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ABSTRACT. This paper identifies and describes some theoretical considerations relevant
to the long-term rate of return on risky assets. Relying on the assumption of lognormality
for the short-term rate of return on risky assets, we deduced the theoretical formulae of
the probability density function (p.d.f.) as well as the corresponding mean and variance
of the long-term rate of return on risky assets. Then we further provided the proofs
of some investment characteristics of the formulae obtained, discussed the relationship
between the means and variances respectively of the short-term rate of return and long-
term rate of return, and deduced the mathematical formulae for the critical curve of the
mean and variance of the short-term rate of return. We also derived the approzimation
formulae for the p.d.f. and the corresponding mean and variance of the long-term rate of
return on risky assets when the short-term rate of return on risky assets follows a general
probability distribution and the holding period n is comparatively large.

Keywords: Risky assets, The lognormal distribution, Short-term rate of return, Long-
term rate of return

1. Introduction. The relationship between the short-term and long-term rates of return
is well known. The long-term rate of return is the geometric mean of the short-term rate
of return over a sequence of time periods; the arithmetic mean of these short-term rates of
return can be considered as an estimate of the expectation of the short-term rate of return.
In investment analysis, people are accustomed to measure the earnings accomplished using
the expectation of the short-term rate of return and the relevant risk (uncertainty) using
the variance. However, if one plans to make long-term investments, judging the level of
earnings and the risk magnitude merely based on the mean and variance of the short-
term rate of return as stated above is blind and error-prone. The long-term rate of return
on risky assets is far below the expectation of the short-term rate of return, but the
long-term rate of return is far higher than the risk-free rate of return in stock market.
In [4], Mehra and Prescott indicate that the abnormal premium rate of return of stocks
exists compared with the risk-free rate of return. In [5], Fama and French explained the
abnormal premium rate of return of stocks using the expanded samples and the DDM
model. The short-term rate of return on risky assets for a single period is random,;
therefore, the series of the rate of return over a sequence of consecutive time periods is
necessarily random and there is no appropriate straight-forward theoretical formula to
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demonstrate the relationship between the means and variances respectively between the
short-term and long-term rates of return.

In [9], the authors obtained some numerical results reflecting the relationship between
the short-term rates of return and the average annual rate of return for long-term on risky
assets by implementing Monte Carlo simulation method. In [10], we made further efforts
to describe such relationship again using Monte Carlo simulation method and obtained the
critical curve of the expectation and variance of the short term rate of return, along with
some empirical results identifying conditions under which long-term risky assets would
earn positive or negative earnings. In [11], the authors made more thorough theoretical
analysis when the holding period is indefinite and gained some theoretical formulae. There
were some shortcomings in the authors’ previous works, among which the main drawback
is that instead of concluding theoretical formulae under general circumstances we only
reached some numerical results when the holding period is n. The significance of in-depth
theoretical research is beyond suspicion; however, such kind of studies involves relatively
complex mathematical deduction. Focusing on the particular assumption that the short-
term rate of return on risky assets is log-normally distributed, we made more detailed
discussions based on the authors’ previous works and obtained some theoretical results
that roughly meet our expectation.

If an investor plans to hold a long-term risky asset, he or she needs to have an idea of the
average annual rate of return and the corresponding variance on long-term risky assets
rather than just knowing the probability distribution of the short-term rate of return.
The main objective of this paper is to theoretically study the relationship between the
means and variances respectively of the short-term and long-term rate of return. We try
to derive the theoretical formulae and the corresponding properties under the assumption
that the short-term rate of return is log-normally distributed. These problems have not
been thoroughly studied in the existing investment theories. The average annual rate
of return on the long-term risky assets as an indicator definitely has critical instructive
significance for investors.

In Section 2, we derived the general mathematical formulae of the p.d.f. of the rate
of return on long-term risky assets. In Section 3, we gave the mathematical formulae of
the p.d.f. of the rate of return on long-term risky assets along with the corresponding
mean and variance under the condition that the short-term rate of return is log-normally
distributed. In Section 4, we deduced and proved some characteristics relevant to the
short-term and long-term rates of return based on the theoretical analysis and formulae
obtained in Section 3. In Section 5, we discussed the situation under which the short-
term rate of return follows a general form of distribution, and provided the approximation
formulae for the p.d.f. of the long-term rate of return and the corresponding mean and
variance when the holding period n is relatively large. The last section is conclusions.

2. The Theoretical Formulae of the Rate of Return on Long-Term Risky As-
sets. Consider a risky asset K, a stock for example, and we call the annual rate of return
on asset K the short-term rate of return for convenience. In fact, the concepts of long-
term and short-term are just relative, e.g., short-term rate of return can be daily rate of
return, weekly rate of return or monthly rate of return, etc. &,&,,...,&, are the rate of
return for each year over n consecutive years, and the sequence of random variables &;
are identically distributed random variables with the identical p.d.f. p(x). According to
the characteristics of risky assets in financial markets and the well-known efficient-market
hypothesis (EMH), as long as the time intervals are not too short, e.g., if longer than
1 day, the dependence between two adjacent returns is very weak. Assume &1, &s,...,&,
are independent and identically distributed (i.i.d.) random variables and such hypothesis
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is consistent with the characteristics of random walk. Because &; denotes rate of return,
it is required that & > —1, i = 1,2,...,n. In other words, when z < —1, p(z) = 0.
The average annual rate of return 7, on asset K over n consecutive years is given by the
following expression:

o= ((1+E&)(1+&) - (1+&)" —1

We can use the following expression:

oAl =((1+E)(1+&) - (1+ &))" (1)

In this paper we also call 7, the long-term rate of return for convenience. The main
objective of this paper is to theoretically study the expectation and variance of the random
variable 7, and also its probability distribution, and we have also included study of the
circumstances under which n — +oo.

In order to illustrate the properties of the rate of return on long-term risky assets, we
consider a special case that the price of the risky assets will return to original level
after n periods, and the prices of assets at each time point constitute a time series
Py, P, P, ..., P, with P, = F,. Accordingly, we obtain the time series &;,&,...,&,
constituted by the rate of return at the end of these n periods.

gi = IDZ; ]Diila
i—1
Since P, = Py, the overall rate of return over these n successive periods is 0. Let

Ay denote the amount of initial investment, let A, denote the amount of the investment
achieved at the end of period n, according to the assumption we have A, = Ag, so

Ag=A(1+ &)1+ &) ---(1+&)

Therefore, there is ] (1 +¢&;) = 1. We have the following theorem.

i=1
Theorem 2.1. Let Py, P, P, ..., P, be the time series specified by the prices at the end
of a sequence of consecutive time periods, with P; > 0 and P; is not identically equal to
any constant; furthermore, P, = P,. The time series constituted by the short-term rate
of return is &1, &, ..., &, where

i=1,2,...,n

bP-P_
;= ————— =12,...
é’z R_l ) [/ ’ Y Y n
n
Then it must hold that = >~ & > 0.
i=1
Proof: For a; > 0,7 = 1,2,...,n with a; not identically equal to any constant, the

following inequality holds:
1 n
e 1/n < — .
(a1aq - - - ayp) - ;1 a;

Substitute a; = 1 + &; in the expression above and it becomes

n 1/n n n
(H(H&)) <%Z(1+5i):1+%2&
i=1 i=1 i=1

According to the assumptions of the theorem and the previous discussions, we have
n

[T (1+¢&) = 1, substituted in inequality above and we will obtain %E& > 0. The
i=1 1=1
theorem gets proved.
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The conclusion of Theorem 2.1 is inconsistent with our intuition. Theorem 2.1 asserts
that if the initial and the terminal price of a risky assets are equal (which indicates the
gross rate of return over the consecutive periods is 0), no matter what path the price
movements takes, if price fluctuations exist, the arithmetic mean of the short-term rate
of return determined by the price series must be positive.

Taking the logarithm of both sides of expression (1), we shall get

In(n, +1) = Zln1+§z

Designate the p.d.f. of the random variable w; = 1 + &; as g(x) and according to the
probability theory we have g(x) = p(z — 1). Then solve for the p.d.f. d(y) of the function
of random variable Inw; = In(1 4 &;), since y = In(x) is a monotone increasing function,

and the inverse function is x = €%, so ‘;’” = ¢eY. We have

d(y) = g(e”)— = g(e")e" (2)

Now, we shall start solving for the p.d.f. M, (y) of the sum of random variables
i In(1+¢&;), since &1,&,,...,&, are independent and identically distributed (i.i.d.) ran-
Zd:olm variables, In(1 + &), In(1 + &), ..., In(1 +&,) are also i. i d. random variables. Ac-
cording to probability theory, the p.d.f. M,(y) of the sum Z In(1+¢;) is the (n — 1)

fold iteration of the convolution of the p.d.f. d(y) = g(ey)ey Wlth itself. The p.d.f. of
In(1+ &)+ In(1 4+ &) is d(y) = d(y), and we have

iwedw) = [ doaty ~

o0

The p.d.f. of the sum of n items 3 In(1 +&;) is

M, (y) = ((-+- ((d(y) x d(y)) * d(y)) * - -+ ) * d(y)

The above expression demonstrates the result of the (n—1) fold iteration of the convolution
of d(y) with itself. Theoretically, there are two methods of solving M, (y): the first one is
to directly solve the analytical expression of the (n — 1) fold iteration of the convolution
with itself for M, (y); the second is to utilize integral transformation such as Fourier
transform to obtain M, (y). Since d(y) is nonnegative continuously differentiable function

with fj;o d(y)dy = 1, the Fourier transform of d(y) must exist. Designate the Fourier
transform of d(y) as D(z), i.e.,

F(d(y)) wﬁ/w )*vdy = D(2)

According to the properties of the convolution calculation, we have
F(d(y) * d(y)) = D*(2)
FA((- ((d(y) = d(y) = d(y)) - -+) x d(y)} = D"(2)
If we manage to get the analytical expression of the Fourier inverse transform of the
function D"(z), we shall obtain the p.d.f. M, (y) of the sum of variables >  In(1 + &;),

=1
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which is
_ n 1 oo n —iz
M,(y) = F~1(D"(2)) = Nir D"(z)e™"*dz

Suppose we have already deduced the analytical expression of p.d.f. M, (y), according
to the probability theory we know the form of p.d.f. m,(y) of the random variable
L3 In(1+¢&) is as follows:

M (y) = nMy(ny) (3)

We solve the p.d.f. N,(z) of the random variable 7, + 1 by taking the following steps:
In(n, + 1) Z In(1 + &)

M+ 1= 6% s In(1+8)

Since x = €Y is a monotone increasing function, its inverse function is y = In(x), and

[dl—y = 1. Therefore, we have
X xr

No@) = P, (In(e)) = Zm, (n(x) (4)

According to the probability theory, the p.d.f. H,(z) of the random variable 7, is

Hy(z) = ——m,(In(z + 1)) (5)

z+1

In order to obtain the p.d.f. H,(z) of the random variable 7,, we only need to solve for
the p.d.f. M, (y). It is thus evident that the derivation of the analytical expression of the
p.d.f. M,(y) is a crucial step.

The procedure of solving the p.d.f. H,(x) of random variable 7, is to first identify

g(x) = p(x — 1) based on p(z), then determine d(y) = g(e¥)e¥ according to g(z), then
find M, (y) based on d(y), M,(y) is the (n — 1) fold iteration of the convolution of d(y)
with itself, and subsequently apply m,(y) = nM,(ny); finally, the p.d.f. of the random
variable 7, is denoted as H,(z) = —5mn(In(z + 1)).
3. The Theoretical Formulae under the Circumstances that the Short-Term
Rate of Return is Log-Normally Distributed. In this section we assume that the
short-term rate of return £ of asset K follows a specific form of lognormal distribution, and
we derive the corresponding theoretical formulae under such assumption. A log-normally
distributed random variable takes only positive values, the range of the short-term rate of
return £ is (—1, +00); therefore, the range of 14¢ is (0, +00) which meets the requirements
of lognormal distribution. Assume the random variable 1 4+ £ determined by the short-
term rate of return ¢ is log-normally distributed with parameters (i, o), i.e., the p.d.f. of
the random variable 1 4 £ is

1 (nz—p)?
e it (6)

xTr) =
q( ) 2mox

Based on the properties of lognormal distribution, the expectation of the random variable
14+¢is

E(l+¢) = etts (7)

The variance of the random variable 1 + £ is

D(1 +¢&) = 2t (e”2 - 1) (8)
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According to the probability theory, the p.d.f. of the random variable ¢ is

1 _ (n(z+1)—p)*
p(x) = ¢ 202
2ro(x + 1)
The expectation of the random variable £ is
E(€) =e"7 —1 (9)
The variance of the random variable £ is the same as expression (8), i.e.,
D() = e (7 ~1) (10)

Through a vast amount of statistical analysis people know the p.d.f. of the short-term
rate of return on regular risky assets roughly takes the symmetric unimodal curve. For
symmetric p.d.f., the mode coincides with mean. For the p.d.f. of lognormal distribution,
according to the expression dp(x)/dz = 0 it is not difficult to obtain z = e# 7" — 1, which
is the mode. Let us now measure the deviation of the mode from the mean of &, let ER
denote this value, the smaller ER is the less the lognormal distribution deviates from the
symmetric distribution form, and combined with (9) we get

0'2 2 o'2 2
ER = (e"+7 — 1) — (e"*” — 1) = eV (eT —e 7 )

Under the circumstance that o is small, we have ER ~ 207/

For the risky assets in reality, such as the foreign exchange, blue-chip stocks, floating
rate deposit, treasury bonds, corporate bonds, the standard deviation o of the annual rate
of return are greatly diversified, for stock and foreign exchange o = 0.35, for corporate
bonds o & 0.08; for bank deposit and treasury bonds about ¢ = 0.04. According to

2

expression (10), when p = 0, D(§) = ¢° (e"2 — 1) ~ 0% + o*, so if 02 is small, o* is
smaller, and we have D(§) ~ o?. We shall approximate D(£) using ¢ in the expression
of FR, and approximately take p = 0, we have FR(Stock) ~ 0.18, FR(Bonds) ~ 0.01,
and FR(Treasury Bonds) ~ 0.002. When parameter o2 is very small, the lognormal
distribution becomes closer to symmetrical form, but when parameter o2 is relatively large,
the lognormal distribution deviates further from the symmetrical form. Theoretically, the
lognormal distribution is more appropriate for describing the p.d.f. of the rate of return
on less risky asset, for riskier investments such as stock and foreign exchange, the p.d.f.
of their rate of return is difficult to describe precisely using the lognormal distribution.

Let us derive the p.d.f. d(y) of the random variable In(1 + &), according to expression
(2) we have d(y) = q(e¥)e?, among which ¢(x) is identified by expression (6), substituting
and rearranging the expression we get

d( ) ev 7(1“‘1’5#)2 1 7(%1;)2
= —€ 20 = € 20
Y \2moeY 2mo

Therefore, In(1 + £) is normally distributed with expectation u and variance o2, i.e.,

In(1+¢) ~ N(u,0?).
n
Next we shall derive the p.d.f. M, (y) of the sum of random variables > In(1 +&;). Ac-
i=1
cording to the features of the p.d.f. of normal distribution, the sum of normally distributed
random variables is still normally distributed, and calculating the sums of expectations
and the variances respectively, we have
1 _ y—mw)?

MTL = ——¢ 2(no?)
) 27 (0%n)
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According to probability theory, the p.d.f. m,(y) of random variable % dIn(1+&) is
i=1

(4) = My (ny) = ——ee Ho
ma(y) = nM,(ny) = ——==e 20~
27 (0%n)
Simplifying the expression above, we get
1 _ (y=w)?
mu(y) = —————¢ 2/V»? (11)

V2 (a/v/n)
The p.d.f. m,(y) identifies the normal distribution with expectation y and variance o2 /n.
We shall now derive the p.d.f. N,(x) of the random variable n, + 1. 7, +1 =

exp (% > In(1 + {i)>, according to expression (4) we have
i=1

1 1 _ (nz—p)?
Na(w) = 2mp(In(z) = ———e 2o/ (12)
x x/2m(o/\/n)
This is a p.d.f. with the form of lognormal distribution with parameters (u, 0?/n). Next
we shall deduce the p.d.f. H,(z) of the random variable 7,, and according to expression
(5) we have

1 G (13)
6 o n
(x + 1)V2m(o/y/n)

This is a p.d.f. of lognormal distribution with parameters p and %2 Designating the
expectation of the random variable 7, as r,, and variance as D?, according to expression
(9) and expression (10), we have

H,(z) = ——m, (In(x 4+ 1)) =

z+1

0_2
ry=eltem —1 (14)

D? = 2% (ﬁ . 1) (15)

4. Some Theoretical Results of the Long-Term Rate of Return with Log-Nor-
mally Distribution on Risky Assets. In this section we assume that the short-term
rate of return £ on risky asset K is log-normally distributed, and the p.d.f. is p(z), i.e.,
1 _ (n(z41)—p)?
p(x) = ¢ 202

2ro(x + 1)
Based on expressions (14) and (15) obtained in Section 3, we have the following theorem.
Theorem 4.1. Let ro, denote the limit of the expectation of the rate of return n, on risky
asset K when n approaches infinity, and we have

roo =€ —1 (16)
Proof: According to expression (14), we have
Tn = e”+% —1
It is easy to obtain ro, = nl_l)Iiloo rp = ngrfoo (e’”% - 1) = et — 1, and the theorem gets

proved.

Theorem 4.2. Let D2 denote the limit of the variance of the rate of return n, on risky
asset K when n approaches infinity, and we have

D2 =0 (17)



1876 X. WANG AND H. SUN

Proof: According to expression (15), we have

2 [ o
D2 = 5% (en —1)

2 2
It is easy to come up with D2 = lim D? = lim (62“+% (607 — 1)) = 0. The

n—-+00 n——+00
theorem gets approved.

The conclusions of Theorem 4.1 and Theorem 4.2 indicate that when the holding period
n of risky asset K is long enough, the average rate of return 7, is approximately e* — 1,
and the uncertainty of 7, gradually vanishes because D? approaches 0.

Theorem 4.3. As the holding period n of the risky asset approaches infinity, the expecta-
tion E(&) of the short-term rate of return must be greater than the average rate of return
reo When the asset is held indefinitely, the difference between these two is e (eé — 1) > 0,
and therefore we have

B(€) = o = & (e* ~1) (18)
Or equivalently

Too = E(£) — €e* (eé - 1)

Proof: According to expression (16), we have r, = e* — 1; based on expression (9),
2

there is F(£) = et — 1 and we come up with
0_2
E(f) — 1o =¢" (67 — 1)
2 2
Since e* > 0 and %2 > 0, there is e > 1, which means e> — 1 > 0, then

E(f)—rw:e”(eé—g >0

The theorem gets proved.
The conclusion of Theorem 4.3 shows that the average rate of return r, of the indef-
initely held risky asset must be less than the expectation E(§) of the short-term rate of
2

return on risky asset and the difference of these two is e/ (e% — 1) . From expression (18)

we conclude that for fixed p > 0, as 0® becomes larger the difference E(£) — 74, becomes
greater, which indicates that the magnitude of decline of the long-term rate of return
E(&) — r is positively correlated to the factor o®. Moreover, expression (18) shows that
if 0> = 0, then E(§) — ro = 0, which indicates that for risk-free assets, the short-term
rate of return is equal to the average rate of return for the asset held indefinitely.

Theorem 4.4. Letr = E(£), D? = D(&), for any positive short-term rate of return r > 0,
a corresponding value of variance D?* can be identified and this variance D? satisfies the
following equation

D*=(1+7r)?(1+r)-1) (19)
Correspondingly, the values of the lognormal distribution parameters taken are u = 0,
02 = 21In(1 +71), and then the average rate of return of the indefinitely held risky asset is
0, i.e., roo = 0.

Proof: According to expression (6) we have ro, = e* — 1. Let r,, = 0, so that e# =1,
so we have 1 = 0. According to expression (9)

r=FE)=¢e"r —1=e2 —1>0
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0'2 . . . . . .
Therefore, e = 1 +r and equivalently 02 = 2In(1 + r) which is the formula identifying
the parameter o using the given value r > 0. Then according to expression (10), we have

D? = g2uto” <e”2 — 1). Taking 1 = 0, 0 = 2In(1 + r), thus

D*=(1+r)?(1+r)?-1)
According to the derivation above, we have ro, = 0 and the theorem gets proved.

Theorem 4.5. Given any positive short-term rate of return E(§) = r > 0, the variance
of the short-term rate of return is D(§) = D?, then if D* < (1+7r)?>((1+7)? —1), then
Teo > 0; if D* > (14+7)2((14+7)% = 1), then roo < 0; if D* = (1 +7)? ((1 + )% — 1), then
oo = 0.

Proof: The formulae of the expectation r and variance D? of the log-normally dis-
tributed short-term rate of return are as follows:

a2 2 2
r=ete — 1, D=t (e

— 1)

Since r = ett% — 1, there is e”” = e 24(1 +r)2, so e *2% = (1 + )2, substitute in the
expression of D? and we obtain D? = (1+7)? (e ?*(1 + r)? — 1). According to expression
(16) we have ro, = et — 1.

If D? < (1+7)%((1+7)*—1), it must hold that p > 0, and there is 7, > 0.

If D? > (1+7)%((1+7)?—1), it must hold that p < 0, and there is 7, < 0.

If D? = (1+7)%((1+7)*—1), it must hold that p = 0, and there is 7o, = 0.

The theorem gets approved.

Through Theorem 4.4 we have obtained an important functional relationship D? =
(147)?((1+r)? —1). For given r > 0 as the expectation of the short-term rate of return,
if the variance takes the value of D? determined by Equation (19), and then it can be
guaranteed that ro, = 0. For example, if the expectation of the short-term rate of return
takes the value r = 0.1, which is comparatively high, we shall obtain D? = 0.254 based
on Equation (19) which indicates a risk level actually not too high. The conclusion of
Theorem 4.4 also shows that when the variance of the short-term rate of return is larger
than 0.254, we must end with negative rate of return holding the asset permanently.
Combined with Theorem 4.5, it can be shown that equation D? = (1 + )% ((1+1r)% — 1)
identifies a critical curve related to the value that r,, takes. In the coordinate system
determined by (r, D), the curve D? = (1+7r)? ((1 +r)? — 1) divides the first quadrant into
two regions, the upper region corresponds to 7, < 0, and the lower region corresponds to
oo > 0.

Theorem 4.6. If—%2 < <0, then E(§) > 0, and ro < 0; if—%2 <p < —%, then
E(&) > 0, and 1, < 0; ry, is the average annual rate of return with the holding period n
determined by expression (14).

Proof: According to expression (16), ro, = e — 1, ro, < 0 thus g < 0. According to
0'2 b
expression (9), E(§) = et — 1, E(§) > 0; therefore, p+ %2 > 0 which implies p > —%2.
Therefore, when —"—22 <pu<0,E&) >0,and ry < 0.

o2

0'2 . . .
According to expression (14), r, = ef*2n — 1, r,, < 0 implies p + % <0, ie, p<—F.

According to expression (9), F(§) = ety 1, E(§) > 0 gives pu+ %2 >0, i.e., u> —"72.
Therefore, when —"—22 < p< —% it can be concluded that E(£) > 0 and r, < 0. The
theorem gets proved.

The conclusion of Theorem 4.6 shows that E(£) > 0 does not guarantee that long-term
held asset K shall obtain positive annual rate of return, and the combination with larger
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0? and smaller ;1 can cause 7o, < 0 or r, < 0. From expression (14), as the holding

period n increases, r, decreases. When n is relatively minor, the increase of n will cause
relatively greater decrease in r,, when n is large enough, r, ~ e* — 1. According to
expression (15), D,, decreases as the holding period n increases. When n is large enough,
D,, = 0, the uncertainty of r, would be decreasing and r, converges to r, in probability.

5. The Theoretical Analysis of the Assets for General Form of Distribution
When the Holding Period is Relatively Large. In this section we shall discuss the
related circumstances under which the short-term rate of return follows a general form of
distribution. Assume the p.d.f. of the random variable £ is p(z), the expectation of & is
r and the variance of € is D2, so

r= /_+OO rp(z)dr, D?*= /_+00 (x —r)’p(z)dx

1 1

Let the p.d.f. of 1+ ¢ be g(z), therefore, ¢(x) = p(z — 1). According to expression (2),
the p.d.f. of the random variable In(1 + &) is d(y)

d(y) = e’q(e’) = e’p(e? — 1)

Let us solve the mathematical expression of n which denotes the expectation of In(1+4¢),
and according to the definition of mathematical expectation, we have

400
n = / ye'p(e? — 1)dy

o0

Implement the variable substitution e¥ — 1 = z, thus y = In(1 + z), and we have

n= /+00 yelp(e?¥ — 1)dy = /+oop(x) In(1+ z)dx (20)

00 —1
When the short-term rate of return on asset K is log-normally distributed, the param-
eters of the distribution p(z) are (u, o), so

1 _ (n(z+1)—p)?
p(x) = ¢ 202
2ro(x + 1)
The expectation of In(1 + &) is 7, so
oo 1 (In(a+1)—p)?
n= LI A In(1 + z)dz

-1 V2mo(x+1)
The variance of In(1 + &) is designated as H?, according to the definition of variance

= [ —arene -y = [ oo )@

00 -1

n

Here consider the expectation and variance of the random variable ;1 Yo In(1+¢;) as
i=1

well as the approximation of the p.d.f. when n is relatively large. As we know, the ex-

n
pectation of the random variable + >~ In(1 4+ &;) is still  and the variance of the random
i=1

n
variable - " In(1 + &) is *H? According to the central limit theorem, when n is rel-
i=1

atively large, the random variable % > In(1 4 &) is approximately normally distributed
i=1
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the corresponding p.d.f. can be denoted as m,(y), and we have
(y=n)*
mn(y) ~ ;6_2 31/21277/n)
V2 (H/\/n)
According to expression (13), the approximate formula of the p.d.f. H,(z) of the variable
= (1)1 +&) - (1+&)" —1is

1 B (1n((x+1)/—73)2
Hn ) ~ e 2(H2 /n
(@) V2 (H/\/n) (x +1)
The above expression is the p.d.f. of a log-normally distributed random variable, according
to the properties of the lognormal distribution, and expression (9) and expression (10)
can be rewritten as follows

E(n,) ~ e o —1 (22)
2 2
D) =~ 21+ (eHT - 1) (23)

Here, n = [ p(x)In(1 + 2)dw, and H? = [ p(z) (In(1 + x))*dz — n*. According to
the p.d.f. p(x) of &, n and H? can be identified; further we can approximate the long-term
rate of return E(n,) and variance D(n,) based on expression (22) and expression (23).
Letting n — 400, from expression (22) we can obtain

Teo = lim E(n,) =e e n(ta)dr (24)
n—+o0o
Dy = nl_l)r_{looD(nn) =0 (25)

Expression (24) was once obtained by implementing a different approach in [8].

The approximate formulae expressions (22) and (23) hold only when n is relatively
large, and for general p.d.f. p(z) and relatively small n, the analytic expression of the long-
term rate of return F/(n,) and variance D(n,) should be derived through the convolution
formula. Of course, if E(n,) is being solved for empirical purpose, this can be done
through two approaches, one is to use the Monte Carlo simulation, the other one is
to deduce the p.d.f. m,(y) through convolution, thus the approximate solution of the
probability function H,(x) can be obtained, and then the numerical values of the long-
term rate of return E(n,) and variance D(n,) are identified. For relatively large n, e.g.,
n > 30, we can use expressions (22) and (23) to approximate the long-term rate of return
and the magnitude of risk on risky asset K when the holding period is n.

6. Conclusions. The paper theoretically studies some problems related to the long-term
rate of return, under the assumption that the short-term rate of return follows lognormal
distribution, we have obtained the mathematical formulae of the p.d.f. of the rate of
return on long-term for risky asset and the corresponding mean and variance, and we
illustrate some properties of the obtained theoretical formulae. Under the situation that
the short-term rate of return follows a general form of probability distribution, we deduced
the approximation formulae of the mean, variance and the p.d.f. of the long-term rate
of return. The theoretical formulae derived in this paper are applicable to assets with
relatively smaller risk or situations with comparatively larger n. This paper provided
the theoretical proof of the fact that the long-term rate of return on risky asset must be
lower than short-term rate of return and demonstrated the mathematical formulae of the
difference between the short-term rate of return and long-term rate of return under the
situation that the short-term rate of return is log-normally distributed. In addition, we
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identified the circumstances that guarantee ro, = 0, which determine the critical curve
related to the mean and variance of short-term rate of return.

Acknowledgment. The authors gratefully acknowledge the helpful comments and sug-
gestions of the reviewers, which have improved the presentation.

REFERENCES

[1] F. Black and M. Scholes, The pricing of option and corporate liabilities, Journal of Political Economy,

vol.6, no.81, pp.637-654, 1973.

M. F. Osborne, Brownian motion in the stock market, Operations Research, no.7, pp.145-173, 1959.

E. F. Fama, The behavior of stock-market prices, Journal of Business, vol.38, no.1, pp.34-72, 1965.

J. Mehra and E. Prescott, The equity premium: A puzzle, Journal of Monetary Economics, 1985.

E. Fama and K. French, The equity premium, Working Paper, The University of Chicago Graduate

School of Business, 2000.

[6] E. Fama and K. French, The cross section of expected stock retunes, Journal of Finance, vol.47,
pp.427-466, 1992.

[7] S. Kathari and J. Shanken, Stock returns variation and expected dividend, Journal of Financial
Economics, pp.177-210, 1992.

[8] B. M. Friedman and V. V. Roley, Models of long-term interest rate determination, The Journal of
Portfolio Management, vol.6, no.3, pp.35-45, 1980.

[9] X. Wang and L. Xu, Study on the long-term rate of return when holding risk asset, International
Journal of Innovative Computing, Information and Control, vol.6, no.7, pp.3275-3288, 2010.

[10] X. Wang, L. Xu and Q. Fang, The critical curve of the long-term rate of return when holding
risk assets, International Journal of Innovative Computing, Information and Control, vol.6, no.10,
pp.4579-4592, 2010.

[11] X. Wang and B. Sun, New results on the rate of return for the risk assets held indefinitely, In-
ternational Journal of Innovative Computing, Information and Control, vol.10, no.2, pp.823-836,
2014.

[12] J. A. Wachter, A consumption-based model of the term structure of interest rates, Journal of Fi-
nancial Economics, vol.79, no.2, pp.365-399, 2006.

[13] Z. Da and M. Warachka, The disparity between long-term and short-term forecasted earnings growth,
Journal of Financial Economics, vol.100, no.2, pp.424-442, 2011.

[14] M. Lettau and J. A. Wachter, The term structures of equity and interest rates, Journal of Financial
Economics, vol.101, no.1, pp.90-113, 2011.

™)

JEENMEON)



