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ABSTRACT. In this paper we introduce a robust feature extractor, dubbed as Modified
Function Linear Prediction (MODFLP), based on gammachirp filterbank and psychoa-
coustic model. The goal of this work is to improve the robustness of speech recognition
systems in additive noise and real-time reverberant environments. In speech recognition
systems, Perception Linear Prediction (PLP) and Mel Frequency Cepstral Coefficient
(MFCC) are the two main techniques used. In our work the effectiveness of proposed
changes to PLP were tested and compared against the PLP and MFCC features. The
above-mentioned techniques were tested with impulsive signals under various noisy con-
ditions within TIMIT databases.
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1. Introduction. Speech parameterization is an important step in modern automatic
speech recognition systems (ASR). The speech parameterization block is used to extract
from the speech waveform the relevant information for discriminating between different
speech sounds. The information is presented as a sequence of parameter vectors. In this
paper, two acoustic features are found: PLP and MFCC. Generally, these methods are
based on three similar processing blocks: firstly, basic short-time Fourier analysis which
is the same for both methods; secondly, auditory based filterbank, and thirdly, cepstral
coefficients computation. In addition, temporal filtering is also useful to enhance speech
features, such as RASTA filtering [16]. The principle of RASTA method comes from the
human auditory perception which indicates the relative insensitivity of human hearing to
slowly and quickly varying auditory stimuli [16]. Thus, the RASTA band-pass filter is
designed with an IIR filter with a sharp spectral zero at the zero frequency in the modu-
lation frequency domain. PLP are used extensively in ASR. There are many similarities
between these methods. The difference however lies in the shape of the filterbank. In this
paper we present the proposed modifications of PLP method, and it will be shown that
the performance of PLP and MFCC, are also compared to MODFLP which integrate a
new model. In the current paper, prosodic information is first added to a spectral system
in order to improve their performance. Such prosodic characteristics include parameters
related to the fundamental frequency such as the jitter and shimmer. For this we will
develop a system for automatic recognition of isolated words with impulsive noise based
on HMM\GMM. We propose a study of the performance of parameterization techniques
using jitter and shimmer features in the presence of different impulsive noises. The sounds
are added to the word with different signal-to-noise SNRs (20 dB, 15 dB, 10 dB, 5 dB,
0 dB and -5 dB). Note that the robustness is shown in terms of correct recognition rate
(CRR) accuracy. The evaluation is done on the TIMIT Database. This paper is organized
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as follows. In the next section we describe the proposed modifications of PLP. An exper-
imental study performed to compare the performance of the different parameterization
methods in various acoustic environments is described in Section 3. Finally, the major
conclusions are summarized in Section 4.

2. New Proposed Technique.

2.1. MFCC and PLP features. Figure 1 shows a block diagram for extracting PLP
and MFCC features. Physiological studies have shown that human auditory system does
not follow a linear scale. Using Mel frequency scaling well approximates the frequency
response of human auditory systems and it can be used to capture the phonetically im-
portant characteristics of speech. One approach for simulating the subjective spectrum is
to use a filterbank, spaced uniformly on the Mel scale.

Noisy speech

Mel o
Pre-emphasis » Filterbank LOG DCT » MFCC
Windowing | FFT _ Ba.rk ) Recursive Linear Intensity to PLP
Filterbank Cepstrum Prediction loudness

Ficure 1. Block diagram for extracting MFCC and PLP

The next step in the processing is to window each individual frame so as to minimize
the signal discontinuities at the beginning and end of each frame. Typically the Hamming
window is used. The next processing step is the Fast Fourier Transform, which converts
each frame of N samples from the time domain into the frequency domain. After that the
scale of frequency is converted from linear to Mel scale. Then logarithm is taken from the
results. In final step, the log Mel spectrum is converted back to time domain. The result
is called the Mel frequency cepstrum coefficients (MFCC).

In PLP analysis, a Fourier transform is first applied to compute the short-term power
spectrum, and the perceptual properties are applied while the signal is represented in this
filterbank form. The spectrum is transformed to a Bark scale, and this spectrum is pre-
emphasized by a function that approximates the sensitivity of human hearing at different
frequencies. The output is compressed to approximate the non-linear relationship between
the intensity of a sound and its perceived loudness.

2.2. Proposed modifications of PLP. In this paper, we present some modifications of
the standard PLP feature extraction method. The proposed modifications are presented
in the following section. A schematic diagram of the proposed technique is shown in
Figure 2. In this proposed algorithm MODFLP an application of pre-emphasis is applied
to the speech signal before the short term spectral analysis. In the second step, the
digitized noisy speech is segmented into overlapping frames, each of length 20 ms with
10 ms overlap, in speech processing a Hamming window are mostly used. Next, the FFT
is taken of these segments. Afterwards, the segmented signal is filtered using the non
linear model of the external and middle ear (Figure 3). The next processing step applies
a filterbanks. Many different types of filterbanks exist but for MODFLP features the
gammachirp filterbank is used. In this study, our objective is to introduce new speech
features that are more robust in noisy environments. We propose a robust speech feature
which is based on the method with gammachirp filterbank. The output signal of the
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FIGURE 2. The structure of MODFLP features extraction
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FIGURE 3. Model of the external and middle ear

outer and middle ear model filter is applied to a gammatone filterbank. On each sub-
band we calculate the sound pressure level Ps (dB) in order to have the corresponding
sub-band chirp term C. Those values of chirp term C corresponding to each sub-bands of
the gammatone filterbank lead to the corresponding gammachirp filterbank (Figure 4).
The proposed auditory use filter that is smoother and broader than the Bark filterbank.
The main differences between the proposed filterbank and the typical one used for PLP
estimation are the type of filters used and their corresponding bandwidth. In this paper,
we experiment with one parameter to create a family of gammachirp filterbanks: the
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FIGURE 4. Output of gammachirp filterbank
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FIGURE 5. Local maxima

The free parameter in gammachirp filterbank as noted above is the
By increasing the number of filters they become narrow but with a

small number of filters the loss of information is introduced. The RASTA filter removes
variations in the signal that are outside the rate of change of speech by filtering the log-
spectrum at each frequency band. Both very slow and very fast changes in sound are
ignored by the human ear, so RASTA processing attempts to filter these components out.
The filter also helps to eliminate noise due to channel variation in the data. That is why
we use the temporal filtering technique to process the cepstral coefficients, and then we
get the features coefficients which we need. In the next stage, we calculate tonal and non
tonal components. This step begins with the determination of the local maxima, followed
by the extraction of the tonal components (speech) and non tonal components (impulsive
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noise), in a bandwidth of a critical band. If frequency exceeds neighboring components
within a bark distance by at least 6 dB then it will be treated as “speech”, otherwise it
will be considered as “noise”. The local maximum of word “greasy” is shown in Figure 5.

The selective suppression of tonal and non tonal components of masking is a procedure
used to reduce the number of maskers taken into account for the calculation of the global
masking threshold. The tonal and non tonal components remaining are those which are
above the hearing absolute threshold. Individual masking threshold takes into account
the masking threshold for each remaining component.

Non-tonal components v. absolute threshold.
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FI1GURE 6. Non tonal components with absolute threshold
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Ficure 7. Tonal components v. absolute threshold



960 H. RAHALI, Z. HAJAIEJ AND N. ELLOUZE

Tonal components too closed to each other eliminated.

100 (5 l . l I |
e |
TR . "
N L 1 \ AT ‘||
.. ﬂlr‘l ‘ﬁ |'I“|n (I."Iln.l‘ IVJI fi Iﬂl (,"I'I |‘I ' il
| : Im"v‘i'_n'n'li‘, b/ V ;
Rl oy R|f‘| f Al b \‘.“'\l |
b Y VA ]
HET NSRRI AR Do ,.
G A0p o Lo [
T T A Pt _
| | !
l' ! | | | I
OH T | | ) ‘ |
I A
\'\ | ! ) 1
-\Tﬁ\\" - T | i
L I
=20 L | ! ) | |
° 50 100 150 200 Py
Frequency index
FIGURE 8. Masking threshold
Sa | I ' ! ) T
75
7O _
m g5tk -
- W
80t -
BEEL _
E‘ﬂ 1 i , I I |
0 5 10 15 = - . |

Subbtand number

FiGure 9. Global masking threshold

Then, the PLP are applied to these channels to extract features characteristics. PLP
as previously stated has the advantage that they can represent sound signals in an ef-
ficient way because of the frequency warping property. In this way, the advantages of
this technique are combined in the proposed method. For the final acoustic modeling
we extended the modified PLP-cepstral representation with derived delta and delta-delta
features. The following features were extracted: 39 PLP and 39 MODFLP. The energy of
the frame, first (A) and second temporal derivatives (AA) extracted from each enumer-
ated parameter. At the end, we have 9 distinct features vectors that can be categorized
into three categories according to its length. Firstly, feature vector has length 13: (12
MODFLP and Energy). Secondly, feature vector has length 26: (12 MODFLP, Energy,
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and 13 A). Thirdly, feature vector has length 39: (12 MODFLP, Energy, 13 A, and 13
AA). We note that the addition of delta-cepstral features to the static 13 dimensional
MODFLP features strongly improves speech recognition accuracy, and a further (smaller)
improvement is provided by the addition of double delta-cepstral features. The feature
vector constructed on the basis of MODFLP is applied in the statistical classifier. This
classifier is based on Gaussian mixture model (GMM) and Hidden Markov Model (HMM).

In the next section, we investigate the robustness and compare the performance of
the proposed features to that PLP and MFCC with the different prosodic parameters by
artificially introducing different levels of impulsive noise to the speech signal and then
computing their correct recognition rate.

3. Experimental and Results.

3.1. TIMIT database. The Texas Instruments/Massachusetts Institute of Technology
(TIMIT) corpus of read speech has been designed to provide speech data for the acquisition
of acoustic-phonetic knowledge and for the development and evaluation of automatic
speech recognition systems [17]. TIMIT contains a total of 6300 sentences, consisting of 10
sentences spoken by each of 630 speakers (438 male and 192 female) from 8 major dialect
regions of the United States. Each speaker recorded ten speech utterances with duration
of about 3 seconds. The TIMIT corpus includes time-aligned orthographic, phonetic,
and word transcriptions, as well as speech waveform data for each spoken sentence. For
the experiments, the data were split into a training set, a validation set and a test set.
The training set contains 3696 sentences (462 speakers), the validation set contains 400
sentences (50 speakers) and the test set contains 192 sentences (24 speakers).

3.2. Experimental setup. To evaluate the suggested techniques, we carried out a com-
parative study with different baseline parameterization techniques of PLP and MFCC
implemented in HTK. The features extracted from clean and noisy database have been
converted to HTK format using “VoiceBox” toolbox [4] for MATLAB. In our experiment,
there were 10 HMM models trained using the selected feature MODFLP, PLP and MFCC.
Each model had 5 by 5 states left to right. The features corresponding to each state oc-
cupation in an HMM are modeled by a mixture of 12 Gaussians. In all the experiments,
39 vectors are used as the baseline feature vector. Jitter and shimmer are added to the
baseline feature set both individually and in combination.

3.3. Results and discussion. The performance of the suggested parameterization meth-
ods is tested on the TIMIT databases using HTK. We use the percentage of word accuracy
as a performance evaluation measure for comparing the recognition performances of the
feature extractors considered in this paper. Comparison of phoneme recognition rates is
shown in Tables 1, 2, 3 and 4.

In the first test, we vary the number value N of filter, and we observe that with the
validation with a test database, the MODFLP coefficients showed the best results in terms
of recognition rates calculated with a value of about 90% for N equal to 44. Comparing

TABLE 1. Word accuracy (%) using different parameterization techniques

N 12 18 24 34 39 44
MFCC | 52.56 | 57.34 | 60.59 | 65.64 | 67.12 | 71.67
PLP 50.21 1 55.13 1 59.54 | 63.98 | 67.65 | 70.75
MODFLP | 64.08 | 86.23 | 87.09 | 88.65 | 90.72 | 90.11
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TABLE 2. Word accuracy (%) of PLP using Jitter and Shimmer

Features Explosions Door slams
SNR (dB) | oo 20 15 10 5 0 -5 00 20 15 10 5 0 -5
PLP (Baseline) 85.45 | 82.25 | 78.29 | 78.44 | 66.38 | 50.65 | 33.34 | 84.34 | 80.56 | 78.98 | 77.76 | 70.12 | 55.32 | 42.76
PLP+Jitter 88.05 | 84.85 | 80.89 | 80.04 | 68.98 | 53.25 | 35.94 | 86.94 | 83.16 | 81.58 | 80.36 | 72.72 | 57.92 | 45.36
PLP+Shimmer 88.45 | 85.25 | 81.29 | 81.44 | 69.38 | 53.65 | 36.34 | 87.34 | 83.56 | 81.98 | 80.76 | 73.12 | 58.32 | 45.76
PLP+Jitter4+Shimmer | 89.55 | 87.47 | 82.39 | 82.54 | 70.48 | 54.75 | 37.44 | 88.44 | 84.66 | 82.76 | 81.86 | 74.22 | 59.42 | 46.86

TABLE 3. Word accuracy (%) of MODFLP using Jitter and Shimmer

Features Explosions Door slams
SNR (dB) | o© 20 15 10 5 0 5 00 20 15 10 5 0 5
MODFLP (Baseline) 92.43190.17 | 88.20 | 85.74 | 77.21 | 71.54 | 50.07 [ 90.35 | 89.96 | 88.98 | 87.70 | 78.99 | 70.22 | 68.43
MODFLP+Jitter 95.05 | 92.77 [ 90.80 | 88.34 | 79.81 | 74.74 | 52.67 | 92.95 | 92.56 | 91.58 | 90.30 | 81.59 | 72.82 | 71.03
MODFLP+Shimmer 95.43 1 93.17 [ 91.20 | 88.74 | 80.21 | 74.54 | 53.07 [ 93.35 | 92.96 | 91.98 | 91.70 | 84.59 | 75.82 | 74.03
MODFLP+Jitter4+Shimmer | 96.53 | 95.28 | 92.30 | 89.84 | 81.31 | 75.64 | 54.17 | 94.45 | 94.06 | 93.08 | 92.80 | 85.69 | 76.92 | 75.13

TABLE 4. Recognition rate (%) of MODFLP using delta and delta-delta parameters

Features Explosions Door slams
SNR (dB) | oo 20 15 10 5 0 ) 00 20 15 10 5 0 5
MODFLP (13) 81 |80.34(79.98|75.74 | 71.65 | 65.34 | 43.87 | 82.54 | 80.67 | 80.54 | 79.70 | 65.87 | 54.02 | 34.74

MODFLP+A (26) 83.23 | 83.78 | 82.47 | 80.76 | 79.65 | 70.45 | 59.54 | 90.95 | 89.56 | 88.98 | 85.30 | 80.45 | 72.45 | 66.87
MODFLP+A+AA (39) [90.64 | 91.17 | 91.20 | 90.09 | 89.56 | 85.67 | 77.87 | 94.21 | 92.87 | 91.98 | 90.10 | 81.90 | 78.10 | 72.76

the recognition rates of system based coefficients PLP with those achieved with MODFLP
coefficients, we note that the performance of the latter is better for all numbers of filter.

Tables 2 and 3 present the performance of two voice features in presence of various levels
of additive noise. We note that the MODFLP features exhibit the best CRR. Also, it is
observable that the performance of the two features decreases when the SNR decreases
too, that is, when the speech signal becoming more noisy. Jitter and shimmer are added
to the baseline feature set both individually and in combination. The absolute accuracy
increase is 2.6% and 3.0% after appending jitter and shimmer individually, while there
is 4.1% increase when used together. As we can see in these tables, the identification
rate increases with speech quality, for higher SNR we have higher identification rate, the
MODFLP based parameters are slightly more efficiencies than standard PLP for noisy
speech (95.28% vs 87.47% for 20 dB of SNR with jitter and shimmer) but the results
change the noise of another. From the above Table 4, it can be seen that the recognition
rates are above 90%; this recognition rates are due to the consideration of using 39
MODFLP features.

4. Conclusion. The proposed features called MODFLP have been shown to be more
robust than PLP and MFCC in noise environments for different SNRs values. Adding
jitter and shimmer to baseline spectral and energy features in an HMM\GMM based
classification model resulted in increased word accuracy across all experimental conditions.
The results gotten after application of this features show that this method gives acceptable
and better results by comparison at those gotten by other methods of parameterization.
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