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Abstract.  In order to deal with constrained multi-objective optimization problems (CM-
OPs), a novel constrained multi-objective particle swarm @timization (CMOPSO) algo-
rithm is proposed based on an adaptive penalty technique amdnormalized non-dominated
sorting technique. The former technique is utilized to optinize constrained individuals
in each generation to obtain new objective functions, whilghe latter technique ranks
individuals along with the new objective functions obtaing from the adaptive penalty
technique. Additionally, the external archive maintenane has been improved by external
population size decrease, and selection of individuals witbetter ranks which are oper-
ated by Pareto constrained-dominance. Based on the concejff crowding distance, the
global best solution is obtained and the individuals of theext generation are provided
by the basic PSO algorithm. The results of the simulation tés indicate precise conver-
gence and diverse distribution of the non-dominant solutins on true Pareto front, which
demonstrates that the proposed algorithm possesses outstling performance metrics for
generational distance and spacing. Finally, the trajectoy optimization problem for hy-
personic reentry glide vehicles (HRGVs) applied further vd es the e ectiveness and
e ciency of the proposed CMOPSO algorithm, which shows a gab application prospect
of the proposed algorithm as well.

Keywords: CMOPs, CMOPSO, Adaptive penalty, Normalized non-dominated sorting,
External archive, Pareto constrained-dominance, Crowdirgy distance

1. Introduction. A large amount of real-life and engineering problems belong multi-
objective optimization problems (MOPs), which have multipe con icting performance in-
dexes or objectives to be optimized simultaneously to achiea tradeo , such as aerospace
systems, electrical systems, biological sciences and dataning [1]. Thus, the problem
of multi-objective optimization arises. Furthermore, if acision variables need to meet
certain constraints, new optimization challenge appearshus forming the so called con-
strained multi-objective optimization problems (CMOPSs). In fact, the research of these
MOPs, including CMOPs, has become a common concern in acadesnand engineering
applications, and possesses an important practical sigeance.

For solving CMOPs, traditional gradient-based search metids, such as the projected
gradient method and quadratic programming method [2], areidult to extend to the
multi-objective case because their basic design precludié® consideration of multiple
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solutions. What is more, the requirements of su cient gradent information and appro-
priate initialization make them powerless for cases with madi erentiable, discontinuous,
and implicit functions.

As population-based metaheuristic methods such as EAs, GA@&PSO are well-suited
for handling such issues, they have been applied into the gies of MOPs and got many
progresses in recent decades. Particularly, the PSO hasrattted much attention in theory
and applications since rst proposed in [3]. Coello et al. if4,5] applied an elite set to
store the found optimal solutions, and used these solutions guide other ying particles.
Meanwhile, the search space is divided by grids to improvewrsity. Parsopoulos and
Michael present the weights polymerization method in [6]. tHet al. proposed that they
utilize a dynamic neighbor PSO algorithm to approach variosioptimization objectives in
[7,8]. Ray and Liew combined the Pareto ranking mechanism SO algorithm together
in [9], and it produced the non-dominated set through Paretsorting and chose the best
global particle by roulette. Pang et al. [10] solved the preature convergence problem by
introducing a new density assessment scheme on particlestrepy information, and by
adopting adaptive chaotic mutation operator, the MOPSO saitions emerge with good
diversity and distribution. Chen et al. [11] proposed MOPSEO algorithm based on PSO
and external optimization (EO), which takes full advantageof the exploration ability of
PSO and EO that overcome the problem of premature convergentor PSO when applied
to MOPs.

In application areas, many single and multiple objective gineering problems have been
solved by using PSO [1]. Roberge et al. [12] used PSO and genalgorithm (GA) to cope
with the complex computation of feasible and quasi-optimatrajectories for xed wing
UAVs in 3D environment. Xue et al. [13] present the rst studyon MOPSO for feature
selection, and by introducing nondominated sorting, crowdg, mutation, and dominance
into PSO, the feature selection problems and Pareto front kdgions are addressed. Zheng
et al. [14] proposed an e ective MOPSO method for populatiortiassi cation in re
evacuation operations, which simultaneously optimizes ¢hprecision and recall measures
of the classi cation rules. lzzo et al. [15] adopted the cotraint handling technique
and multi-objective methods for PSO into the optimization poblem of interplanetary
trajectory.

However, for constrained multi-objective PSO (CMOPSO) algrithms, there is much
less research especially compared with other algorithmschuas EAs and GAs. This is
partly due to the earlier establishment and more popularitffor EAs and GAs than other
optimization algorithms. On the other hand, it is partly beause the optimization prob-
lems show to be more time complexity and algorithm complexitfor constrained multi-
objective situations, which cause unusual study di culties. Ji introduced a symbiotic
mechanism in [16] where the feasible particles evolve towarthe front, and the infea-
sible particles evolve toward the feasible direction basesh a feasible function. Reddy
and Kumar proposed an EM-MOPSO algorithm that combined the BO algorithm and
Pareto dominance in [17]. Li et al. put forward an improved awstrained multi-objective
PSO algorithm based on the concept of constrained dominancand disturb particles
with small probability to enhance the diversity in papers [8,19]. Another constrained
PSO algorithm, proposed by Worasucheep in [20], kept a stagfion detection mechanism
that can automatically detect evolutionary a standstill sate, and improve the dispersion of
particles by the corresponding mechanism. Yen and Leong [2toposed RCVMOPSO al-
gorithm that utilized information of particles' infeasibility and feasibility status to search
for feasible solutions, and constraints are converted intanconstrained objectives and
handled by Pareto dominance relation.
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The key procedures, for CMOPSO algorithms designing, are mdling constraints and
multi-objective functions. Fortunately, for these years he MOEAs have witnessed a large
number of paper published on constraint handling techniqgeand multi-objective han-
dling techniques which can be considered reasonably refezed for CMOPSO algorithms
studies. Given this justi cation, the other population-based methods in MOEAs will be
surveyed to review the developments of the MOPs.

MOEAs solving for MOPs have been evolved for decades, exgaging the traditional
weight-sum aggregation approach, elitist Pareto-based pmach and indicator-based al-
gorithms, respectively [22,23]. In the early period, the wght-sum aggregation approach
gets widely applications because of its simplicity. Howeweif objectives are con icting
with each other, it will cause solutions biasing towards onef the objectives [24,25]. For
this consideration, in the late 1990s, Pareto based techmigs are attracting much atten-
tion, and by using Pareto dominance relation and Pareto rarskfor tness assignment
instead of tness score, the improved solutions are achievenore than that of weighted
sum approaches. The most representative elitist MOEASs inalle PAES [26], PESA [27]
and PESA- [28,29], SPEA2 [30], NPGA2 [31], and NSGA-II [32MOEA/D [33]. More
recently, the indicator-based algorithm [34], such as the ®etric selection evolutionary
multi-objective optimization algorithm (SMS-EMOA) [35], caught a new trend which
performs better in the presence of many objectives.

On the other hand, various constraints handling techniquetargeted at EAs have been
developed to solve CMOPs [36]. Coello and Christiansen [3#pposed two new MOEAs
based on the concept of min-max optimum, but they only optinzie feasible solutions
since only feasible solutions can survive to the next genémm. Deb [31] introduced a
constrained domination principle to handle constraint in MSGA-II. By this principle, all
individuals can be ranked through Pareto dominance relatiship and constraint viola-
tions. Due to this advantage, this technique later is widelysed in microgenetic algorithm
(micro GA) and MOPSOs [38,39]. Ray and Won [40] also employastdard min-max for-
mulation for constraint handling and divide the objective pace into a prede ned number
of radial slots where the solutions will compete with membesrin the same slot for ex-
istence. Geng et al. [41] introduced the strategy of infe&de elitists to act as a bridge
connecting any isolated feasible regions during the evoioih process, which appears sig-
ni cant improvement in distributions and quality of the Pareto fronts. Harada et al.
[42] proposed Pareto descent repair (PDR) operator to repaihe infeasible solution that
aims to reduce all violated constraints simultaneously. Tovercome the parameter tuning
problem for single constraint handling technique, Qu and S$anthan [43] proposed an
ensemble of constraint handling methods (ECHM) to tackle ewmtrained multi-objective
optimization problems.

Motivated by this research background, in this paper, we pposed a hybrid constrained
MOPSO algorithm based on adaptive penalty approach and nomized non-dominated
sorting approach to solve the CMOPs. The organization of tkipaper is as follows. In
the second section of this paper, we describe the constradnaulti-objective optimization
problem in general form, basic principle of the PSO algorith and necessary concepts. In
Section 3, algorithm design key issues are elaborated irgilng constraint handling tech-
nique, multi-objective handling technique, and external ppulation update mechanism.
In Section 4, the simulation results of the proposed algohin are provided with respect
to four typical test problems. In Section 5, an application xample of hypersonic reen-
try trajectory optimization problem has been solved by the pposed algorithm. Finally,
Section 6 is a summary of the full article.
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2. View of Constrained MOP and PSO Algorithm.

2.1. General constrained multi-objective optimization proble m (CMOP).  With-
out loss of generality, only the minimization problems wilbe assumed, and the constrained
multi-objective optimization problem can be described aflows:

Minimize : f(X) = (f1(x);f2(x);:::;11(X))
st g(x) 0 j=1;2:::0

hj(x)=0;j=0q9+1;9+2;:::;m (1)
X = (X1;X2; 111 Xn);
x™Moox; XM 1 =1;2:00n

where | is the number of objective functionsx is decision variable,x™" and x> are
upper and lower bounds of each dimension of the decision abies,i =1;2;:::;n, g (X)

function, g (x) is the j -th inequality constraints, andh; (x) is the j -th equality constraints.

2.2. Particle swarm optimization. Particle swarm optimization (PSO) [3], proposed
by Kennedy and Eberhart in 1995, has been successfully agpliin many optimization
problems because of its simple principle and easy implematibn. So far, it has achieved
profound development, and gradually becomes more signigain research for solving
CMOPs.

In standard PSO, the velocity and position of particla in the search space are calculated
based on the following equation:

Vi(t+1)= Ivi(t)+ cri([Pbest x'(t)] + coro()[Gbest x!(t)] @
X'(t+1)= x'(t)+ v'(t+1)

where, v/ (t + 1) is the velocity of particle i in generationt + 1, x'(t + 1) is the position

of particle i in generationt + 1, Pbest is the current optimal position of particlei, and

Gbestis current global optimal position. ! is the inertia coe cient, ry() and ry() are

two random numbers with uniform distribution on the interva [0O; 1], and ¢; and ¢, are

acceleration factors, which represent the weights of eaclaricle being pushed towards
the statistical Pbest and Gbest position, respectively.

2.3. Related de nitions.

2.3.1. Pareto dominance. A solution u = (ug;Uy;:::;uy,) is said to Pareto-dominate so-
lution v = (Vvy;Vo;:::;vy), ifand only if fi(u) fi(v) (i =1;2;:::;1), and there exists at
least onej 2 f 1;2;:::;lg that satis es f;(u) < f;(v), which are denoted byu v, and

referred to asu dominate v.

2.3.2. Pareto-optimal solution. A solution is said to be a Pareto-optimal solution if and
only if there exists nov and the feasible region allows thav  u.

2.3.3. Constrained-domination. A solution i is said to constrained-dominate a solution
j, if any of the following conditions is true [32]: 1) Solutioai and j are both feasible
solutions, and solutioni dominates solutionj. 2) Solution i is feasible and solution
is not. 3) Solutionsi and | are both infeasible, but solutioni has a smaller constraint
violation. 4) Solutionsi andj are both infeasible, constraint violation of solution equals
that of solution j, and solutioni dominates solution; .
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2.3.4. Crowding distance. The crowding distance, rst proposed in [32], is the sum of &
average distance of two points on either side of this point@hg each of the objective's
dimension.

Figure 1 shows that the crowding distance of point can be calculated by

Jfilxive)  fa(Xi 1) + jfa(Xiv1)  falXi 1)

1:1max flmin 1:2max 1:2min

3)

lel

Figure 1. The crowding distance calculation

2.3.5. Generational distance (GD). Generational distance (see [44]) is the distance be-
tween non-dominated solutions and the Pareto-optimal sdiwns. The calculation equa-
tion is as follows: r
o
d?
GD = —— (4)
where, n is the number of non-dominated solutionsg; is the minimum distance between
the i-th solution to the Pareto optimal solution set. Especially a value of O indicates
that all the individuals generated are in the Pareto optimalset. This metric re ects the
approaching level of the non-dominated solutions to the Pato optimum set.

2.3.6. Spacing (SP). Spacing [45] is the metric desiring to measure the spread $tfi-
bution) of vectors throughout the non-dominated vectors fond so far, and the metric
re ects the diversity of the resulting front. The calculation equation is as follows:

v
u
1 X
sp=t d d ° (5)
n 1.
i=1
. P .. .
where,d, = min if(xi)  fe(xj)j ,1=1;2:::;n, denotes the distance between
JFLi2n k=g
j6i

the objective vector of the non-dominated solutiorx; and its nearest objective vectord is
the average ofd,. SP = 0 means the corresponding front of the non-dominated Istions
complete diverse distribution.

3. Description of the Proposed Approach. The main principle for solving CMOPs
is to convert the constraints into unconstrained multi-obgctive problems, so an e ective
constraint handling mechanism design is considered as theyk Recently, the penalty
function method is widely applied for constraint handling,n order to avoid dealing with
too many penalty parameters. In this section, a typical adapve constraint handling
method is described, combined to a fast normalized non-damated sorting technique and
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the improved external non-dominated population maintenare according to the elitist
strategy and constrained dominance.

3.1. A constraint handling technique: adaptive penalty method. Woldesenbet,
Tessema and Yen in [46] provide a method for handling consiings in MOPs called adap-
tive penalty, which possesses good versatility. This appoh makes the combination of
objective function value and individual constraint violaion, and de nes distance measure-
ment and adaptive penalty functions, whose values are calated by individual feasibility
and constraint violations, and thus by using this method thenew objective function is
constructed.
The new objective functionF;(x) is represented according to the following equation

Fi(x) = d(x)+ pi(x) i=1;2:::51 (6)
Equation (6) is comprised of the distance functiouwl;(x) and the penalty function p;(x),
i =1;2;:::;1, where the distance functiond;(x) is de ned as follows,
(x) if +=0
di(x) = o f 1=1;2;::0010 (7)

f7(x)2 + v(x)2 otherwise

In Equation (7), normalized objective functionsfi(x) are de ned as follows:
Fi(x)  fhin

frlnax frinin
wheref | = mgxfi(x) and ), = m)i(n fi(x) indicate the maximum value and the mini-

mum value of the objective function in thei-th dimension of the objective space, respec-
tively. In Equation (7), individual constraint violation v(x) is de ned as follows:

fi(x) = i=21;2;:001 (8)

1 g(x)
v(x) = = i 9)
where,
max(0; g; (X)) ifj =1;2::051

G0% max(@jh (0] ) if = g+ 1ig+2im (10)
is a small positive number (usually 0.001 or 0.0001), that detes the tolerance value
for equality constraints, and constraint violationv(x) is zero whenx is a feasible solution.

In Equation (7), the proportion of feasible solutions in poplation ¢ is

_ the number of feasible individuals in current population (11)
te population size

In Equation (6), penalty function p;(x) is de ned as follows:
p(x) =@ XX+ 1Yi(X) (12)

0 if + =0 Yi(x) = 0 if X is feasible
v(x) otherwise ’ f7(x) otherwise

It can be observed that new objective function value of eacimdividual can be calcu-
lated by Equations (6)-(12). This approach automatically djusts individuals' penalties
with the proportion of feasible solutions in the populationand the individual constraint
violation, which ensures only infeasible solutions can baipished. The greater infeasible
individual violations constrain, the greater penalty it wil be a ected. Furthermore, this
technique avoids the introduction of penalty parameters,rad the new objective function
provides outstanding adaptability for all feasible and indasible solutions. Therefore, the
algorithm analytical and calculation complexity are e ectvely reduced. Additionally, the

where, X (X) =
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objective functions with form (6) can be directly used for miti-objective particle swarm
optimization operations which will be described in SectioB.2.

3.2. Normalized non-dominated sorting. Bao and Zhu proposed a normalized sort-
ing method [47] that ranks the non-dominated individuals as sequence in a set. Its
run-time complexity is demonstrated to be not more tharO(nlogn) + O(Inm) (n is the
population size,m is the number of non-dominant solutions, and is the number of ob-
jects), which is less than that of the classical approach N3GII O(In?). This advantage
provides a new application prospect for this approach. Theasic steps are as follows.

Normalizing the objective functionF;(x) is obtained from constraints handling in Sec-
tion 3.1, by the following equation:

I:i max(X) Fi(X)
I:i max(X) I:i min (X)

Sum all the normalized functions on various dimensions of mztive space, so the
normalized mixed function is obtained:

X
G(x)=  Fi(x); i=1;2::50) =1;2::;N (14)

i=1

Fi(x) = (13)

where, | is the number of objective functions, andN is population size.
Sort the normalized mixed function in descending order,

G(u1) G(up) G(un) (15)
All individuals are stored into an array S[N], that is S[1] = uy, S[2] = up;:::;S[N] =
Uy, andu; =u, = = uy is the result of the non-dominated sorting of all the

individuals in the population, where = denotes a dominate position.

In sense of this sorting, it can be proved that the individualn front will (at least) not
be dominated by the following individual, while the followng individual will also possibly
not be dominated by the previous one. Therefore, under noreircumstances, we can
consider that the individuals in front sequence with betteranks are superiorly dominant
individuals.

3.3. External archive maintenance. Individuals and their new objective function (6),
after being handled by adaptive penalty technique, rank aocding to the normalized
non-dominated sorting technique, which implies individulg with better dominance have
higher priorities over those with poor dominance. Each newndividual generated by
PSO algorithm produces theN individuals sequence after operations of the constraints
handling and summation of the normalized functions. Then # chosen non-dominated
solutions are used for updating the external archive (an estnal non-dominated elite
population).

All the sorted individuals have been compared with individals in external elite popu-
lation in paper [47], and the one not dominated by the externandividuals will be chosen
into the external elite population for updating. In fact, shce the size of the external pop-
ulation is often far less than that of internal population, t seems unnecessary to compare
all the internal population individuals with elite individ uals for external population up-
dating. Furthermore, individuals with better rank can be casidered as individuals with
the better dominance in the internal population, because #worse ranking individuals
certainly could not dominate their previous individuals. Therefore, in this paper, we use
the rst M better order individuals (M is the external population size) to update the
external population, and the speci ed update mechanism issaollows.
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If the external population is not full, copy the individuals directly into external pop-
ulation; if the external population is full, compare the newindividuals i with each of
the external individuals j, 1) if individual j dominates individual i, do not copy in; 2) if
individual i dominates only one external individuaj , replace individualj with individual
i; if individual i dominates more than one external individual, eliminate athese external
individuals, and copy individual i in; 3) if individual i does not dominate any external
individual, and is not dominated by any external individual then add individual i into
the external population, and calculate the crowding distace (see Section 2.3.4) of M +
1 individuals. Then remove the individual with the smallestcrowding distance from the
external population.

It must be noted that, individuals are compared with each othar by the relationship
of Pareto constrained-dominance. Furthermore, althoughometimes the better ranking
individuals cannot dominate the worse ranking individuals this operation would still
greatly improve the speed and e ciency of the proposed algithm, as it is unnecessary to
compare every individual with external individuals. In Setton 4, simulations will prove
this approach optimization results are good.

3.4. Global best update. For PSO algorithm, it is clear that the global optimal particle
should be selected from the external archive. In this papehe following operation is taken
to obtain it.

For a certain generation, calculate the crowding distancef each individual in external
population. 1) If the crowding distances of individuals arall in nite, select one individual
randomly as Gbest; 2) if there is a nite number, choose the dividual that possesses the
largest crowding distance as Gbest.

3.5. Program owchart of the proposed algorithm. From the aforementioned anal-
ysis, the process of the PSO algorithm for solving CMOPs prt#ms is executed as Figure
2.

4. Simulation Results. In this section, the newly proposed algorithm is tested on to
di erent test problems with performance metrics for convagence (Generational distance,
GD), distribution (Spacing, SP) and algorithm running time (Elapsed time).

Four typical test problems (see Table 1) are chosen for perfoance tests, and then
performance results are compared between the newly propod€aMOPSO and the classical
algorithm in [46].

Table 1. Constrained test problems used in this study

Problem |n Variable bounds Objective functions Constraints
X1 2 [0:1;1] f1(3) = X1 (¥ = 9%; xx+6 O
CONSTERIZ \o2005] 120 =1+ x2)=x G(= Fa+txz+l O
x 2[ 2020) T10=(x1 27 G(x) = x2+x3 225 0
SRN (2 700, +(X2 1)2+2 D= X 3,410 0
' fa(%)= 9x1 (X2 1) % ! 2
a()= x2 x3+1
TNK 5 X 21[0; ] f1(%) = X1 +0:1cos(16 arctanki;=x2)) O
i=1;2 f2(%) = x2 ®(%) = (x2 05)%+(xz 0:5)?
05 0
xi 2 [ 1010] fi(3)=1:5 xu(1 xp) ()= xi (x2 05°+9 0
BINH4 |2 . L 1:9 fa(%)=2:25 x1(1 x3) @)= (x1 12?+(x2 05)?
: f3(%)=2:625 x1(1 x3) 6:25 0
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Initialize internal populationd and
external population B

Generation t=1

Constraints Handling

!

Normalized Non-dominated Sorting

l

External elite population update

Global best update

i

t=t+1 |Part1cle SWarm ﬂighr‘

l

Particle Pbest update

=17

v

Qutput non-dominated particles and
paretg front

End

Figure 2. Program owchart of the proposed algorithm

Table 2. GD metric of the proposed algorithm on CONSTER, SRN and TNK

CONSTER SRN TNK
Algorithm compared| 0.0191 0.0168 0.0099
Proposed algorithm 0.0025 0.0012 0.0023

In this test, we set population size for 100 (200 for problemIRH4), external population
size of 30 (50 for BINH4), and a maximum generation number oDG.

The CONSTER test problem was proposed in [53]. As shown in kige 3, it can be
seen that 30 non-dominated points are evenly distributed dte true Pareto front. From
Table 2, the convergence metric GD of the Pareto front is 0.@8 which is signi cantly
smaller than that of the algorithm compared. Moreover, the rtric of SP (equal to 0.1165)
is also better than the algorithm compared. For this functia, the average time of the
proposed algorithm independently running 30 times is 5.785seconds. The SRN test
problem is tested with the population of 100, generation of0D, and 30 non-dominant
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Pareto Front
sk + CONSTER [

12(x)
o

Mo
T

f1(x)

Figure 3. Pareto front obtained with the proposed algorithm on problmm CONSTER

50 T T T T

Pareto Front
SRAN

-100 E

f2(x)

-200 =l

-250 -
0

Figure 4. Pareto front obtained with the proposed algorithm on problen SRN

individuals. As can be compared, diversi ed non-dominantnidividuals of the proposed
algorithm distributed on the Pareto front, whose excellentonvergence and distribution
performance can also been re ected by GD metric (0.0012) ai®P metric (0.074) hold on
the true Pareto front. The average time of the proposed algithm independently running

30timesis 7.1198s. The TNK function [54] results are showmfigure 5, and the proposed
algorithm provides feasible optimal solutions that are diersely distributed on true Pareto
front. The non-dominated solutions converge uniformly toards the discontinuous Pareto
front and cover the whole extent of the Pareto front. From Takes 2 and 3, GD (0.0023)
and SP (0.0125) of the proposed algorithm show superiority the algorithm compared.
This test used the population size 100, with 30 external noteminated solutions, and 300
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Table 3. SP metric of the proposed algorithm on CONSTER, SRN and TNK

CONSTER SRN TNK
Algorithm compared| 0.3210 0.385 0.4660
Proposed algorithm 0.1165 0.074 0.0125

Pareto Front
TNK

1.2

1-\

08 \.

& \

06} *

0.4

DL \

D 1 1 1 1 ! 1

Figure 5. Pareto front obtained with the proposed algorithm on problen TNK

generations. Generations are improved because the nondgubus front requires bigger
iterations to reach the global optimum. The average time ofhe proposed algorithm
independently running 30 times is 7.3302 seconds.

The BINH4 test adopted population size 300, 50 external notleminated solutions, and
300 generations. The nal Pareto front optimized by the propsed algorithm is drawn
in Figure 6. On the single value segment, non-dominated stikns accurately converge
to the Pareto front, while on the multi-value segment, non-dminated solutions converge
to the Pareto front as a whole. Running independently 30 tingethe average of GD, SP
indicators and the running time are 0.0151, 0.1612, and 36%1 seconds, respectively.

From the above simulation, the proposed CMOPSO algorithm slws precise conver-
gence and diverse distribution on the Pareto front. Compadewith the data in article
[46], the algorithm we propose possesses better charadtes of GD and SP than the
former, which shows the advantages of this algorithm.

5. Application on Hypersonic Reentry Glide Vehicles (HRGVS) T rajectory
Optimization.
5.1. Description for HRGVs trajectory optimization problem. To further verify

the CMOPSO algorithm proposed in previous sections, a trageory optimization problem
for Hypersonic Reentry Glide Vehicles (HRGVS) will be app#id in this section. The hy-
personic reentry glide vehicle belongs to a complex systenittwcharacteristics of highly
nonlinear, strong coupling and fast time-varying, whose eatry trajectory optimization
project can be constructed as an optimization problem with oitiple constraints and mul-
tiple objects. The trajectory optimization problem aims toseek optimal ight trajectory
(or trajectories) that guarantee speci ed performance asell as satisfying the constraints
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~
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f2{x)
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0 BNH4

f3(x)

Figure 6. Pareto front obtained with the proposed algorithm on problm
BINH4 (top: top view, down: 3D view)

such as heat peak, dynamic pressure and aerodynamic loadtéador appointed vehicle
ight missions.

Chen et al. [55] introduced the NSGA-II algorithm into the dsign of RLV multi-
objective reentry optimization with minimum heat and maximum maneuverable range.
Xie et al. [56] presented a Migrant PSO algorithm to solve thé&ajectory optimization
which proves to be able to generate an optimal 3DOF reentry djectory rapidly. Jiao
and Jiang [57] proposed the colony algorithm method for mulbbjective optimization of
reentry trajectory planning for hypersonic aircraft. Zhacand Zhou [58] studied the end-to-
end trajectory optimization problem by single objective faction and multiple constraints
based on constrained PSO for hypersonic reentry vehicles.
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As the reentry trajectory optimization problem for HRGVs presents to be an essentially
constrained multi-objects issue, traditional gradient-ased methods have much di culty
in solving the multi-objectives. Therefore, the applicabn of CMOPSO shows high practi-
cal signi cance. According to these motivations, in this sgion, the CMOPSO framework
will be considered into the problem solving. The 3DOF pointnass dynamics of the vehicle
are described by the following dimensionless equations obtion:

1

o
A
|

Vsin VD V',

o

e

8
V cos cos o ' L
— e VD V',

V cos_sin 1
1
nReos VD Vg
h [ 1

g @

hD Wot'ys VD V', i
1
= Ccos + V2 2 &=+ 4+ VD V',

= +2Rcos (cos' sin sin' cos cos )
=2+.V cos sin g
, = *+2Rcos (cos' cos +sin' cos gsin )
, = 2%V (sin®  cos cos ptan )
= %cos‘ sin' sin o
where,R = &, V = ple, b = pm D=t B= g = pRtO—/gO and R, V,
e, D, L, t are the radial distance from the center of the Earth to CAV, E&h-relative
velocity, Earth self-rotation rate, drag force, lift forceand entry time respectively. And
R, V, k., D, C, are the corresponding dimensionless forms Bf V, !¢, D, L and t.
denotes the latitude and the longitude. The ight path angle is and the bank
angle. The velocity azimuth angle is measured from the North in a clockwise direction.
Energy-like variablee is de ned ase= &= V2.
Typical reentry trajectory inequality path constraints include path constraints, Termi-
nal Constraints and Control Constraints shown as follows

5= 8 8 8l

R 3 4

P

b

w

C :
Q= p=" VI Qu (17)
d
p__
L2+ D?
n= Mgy Nmax (18)
1 2
4= 5V*  Onax (19)
R(tr) 2 [Ry Raown; Rt + Rup] (20)
V(tf) 2 [Vf Vdown;Vf + Vup] (21)
(tf) 2 [ f down; f T up] (22)
2[ min » max] (23)

where Equation (17) is a constraint on the heating rate at a §zi ed point on the surface
of the hypersonic vehicle, with the constantC; = 11093 and curvature radius of the
stagnation point Ry = 0:01lm. Equation (18) is a constraint on the total aerodynamic
load factor on the body of the hypersonic vehicleng,a is in the unit of gg). The constraint
Equation (19) is on the dynamic pressuredfay is in the unit of N/m 2).
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The control variables of the longitudinal entry motion are agle of attack , which lies
in lift L and drag D through the lift and drag coe cient C_ and Cp. In this paper, we
set the longitudinal average margin value of the bank anglet /6.

Since the main trajectory control variable is angle of attdc , the optimization problem
purpose is to achieve the optimal angle of attack. In reentrgngineering, the angle of
attack is generally adopted to be a parametric form as shown Formula (24), so, decision
variables of this proble8m are transformed to be angle of attk parametersVy, V..

< max V2 (Vl; VO]
= DTV V)t e V2 (Vo Vi) (24)
" maxL=D V 2 (V]

The objective functions of the reentry trajectory optimizdion problem vary with the
missions and reference indicators, and usually not singledchangeless. Some typical
objective functions are shown as follows:

f1= S(e)=Re cos l[Cos'zocos' cos(o )+sin' gsin'] (25)
€
fo=  j_jde (26)
€o
where, S(e ) in Formula (25) denotes maximizing gliding range, de ned & the circle
distance on the surface of spherical Earth from the vehiclepition ( o;" o) to the terminal
position (;' ). Formula (26) denotes minimizing total ballistic oscilld@ion.

5.2. Principle for HRGVs trajectory optimization. Based on the proposed CMO-
PSO algorithm, the trajectory optimization problem can be slved by the following steps.

As a detailed discussion for the proposed CMOPSO algorithmmak been made in previ-
ous sections, in this application, this method will be direty embedded into the HRGVs
trajectory optimization principle shown in Figure 7, and conplying with the principle,
the main steps are stated as follows:

Step 1: Initialize the rst population;

Step 2: Calculate the reentry trajectories of the particlewarm with Equation (16). If
the constraints satisfy error tolerances, shift to Step 5. tBerwise, shift to Step 3;

Step 3: Optimize the particle swarm with the proposed CMOPS@lgorithm, including
constraints handling, non-dominated sorting, and exterdarchive population update and
particle swarm ight;

Step 4. Judge if the algorithm achieves the max iteration tims T, if not, return to
Step 2. Otherwise, shift to Step 5;

Step 5: Output the external archive and multi-objective valies.

5.3. Optimization simulation. In this simulation, the path constraints parameters are
Qunax = 2000kW/M?2, Nmax = 2, Onax = S0KN/m 2. Three sets of angle of parameters are
set in this problem, which means three trajectories will bechieved after optimization.
The algorithm iteration steps are set to 20, population sizés 12, and non-dominant
population size is 3. The initial value of the numerical intgration variable for the 3DOF
equations of motion ise; = 0:567, and its terminal value ises = 0:969.

Table 4 shows the initial valuesX (&), desired terminal states valuex (e ) for all the
state variables during reentry period. After optimization the error values of the terminal
states should not exceed their tolerance rangesX provided in Table 4.

Through the simulation, three groups of turning velocity hae been optimized, they
are respectively, (62483, 335238), (504663, 320432), (530191; 331775) which construct
three di erent reentry angle of attack pro les, as shown in kgure 8. Based on these angles
of attack, three corresponding longitudinal reentry trajetories can be obtained, shown in
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Figure 7. Flowchart of trajectory optimization problem using PSO algrithm
Table 4. Reentry conditions
X(&) X(&) X
H (km) | 120 30 2
' (deg)| O { {
(deg) | O { {
V (m/s) | 7200 1800 10
(deg) 0 {7.5 1
(deg) | 110 { {
Table 5. Results of the trajectory optimization
Trajectory 1 Trajectory 2 Trajectory 3
H (&) (km) 28.783 29.887 29.418
V(&) (m/s) 1806.56 1800.61 1803.14
(&) (deg) {7.37 {6.91 {7.15
t(e) (sec) 1557.53 1720.91 1681.34
S(e)=1/f, (km) | 9752.117 10425.856 10282.587
faq 11263.08 11273.54 11269.63




1850 W. ZHANG, X. HUANG, X. GAO AND H. YIN

Figure 8. Angle of attack pro le under three optimized parameters

Figure 9. Three reentry trajectories under three angle of attack prdes

Figure 9. All the trajectory initial conditions and terminal conditions are listed in Table
4 and Table 5. And from Table 5 it can be seen that all the consiined terminal states
values strictly met the error tolerance ranges, the objeate functionsf, andf, form a set
of contradictions as any trajectory cannot be superior to another trajectories based on
the evaluation of these two objective functions. Figure 10lustrates the situation of the
three optimized trajectories satis es the reentry constriats.

6. Conclusions. This article discusses the CMOPs solving with the frame of 5 A
CMOPSO algorithm is proposed which combines two approachesCMOPs together, the
constraint handling technique with adaptive penalty funcion, and the multi-objective
handling technique with normalized non-dominated sorting Furthermore, the update
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Figure 10. Reentry constraints histories of the three trajectories

strategy of the external elite archive is improved based onreovel sorting operation. All
the above techniques are integrated with the basic PSO algibrm and construct a new
algorithm to solve CMOPs.

The constraints handling technique takes adaptive penaltjunction and distance mea-
surements into consideration which avoids introducing thpenalty factor parameters while
enhancing the adaptability of punishment. The normalized on-dominated sorting tech-
nique ranks all the normalized objective functions to a segace with a superiorly domi-
nated order. Experimental results including two pivotal pgformances show the e ciency
of this improvement.

Test functions and trajectory optimization of a hypersoniaeentry glide vehicle are sim-
ulated to demonstrate the e ectiveness and good performaaof the proposed algorithm
and verify the application signi cance of the proposed CMOBO algorithm.
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