth, because there is no need for retrieving web objects many times.

2.2. Web caching limitations. Although there are many benefits of web caching, there
are some limitations that have to be considered when caching is used in the system. Some
of these limitations are listed below:

e Data Privacy should be considered in web caching because there is some data con-
sidered as sensitive data. These sensitive data should be manipulated in a different
way. An approach that might be used is categorizing data into two groups that are
cacheable data and non-cacheable data. The cache only keeps the cacheable data.

e Data Consistency in the cache is a key point that should be considered. Web objects
might be updated in origin servers that results in invalidity of the cached data. Thus,
the cache is responsible to deliver this updated data. In [5], more details are in the
area of cache consistency.

e A cache has a limited size which becomes full with web objects. In this case, a
replacement decision has to be taken when a new objet has to be cached. A replace-
ment mechanism is defined as the process of removing old web objects according
to a certain criteria, and replaces them with new arrivals. Many factors should be
considered when a replacement decision has to be taken [7].

2.3. Caching factors. A web caching policy uses a replacement mechanism which refers
to the process that occurs when the cache becomes full and there is no enough space
for new items, which leads to the task of removing old items to make spaces for new
ones. It is common that a web caching algorithm is defined according to the replacement
mechanism that is used by the cache. Caching replacement factors are listed below:

e Frequency factor: total number of requests of a web object.

e Recency factor: time since the last use of a web object.

e Cost of fetching a web object: cost to fetch a web object from the origin source
including bandwidth, processing, and other resources.

e Size factor: size of the web object.

e Modification time factor: time since the last modification.

e Expiration time factor: time as soon as the web object becomes useless and it is able
to be replaced.

COOPERATIVE WEB PROXY CACHING FOR MEDIA OBJECTS 557

2.4. Web caching policies. Web caching policies are categorized into five categories [6]
that are listed below:

e Recency-based web caching policies.

e Frequency-based web caching policies.
e Randomized caching policies.

e Function-based web caching policies.
e Size-based web caching policies.

In this work, some of the web caching policies are simulated that are listed below:

e Least Recently Used (LRU). The basic approach of LRU is to first remove the web
objects that are least recently used from the storage of the cache. Thus, LRU has
to track these web objects by implementing a recency index for each object, which
indicates the time since the last use of the item. The least used one will be replaced
with a new coming object. LRU is considered as one of the common mechanisms
that are used in data replacement. Many variants of LRU have been proposed in the
literature such as SVM-LRU [7] and NBLRU [8].

e Least Frequently Used (LFU). The basic approach of LFU is to first remove the web
objects that are least frequently used from the cache. Thus, LFU has to track these
web items by implementing a frequency index for each object, which indicates the
total number of requests. A web object with the least index value will be replaced
with a new coming item. Many variants of LF'U have been proposed in the literature
such as LFU-DA [5] and LFU-Aging [7].

e Greedy Dual Size (GDS). It has been proposed to consider the differences of objects’
sizes that have different costs to fetch them from origin sources. GDS uses an index
which is defined as the cost of fetching the object to the size of that object in bytes.
The object with the minimum index value is replaced [9].

2.5. Media objects characteristics. Media objects have many characteristics that
should be considered. For example, full caching of media objects may lead to consume
the storage of the cache in keeping few media objects because of its limited capacity. In
[6], media objects characteristics are listed. Some of them are listed below:

e Media object size. Media objects have a huge data volume. For example, a media
object might have a size of more than 100 MB, while a text object might have only
100 KB.

e Bandwidth consumption. Media objects delivery consumes a large part of the net-
work bandwidth because of their huge sizes.

e Write-Once-Read-Many (WORM) principle. Media objects usually follow the WOR
M principle. Thus, cache consistency is not considered as a main issue.

e Users’ interactions. During media object delivery, users might want to do some
interactions such as rewind, pause, and fast forward.

e Long playback durations. Long play durations are considered as an advantageous
feature of media objects because it can be played before completing transferring the
file.

e Timeliness constraints. Time characterizes media objects and plays a key role in the
Quality of Service (QoS).

3. Proposed Approach. The aim of this work is to present a cooperative web caching
policy for media objects based on peer-to-peer systems. The proposed approach takes the
advantages of both systems client-server and peer-to-peer systems where peers’ caches
contents are shared in order to enhance the performance of web caching policies. A
flowchart of the proposed approach is illustrated in Figure 1.

558

W. YASIN, H. IBRAHIM, N. I. UDZIR AND N. A. W. ABDUL HAMID

User requests media

abject g
l‘r’us an
“ache hit .
Cache hi Cache miss
s g in any ‘peer‘a No
cache?
Yes
Retrieve g from the
o o | Cache hit Cache miss

cache

v

Fetch g from server

Remaove an object
according to caching

policy with lowest priority

*

Yes

!

Store g in the cache

‘—I

> &

Update g attributes

v

LUipdate cache manager

Compute g priority

FIGURE 1. Proposed flowchart

Assume that a user requests a media object g. If ¢ exists in the local cache or any other
peers cache, the case is a cache hit, and g is retrieved from the cache. The attributes of ¢
are updated for computing the priority of g. Thus, object g is reordered in the cache list
based on its new priority. In the case of a cache miss, object g is fetched from the origin

COOPERATIVE WEB PROXY CACHING FOR MEDIA OBJECTS 559

server. Then, the attributes of g are collected to compute its priority. The priority of g
is computed depending on the web caching policy before it is stored in the cache.

3.1. Peer-to-peer overlay constructing. There are two different methods for config-
uring a peer-to-peer system that are unstructured peer-to-peer systems and structured
peer-to-peer systems. In an unstructured peer-to-peer system, a pre-existing infrastruc-
ture is not required; also, nodes are dynamically connected to and disconnected from
the system such as Mobile Ad Hoc Network (MANET). In structured peer-to-peer sys-
tem, a pre-existing infrastructure is required such as having access points. In this work, a
structured peer-to-peer system is used. Peers in structured peer-to-peer systems maintain
information about resources offered by neighbors. Thus, fewer messages are needed for
answering queries. Moreover, structured peer-to-peer systems provide both low latency
and load balancing. These systems are based on Distributed Hash Table (DHT) in which
hash functions are used to map peers and shared content references. Chord [17] is a pro-
tocol which is adopted for the structured peer-to-peer system. Chord is based on DHT
which uses one dimensional m-bit hash function and organizes peers using ring topology.
Each peer has a Chord Identifier which is ranged from 0 to 2™ — 1. Moreover, each peer
has a successor and a predecessor. The successor to a peer is the next peer in the identi-
fier ring in a clockwise direction, while the predecessor is in the opposite direction. For
example, the successor of peer 1 is peer 2, while the predecessor of peer 1 is peer 0. On
the other hand, peers might connect or disconnect the network freely which leads that a
peer records a whole segment of the ring adjacent to it in order to answer queries. Then
messages can be routed with a simple routing protocol. An example of Chord protocol
for structured peer-to-peer systems is illustrated in Figure 2.

3.2. Peers’ contents sharing. In peer-to-peer approach, a peer may receive a web
object from the origin servers, proxy caches or other peers. Furthermore, peers may form
a kind of multicast trees. In cooperative caching, peers share their caches’ contents in
order to respond to users’ queries. For example, assume a media file which is called

predecessor(0)=4

successor (4)=0

successor (4)=0

FIGURE 2. An example of Chord protocol for structured peer-to-peer systems

560 W. YASIN, H. IBRAHIM, N. I. UDZIR AND N. A. W. ABDUL HAMID

|

|

|
Peer-fo-Pde

“bestvideo.avi”
Part 3

“bestvideo.avi”
Part 2

)
“bestvideo.avi” .
Part 1

FIGURE 3. An example of file sharing in peer-to-peer system

“bestvideo.avi” is divided into three parts that are separated on three peers B, C, and D
as illustrated in Figure 3. When this file is requested by peer A, the file is collected from
the peers that have the file parts. This is because of many reasons such as the time which
is consumed to download the file from the peers is less than the time which is consumed
the file from the origin server. Also, the uplink is kept to be used by other requests. Thus,
peers are working as lightweight proxies [15].

3.3. Cooperative web caching. In this step, the web proxy caching proxy caching is
selected to be integrated with other peers’ caches. That means a web proxy caching
policy considers the contents of peers’ caches before it takes a cache replacement decision.
The procedure of of selecting web caching policy integrated with peers’ contents is called
cooperative web caching. The signaling overhead that is generated between peers is
ignored because it does not have a big problem in terms of performance [16]. In other
words, some Internet Service Providers (ISPs) take into account the amount of download
and upload traffic that are passing through the uplink of the gateway when they issue
users’ internet bills; while the internal traffic is not considered. As we mentioned earlier,
In this work, three web proxy caching policies are simulated that are LRU, LFU, and
GDS.

4. Experiment. The following tools are used:

e Microsoft Visual Studio 2010 Express (Version 10.0.30319.1 RTMRel).
e Microsoft .NET Framework (Version 4.0.30319 RTMRel).

e Microsoft Office Access 2007 (Version 12.0. 4518.1014 MSO 12.0.4518.1014).
WinZip version 16 Pro(9691)-32-bit.

e Notepad (Version 6.1).

e GNUPLOT (Version 4.6).

4.1. Raw data collection. First, data for the proxy logs and traces for the requested
web objects are gathered from several proxy servers of the IRCache network. More details
about IRCache network are available on http://www.ircache.net. Each entry of a proxy
log file contains ten fields that are listed below:

COOPERATIVE WEB PROXY CACHING FOR MEDIA OBJECTS 561

e Timestamp. The time when the client’s socket is closed. The format is “Unix time”
with millisecond resolution.

e Elapsed Time. The elapsed time of the request, in milliseconds. This is time between
the accept() and close() of the client socket. For persistent HTTP connections, this
is the time between reading the first byte of the request, and writing the last byte
of the reply.

e Client Address. A random IP address identifying the client. The client-to-address
mapping stays the same for all requests in a single log file. The mapping is not the
same between log files.

e Log Tag and HTTP Code. The Log Tag describes how the request was treated
locally (hit, miss, etc.). All the tags are described in the Squid FAQ. The HTTP
status code is the reply code taken from the first line of the HT'TP reply header.
Non-HTTP requests may have zero reply codes.

e Size. The number of bytes written to the client.

e URL. The requested URL. CGI query arguments (anything following a ‘?’) are not
logged.

e The requested URL.

e User ID. Always ‘~ for the IRCache logs.

e Hierarchy Data and Hostname. A description of how and where the requested and
Hostname object was fetched.

e Content Type. The Content-type field from the HTTP reply.

Table 1 shows an example of the IRCache proxy logs file.

TABLE 1. An example of IRCache proxy logs

. Log Hierarchy
Timestamp %ifcs « gg?m Tag and | Size Request URL User | Data and ContentType
HTTP (byte) | Method ID Host-
(ms) dress
Code name
http:
//cdnlb.pics. . .
118. TCP_ DIRECT/ | application/
13627314751 907 205. | CLIENT_ | 2180 |GET | P2¥dsextube. | 950,147, vig.apple.
948 12.90 | HIT/200 com/2009/01/ 68.8 mpegurl
12/121700.1.
160.120. jpg
http:
TCP_ //cdnlb.pics. . .
1362731475, | g |00 |CLIENL | oo |y | merdsextube. | | 0CETY :ﬁgi;:;:n/
992 19.90 | REFRESH_ com/2010/03/ 7 95 mpegurl
' MISS/200 14/310695.1. :
160.120.jpg
2046, http://p2. ,
1362750287 . TCP_ xhamster.com . .
096 248 5132284 MISS/200 37121 | GET 000/019,798/ NONE/- image/gif
411_160.jpg
TCP_ http://p2.
1362762251. 118. CLIENT xhamster . com/ DIRECT/ . .
815 tol fg?éo rerresi_ | 200 | BT oo0s020/111/ | 132:;;7' inage/jpeg
MISS/200 353_100. jpg

4.2. Data pre-processing. The second step is called pre-processing where the inappro-
priate and invalid logs such as un-cacheable requests and entries with unsuccessful HTTP
status codes which are removed from the proxy log files. Also, the unnecessary fields are
ignored because they do not have any effect on caching policy such as Log Tag, HTTP
Code, Request Method, User ID, Hierarchy Data and Hostname. On the other hand, in
order to reduce the simulation time, each URL is replaced with an integer identifier that

562 W. YASIN, H. IBRAHIM, N. I. UDZIR AND N. A. W. ABDUL HAMID
While (leof(LogFile))
Begin
Request=Read(LogFile); // read LogFile line by line
If(Request.status.endswith("200") &&
Request.request_method.equals(“Get”))
Begin
If(! Request.url.contains("?") &&
| Request.url.contains ("cgi-bin"))
Begin
url_id =Convert2integer(Request. url);
Write (processed_LogFile, Request.url_id,
Request.timestamp, Request.elapsed_time,
Request.size, Request.Client _Address,
Request.type)
End
End
End
FIGURE 4. A pseudo-code for the data pre-processing
TABLE 2. An example of log entries after data pre-processing
Timestamp | Elapsed Time (ms) | Client Address | URL ID | Size (Byte)
1362705584.099 115 10 1 426
1362705584.915 201 10 2 4574
1362705584.998 120 10 3 7329
1362705585.16 116 10 4 3960
1362705585.16 8777 11 6 2614
1362705585.208 110 11 5) 3600
1362705585.247 116 11 4 3960
1362706447.423 8777 10 6 2614
1362706447.438 115 11 1 426
1362706448.057 120 11 3 4574

is called “URL ID”. Also, the Client Address is replaced with an integer identifier. Figure
4 illustrates a pseudo-code of the pre-processing step; while Table 2 lists an example of
proxy logs after the pre-processing step.

4.3. Simulation. In [14], we developed a trace-driven simulation tool that is called Win-
dows Web Proxy Caching Simulation (WWPCS) that is build using Microsoft Visual
C++ 2010 Express for evaluating web caching policies that are LRU, LFU, and GDS.
WWPCS uses the revised proxy log file as an input and generates files that contain the
HR and BHR as outputs. The log file was collected from BO2 proxy server on the 18th
March 2013. First, the raw data is imported by a database management system. Then,
the raw data is pre-processed as mentioned earlier. After pre-processing the generated
trace file is exported to a text file.

WWPCS uses the generated trace text file as an input. On the other hand, in order
to run the simulation, there are some parameters have to be set before the simulation
run that are the maximum cache size (Infinite Cache) in GB and a warm up (Warmup)

COOPERATIVE WEB PROXY CACHING FOR MEDIA OBJECTS 563

parameter in MB. Also, the web cache policy has to be determined. WWPCS starts with
1 MB and increases according to a base 2 logarithmic scale.

In this work, WWPCS is improved to take the advantages of cooperative caching. It
generates output files which are used to calculate the HR and the BHR for the selected
web caching policy before and after working cooperatively.

4.4. Performance evaluation. The performance of web caching policy might be mea-
sured using many metrics. In this simulation, two main performance metrics are used
which are the HR and the BHR because they are the most widely used metrics for evalu-
ating the performance of web proxy caching policies [8]. HR is defined as a percentage of
the total number of requests satisfied by the cache divided by the total number of requests;
while, BHR is the total number of bytes found in the cache divided by the total number
of bytes requested by the user within an observation period. BHR measures how much
bandwidth the cache has saved. Let N be the total number of requests of web objects
and h; = 1 if the request 7 is in the cache, while h; = 0 otherwise. Mathematically, HR is
defined as Equation (1), while BHR is defined as Equation (2), where S; is the size of the

it" request.
N
. hi
HR = LZ;; (1)
N
im1 Sili
pitn - Syt o

Zz’:l Si

5. Results and Discussion. In this section, the results that are gathered from running
the simulation are presented. For simplicity the word Cooperative is added to the web
caching policy in order to refer to the proposed approach.

Figure 5 shows the performance of Cooperative-LRU in terms of HR. It is compared
to the performance of normal LRU, where the infinite cache size is 32 GB; while Figure
6 shows the performance of Cooperative-LRU in terms of BHR. Also, it is compared to
the performance of normal LRU, where the infinite cache size is 32 GB.

Figure 7 shows the performance of Cooperative-LFU in terms of HR. It is compared to
the performance of normal LFU, where the infinite cache size is 32 GB; while Figure 8
shows the performance of Cooperative-LFU in terms of BHR. Also, it is compared to the
performance of normal LFU, where the infinite cache size is 32 GB.

Figure 9 shows the performance of Cooperative-GDS in terms of HR. It is compared to
the performance of normal GDS, where the infinite cache size is 32 GB; while Figure 10
shows the performance of Cooperative-GDS in terms of BHR. Also, it is compared to the
performance of normal GDS, where the infinite cache size is 32 GB.

Referring to Figure 5, it can be observed that Cooperative-LRU performs better than
LRU in terms of HR. For example, the HR of Cooperative-LRU is around 28.5% when
the cache size is 1 MB; while the HR of LRU is around 28.1% for the same cache size.

Referring to Figure 6, it can be observed that Cooperative-LRU performs better than
LRU in terms of BHR. For example, the BHR of Cooperative-LRU is around 29.19% when
the cache size is 64 MB; while the BHR of LRU is around 28.56% for the same cache size.

Referring to Figure 7, it can be observed that Cooperative-LFU performs better than
LFU in terms of HR. For example, the HR of Cooperative-LFU is around 28.5% when
the cache size is 1 MB; while the HR of LFU is around 28.2% for the same cache size.

Referring to Figure 8, it can be observed that Cooperative-LFU performs better than
LFU in terms of BHR. For example, the BHR of Cooperative-LFU is around 29.24% when
the cache size is 64 MB; while the BHR of LFU is around 28.60% for the same cache size.

564 W. YASIN, H. IBRAHIM, N. I. UDZIR AND N. A. W. ABDUL HAMID

294

T
< 28.8 I
/

g
o
==

28.6 ==& Cooperative-LRU
4%

28.4 —f— LRU

28.2 .7-

28
1 8 64 512 4096 32768

Cache size (MB)

FIGURE 5. A comparison between the HR of Cooperative-LRU and the HR
of LRU, where Infinite Cache = 32 GB and Warmup = 100 MB

29.5

00000000

29
285 #.w
28
/I ==& Cooperative-LRU
27.5
<‘ == LRU
27
1

26.5
8 64 512 4096 32768
Cache size (MB)

BHR (%)

FIGURE 6. A comparison between the BHR of Cooperative-LRU and the
BHR of LRU, where Infinite Cache = 32 GB and Warmup = 100 MB

Referring to Figure 9, it can be observed that Cooperative-GDS performs better than
GDS in terms of HR. For example, the HR of Cooperative-GDS is around 30% when the
cache size is 1 MB; while the HR of GDS is around 29.76% for the same cache size.

Referring to Figure 10, it can be observed that Cooperative-GDS performs better than
GDS in terms of BHR. For example, the BHR of Cooperative-GDS is around 29.27%
when the cache size is 64 MB; while the BHR of GDS is around 29.06% for the same
cache size.

Also, it can be observed that Cooperative-GDS achieved slightly higher HR and BHR
compared to Cooperative-LFU and Cooperative-LRU because Cooperative-GDS takes
into account more than one factor when a cache replacement decision is required.

In computer science, a strategy that produces a high HR can maximize satisfaction
of users requests from proxy cache, and minimize average request latency. However, a
strategy with a higher BHR is used if minimizing of the outside network traffic is more
desirable.

COOPERATIVE WEB PROXY CACHING FOR MEDIA OBJECTS 565

29.2 [

29 /
5288

Ez&s {} =& Cooperative-LFU
28.4 <— == LFU
28.2 T
28
1 8 64 512 4096 32768

Cache size (MB)

FIGURE 7. A comparison between the HR of Cooperative-LFU and the HR
of LFU, where Infinite Cache = 32 GB and Warmup = 100 MB

295

‘/—0—0—0—0—0—0—0—0—0—0—0—0—0

29
285 #’t‘w
28
l ==& Cooperative-LFU
27.5) == LFU
27
1

26.5
8 64 512 4096 32768
Cache size (MB)

BHR (%)

FIGURE 8. A comparison between the BHR of Cooperative-LFU and the
BHR of LFU, where Infinite Cache = 32 GB and Warmup = 100 MB

Referring to the results, it can be observed that when the cache size increased, the HR
and BHR are increased for all algorithms. On the other hand, the increasing percentage
was reduced when the cache size increased. In a certain cache size, the performance of both
HR and BHR became stable. Also, when the cache size was small, objects replacement
were frequently required. Thus, the affects of the proposed approach on the performance
of replacement policy were clearly noted.

In summary, the experimental results show that the proposed approaches Cooperative-
LRU, Cooperative-LFU, and Cooperative-GDS significantly improved the performance of
the conventional web caching policies.

6. Related Works. Many researches have been conducted in the area of web proxy
caching. In this section, recent related works are reviewed.
In [6], an overview of media streams caching in peer-to-peer systems has been presented.

566 W. YASIN, H. IBRAHIM, N. I. UDZIR AND N. A. W. ABDUL HAMID

30.7
30.6 f g
30.5 l
30.4 l
s 30.3 l
E 302 , =& Coo ive-
30.1 perative-GDS
30 == GDS
29.9
29.8 F7-,.5.:.:t-:tt-:.:t-:.:t-
29.7
1 8 64 512 4096 32768
Cache size (MB)

FIGURE 9. A comparison between the HR of Cooperative-GDS and the HR
of GDS, where Infinite Cache = 32 GB and Warmup = 100 MB

295

» 7&%
28.5
o8 Il === Cooperative-GDS
{l == GDS
27.5
1

27
8 64 512 4096 32768
Cache size (MB)

BHR (%)

FIGURE 10. A comparison between the BHR of Cooperative-GDS and the
BHR of GDS, where Infinite Cache = 32 GB and Warmup = 100 MB

In [3], the affects of web caching on the delivery of web objects in the browser stage have
been presented. Three web browsers have been used in the experiment that are: Win-
dows Internet Explorer version 9.0.8112.16421, Mozilla Firefox version 14.0.1, and Google
Chrome version 21.0.1180.83 m. The results show that web caching in browser stage has
positive effects on the network by reducing bandwidth requirements and improves the
delivery of web objects.

In [4], a synthetic workload generator called ProWGen has been presented for simulation
evaluation of web proxy caches. ProWGen tool considers three characteristics of web
workload that are document popularity distribution, document temporal locality, and the
correlation between the size and popularity of the document. Furthermore, ProWGen
tool simulates three web caching polices that are LRU, LFU-A, and GD-Size; however, it
is a Unix-based tool.

COOPERATIVE WEB PROXY CACHING FOR MEDIA OBJECTS 567

In [11], a trace-driven simulator for evaluating the performance of web proxy caching
policies has been presented. The proposed tool has studied the effects of workload char-
acteristics such as object size, recency, and frequency on the performance of web proxy
caches and their replacement policies. On the other hand, five months have been spent
for collecting proxy logs that are around 117 million logs.

In [12], a windows-based simulator for caching and prefetching has been presented. The
proposed tool takes Squid traces as inputs and simulates the functionality of different web
caching policies. The outputs of the simulator are saved in text files. The proposed tool
has been built using the Borland C++ Builder 2006 IDE; however, WWPCS [14] is built
using Microsoft Visual Studio 2010 Express which makes it more compatible for windows
operating systems since they are Microsoft productions.

In [13], a packet-level simulation for studying the optimal web proxy cache placement
has been performed based on NS-2 network simulations. The study has been carried out
considering the network-level effects on the user-level web performance.

In [15], a systematic review of file sharing in peer-to-peer systems has been presented.

In [16], a cooperative caching approach for broadcast-based systems based on peer-to-
peer system has been presented. The proposed approach has assumed that clients do not
send any query and rather they wait for the sever’s broadcast.

7. Conclusions and Future Work. Web proxy caching improves the performance of
WWW by storing web objects close to end-users. Also, it reduces the load on the origin
servers. Moreover, it saves the network bandwidth. In this work, a new approach based
on cooperative caching has been presented. The clients in this approach construct a
peer-to-peer system for exchanging files. Structured peer-to-peer system that is based on
Chord protocol has been adopted.

On other hand, simulations play key roles in studying and analyzing the behavior of
computer networks under different conditions. Thus, in this work, a simulation has been
carried out in order to study and analyze the affects of the proposed approach on the
performance of traditional web proxy caching policies that are LFU, LRU, and GDS.

The results show that both of the BHR and HR of the proposed approach have better
performance than normal web caching policies specially for small cache sizes.

The proposed approach applies Chord as a peer-to-peer protocol which uses a simple
routing system that does not scale. This drawback might result in using additional routing
information which is called fingers that are stored at every single peer. On the other hand,
we assumes that all proxy caches have the same cache size.

Enabling supervised machine learning techniques to introduce intelligent cooperative
web caching approach might be considered as future work.

Acknowledgments. The traces and proxy log files have been provided by the National
Science Foundation (grants NCR-9616602 and NCR-9521745), and the National Labora-
tory for Applied Network Research (NLANR).

REFERENCES

[1] P. R. Jelenkovic and A. Radovanovic, Asymptotic optimality of the static frequency caching in the
presence of correlated requests, Operations Research Letters, vol.37, no.5, pp.307-311, 2009.

[2] C. Kumar and J. B. Norris, A new approach for a proxy-level web caching mechanism, Decision
Support Systems, vol.46, no.1, pp.52-60, 2008.

[3] W. Yasin, H. Ibrahim, N. A. W. A. Hamid and N. I. Udzir, The affects of caching in browser stage
on the performance of web items delivery, Proc. of the 2nd International Conference on Digital
Enterprise and Information Systems, Kuala Lumpur, pp.212-219, 2013.

568 W. YASIN, H. IBRAHIM, N. I. UDZIR AND N. A. W. ABDUL HAMID

[4] N. Markatchev and C. Williamson, WebTraff: A GUI for web proxy cache workload modeling and
analysis, Proc. of the 10th International Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunications Systems, Washington, pp.356-373, 2002.

[5] H. ElAarag, A quantitative study of web cache replacement strategies using simulation, web proxy
cache replacement strategies, Springer Briefs in Computer Science, London, pp.17-60, 2013.

[6] W. Yasin, H. Tbrahim, N. A. W. A. Hamid and N. I. Udzir, An overview of media streams caching
in peer-to-peer systems, The Computer Journal, vol.56, no.7, pp.1-11, 2013.

[7] L. Boszormenyi and S. Podlipnig, A survey of web cache replacement strategies, ACM Computing
Surveys, vol.35, no.4, pp.374-398, 2003.

[8] W. Alj, S. M. Shamsuddin and A. S. Ismail, Intelligent Naive Bayes-based approaches for web proxy
caching, Knowledge-Based Systems, vol.31, pp.162-175, 2012.

[9] P. Cao and S. Irani, Cost-aware WWW proxy caching algorithms, Proc. of the USENIX Symposium
on Internet Technologies and Systems, CA, USA, pp.193-206, 1997.

[10] L. G. Cardenas, J. A. Gil, J. Domenech, J. Sahuquillo and A. Pont, Performance comparison of a web
cache simulation framework, Proc. of the 19th International Conference on Advanced Information
Networking and Applications, Taipei, pp.281-284, 2005.

[11] M. Arlitt, R. Friedrich and T. Jin, Performance evaluation of web proxy cache replacement policies,
Performance Evaluation, vol.39, no.1, pp.149-164, 2000.

[12] J. Marquez, J. Domenech, J. A. Gil and A. Pont, A web caching and prefetching simulator, Proc. of
the 16th International Conference on Software, Telecommunications and Computer Networks, Split,
pp.346-350, 2008.

[13] G. Houtzager and C. Williamson, A packet-level simulation study of optimal web proxy cache place-
ment, Proc. of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation
of Computer Telecommunications Systems, FL, USA, pp.324-333, 2003.

[14] W. Yasin, H. Ibrahim, N. A. W. A. Hamid and N. I. Udzir, Windows web proxy caching simulation:
A tool for simulating web proxy caching under windows operating systems, Journal of Computer
Science, vol.10, no.8, pp.1380-1388, 2014.

[15] W. Yasin, H. Ibrahim, N. A. W. A. Hamid and N. I. Udzir, A systematic review of file sharing in
mobile devices using peer-to-peer systems, Computer and Information Science, vol.4, no.1, pp.28-41,
2011.

[16] T. Hara, K. Maeda, Y. Ishi, W. Uchida and S. Nishio, Cooperative caching by clients constructing
a peer-to-peer network for push-based broadcast, Data and Knowledge Engineering, vol.69, no.2,
pp-229-247, 2010.

[17] W. Kellerer, G. Kunzmann, R. Schollmeier and S. Z6ls, Structured peer-to-peer systems for telecom-
munications and mobile environments, AEU — International Journal of Electronics and Communi-
cations, vol.60, no.1, pp.25-29, 2006.

