
International Journal of Innovative
Computing, Information and Control ICIC International c
 2015 ISSN 1349-4198
Volume 11, Number 6, December2015 pp. 1913{1929

DEEP LEARNING FOR EXTRACTING WATER BODY
FROM LANDSAT IMAGERY

Liu Yang 1;2;3, Shengwei Tian 1;2;3, Long Yu 2;3;4, Feiyue Ye 2;3;�

Jin Qian 2;3 and Yurong Qian 1

1School of Software
Xinjiang University

No. 499, Northwest Rd., Saybagh District, Urumqi, P. R. China
f yangliu xju; tianshengweig@163.com

2Key Laboratory of Cloud Computing and Intelligent Informat ion Processing of Changzhou City
3College of Computer Engineering
Jiangsu University of Technology

No. 1801, Zhongwu Rd., Changzhou 213001, P. R. China
� Corresponding author: yfy@jstu.edu.cn; qjqjlqyf@163.com

4Network Center
Xinjiang University

No. 14, Shengli Road, Tianshan District, Urumqi 830046, P. R. China
yul xju@163.com

Received April 2015; revised September 2015

Abstract. There are regional limitations in traditional methods of water body extrac-
tion. For di�erent terrain, all the methods rely heavily on c arefully hand-engineered
feature selection and large amounts of prior knowledge. Dueto the di�culty and high
cost in acquiring, the labeled data of remote sensing is relatively small. Thus, there exist
some challenges in the classi�cation of huge amount of high dimension remote sensing
data. Deep Learning has a good capacity of hierarchical feature learning from unlabeled
data. Stacked sparse autoencoder (SSAE), one deep learningmethod, is widely investi-
gated for image recognition. In this paper, a new water body extraction model based on
SSAE is established. At �rst, current useful features (NDWI, NDVI, NDBI and so forth)
are collected to construct unique feature matrix for each pixel. Next, a Feature Expansion
Algorithm (FEA) is designed by taking account of the in
uence of neighboring pixels to
expand feature matrixes. Setting the expansion features asinputs, SSAE is trained to ex-
tract water body. The experimental results showed that the proposed model outperformed
Support Vector Machine (SVM) and traditional neural network (NN). Meanwhile, the
proposed FEA explored more distinct features of water body so that the accuracy of water
body extraction was improved to a great extent.
Keywords: Unsupervised feature learning, Deep Learning, Water body extraction, Fea-
ture Expansion Algorithm, Stacked sparse autoencoders

1. Introduction. Water is the vital natural resources for the human survival and devel-
opment, as well as an important restriction factor of eco-environment. Accurate water
body recognition is crucial to many applications includingenvironmental monitoring [1],
resource survey, 
ood assessment and drought detection [2]. Satellite-based remote sens-
ing technology provides continuous snapshots of Earth's surface over long periods [3].
Remote sensing technology, which can be used for water body extraction, is becoming a
research hotspot in recent years.

At present, numerous methods have been proposed to abstractwater bodies from satel-
lite images. The most commonly used methods can be divided into three categories:
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single-band threshold method, multiband spectral threshold method and water index
method.

(1) Single-band threshold method: Single-band threshold method utilizes the spectral
characteristic di�erences between water and other objects. It distinguishes water by
setting up suitable threshold [4]. Through analysis of the image histogram, Jupp used
threshold method on band 7 [5]. Moller-Jensen achieved water extraction by setting
thresholds on band 4 and 5 [6]. Lu and Li utilized the method ofdensity slice on band
5. However, the proposed algorithm could only recognize water whose area is more than
4000 square meters [7]. Braud and Feng delineated coastlineof Louisiana with setting
threshold on each band separately before accessing corresponding performance, which
showed that setting threshold on band 5 was the most appropriate method [8]. By this
token, single-band threshold method is simple but cannot extract small linear water area
and remove shadows.

(2) Multiband spectral relationship method: Barton and Bathols calculated the ratio
image of channel 2 and channel 1 of AVHRR data and used it to recognize water from
satellite images [9]. Du and Zhou found that only water has the feature of (B2 + B3)
> (B4 + B5) [10]. Multiband spectral relationship method has better e�ect on water
extraction but still cannot remove the shadows. Wang et al. combined (B2 + B3) > (B4
+ B5) and B4/B2 < 0.9 to extract water body and found that the proposed method was
suitable for extracting water of mountainous terrain [11].

(3) Water index method: This method is the most widely used method. McFeeters
proposed the Normalized Di�erence Water Index (NDWI) whichcan inhibit part of back-
ground noise but mistake built-up land for water bodies [12]. The equation of NDWI
is as follows: (Green { NIR)/(Green + NIR), where Green is green band and NIR is
near-infrared band. Considering the defect of NDWI, Xu put forward a modi�ed NDWI
(MNDWI) that uses mid-infrared (MIR) instead of NIR. MNDWI c an di�erentiate be-
tween buildings and water and be given by: (Green { MIR)/(Green + MIR) [13].

In di�erent terrain, there are various shadows or background noise to be removed. For
example, compared to arid area, humid area possesses abundant vegetation that adds a
task about removing information of vegetation from water. In mountainous land, due to
the overlap region between water body and shadow spectral ranges, the extracted water
may always be mixed with shadows of mountain. Therefore, Shen et al. adopted object-
oriented analysis for extracting more comprehensive features of water in mountain area
to build the decision ruleset. Through that, the extractionaccuracy increases to 95% and
even higher in cloud-free case [14]. In 2013, a method of MNDWI combined with K-T
transformation to distinguish water from mountain shadowswas proposed [1]. In the same
year, Wang et al. used three methods to remove the impact of the shadow and get the best
one for extracting water in mountains [15]. In urban areas, the types of surface targets are
complex. The primary task of extracting water is to remove built-up land and shadows
of buildings. Based on Normalized Di�erence Built-up Index(NDBI), a method was
proposed to automate extracting built-up areas for mapping[16]. So NDBI can be used
for removing built-up land from water bodies. After the resolution fusion of QuickBird
PAN and Multispectral images, Xu et al. set up a repository including spectral features,
topological rules, shape features, size information and soon to extract water types [17].
An automatic method was proposed which combined the use of the multiscale extraction
and the SMA technique to extract water in urban was more accurate compared to satellite
images of moderate resolution [18].

Most of the mentioned methods need to be given a suitable threshold. The accuracy of
abstracting water has more to do with this threshold [19]. Ifthe threshold is too low, other
objects may be extracted incorrectly. On the contrary, small linear water area may not be
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extracted. To extract water more precisely, pattern recognition methods have been widely
used in classi�cation of Landsat Imagery [20-22]. The most commonly adopted methods of
pattern recognition are Support Vector Machines (SVM) and traditional neural networks
(NN). In 2008, Dixon used Support Vector Machines (SVMs) andarti�cial neural network
(ANN) to classify land use from remote sensing images. Zhanget al. classi�ed spectrally
uniform water bodies with a distinct boundary in a salt farm by neural network and
maximum likelihood classi�ers. He found that neural network is superior to maximum
likelihood method for detailed mapping of salty water bodies [23]. Liu et al. proposed a
novel semi-supervised SVM model by using self-training approach to address the problem
of remote sensing land cover classi�cation from Landsat TM images [24].

In 2006, Hinton proposed a new approach which accomplished the dimensionality re-
duction and classi�cation of data by means of Deep Belief Network (DBN) [25-30]. And
it serves as a catalyst for a new wave of Deep Learning (DL) in machine learning. Since
then, Deep Learning has become a burgeoning research direction and was applied to image
recognition, natural language processing, speech recognition and information retrieval. In
the �eld of remote sensing, Deep Learning establishes a compelling rationale for remote
images' classi�cation. In 2010, Deep Learning was utilizedon detecting roads in high-
resolution aerial images for the �rst time [31]. Therewith,Lv et al. put forward a remote
sensing image classi�cation method based on DBN model [32].That was one of the �rst
attempts to urban detailed classi�cation by Deep Learning approach. Up to now, how-
ever, we have not found related papers which aim specially atwater body extraction by
Deep Learning approach.

Stacked autoencoder is one of Deep Learning methods and has astrong personality to
learn higher features from the lower level, due to which it iswidely used in various areas
[33-35]. Thus, we proposed a model for extracting water bodies from Landsat images based
on stacked autoencoder. And a Feature Expansion Algorithm (FEA) was also proposed
to enrich the features of water bodies. Selecting the Landsat 8 images about three areas
as input, the proposed model had been validated and evaluated. A series of experiments
were carried out to show that our model could extract water bodies from other objects
more e�ectively than SVM and NN. In particular, the constructed model established the
feasibility of learning features of water body with limitedor few labeled samples. It is
signi�cant for easing the work of collection, dispose and �eld measurements of training
data. The description of the whole model is shown in Figure 1.

2. Stacked Sparse Autoencoder.

2.1. Sparse autoencoder. An autoencoder neural network is an unsupervised learning
algorithm which utilizes back-propagation algorithm, letting the target values equal to
the inputs, such asy(i ) = x( i ) [36]. A typical structure of autoencoder is shown in Figure
2.

The autoencoder tries to learn a functionhw;b (x) � x. Like Figure 2, it attempts to
learn an approximation to the identity function, namely, making output x̂ be similar to
x. And by placing constraints on the network, connotative structure of the data will be
discovered.

For instance, we can limit the number of hidden units to explore connotative features.
As a typical example, assume the inputsx are the gray value of pixel for a 20� 20 image,
so n = 400. Meanwhile, we can set the number of hidden layer to 100,which forces
the network to learn a condensed representation of the inputwhich contains a vector of
100 dimensions instead of a 400-pixel input. In this way, thealgorithm will �nd some
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Figure 1. Flowchart of the whole model

Figure 2. Structure of an autoencoder
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relevance of the input features. To sum up, an autoencoder can learn a low-dimensional
representation of data which is exactly similar to PCAs (principal component analysis).

However, when the number of hidden units is large (perhaps even greater than the
number of input pixels), other constraints must be imposed on the network. On this
occasion, we add a sparsity constraint on the hidden units. We usually consider a neuron
as being \active" if its output value is close to 1 or \inactive" if its output value is close to
0. And the sparsity constraint causes the neuron to be inactive most of the time. Select
sigmoid as the activation function. Assume thata(2)

j signi�es the activation of hidden unit

j in the autoencoder. And we leta(2)
j (x) denote the activation of hidden unit for a given

speci�c input x. Next, let �̂ j (Equation (1)) be the average activation of hidden unitj
(take the average on the training set).

�̂ j =
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�
x( i )

� i
(1)

Then we set� as the anticipant degree about sparsity of hidden layer. To each j , the
following equation should be satis�ed.

�̂ j = � (2)

where, � is called sparsity parameter, which is a small value close tozero. In order to
achieve the expected sparsity, the activations of hidden unit must be near to 0. So an
extra penalty term will be taken into account that does the penalty for some situation
where ^� j has great di�erence with � . The penalty term can be de�ned in Equation (3).
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Here, s2 stands for the number of neurons in hidden layer, and eachj corresponds a
neuron in hidden layer. Combining with knowledge of Kullback-Leibler divergence (KL
divergence), the above equation is able to be rewritten:

s2X
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Here,KL (� jj �̂ i ) =
s2P
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� log �
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(1� �̂ j ) . If �̂ j = � , KL (� jj �̂ j ) = 0. Meanwhile,

KL (� jj �̂ j ) increases monotonically as ^� j diverges from � . Therefore, the overall cost
function of network is shown as follows, where� controls the weight of the sparsity
penalty term [2].

Jsparse(W;b) = J (W; b) + �
s2X

j =1

KL (� jj �̂ j ) (5)

2.2. Softmax regression. Softmax regression is a supervised algorithm that is often
used for multi-class classi�cation [37,38]. For a given testing dataset
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J (� ) = �
1
m

"
mX

i =1

kX

j =1

1
�

y(i ) = j
	

log
e� T

j x ( i )

P k
l=1 e� T

l x ( i )

#

(7)

In the hypothesis function, � is the parameter of the model. It is common to set� as
a k-by-(n + 1) matrix, so that
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2.3. Stacked autoencoder. A stacked autoencoder is a deep neural network which con-
sists of multiple layers of sparse autoencoders. It employsgreedy layer-wise training
method to execute pre-training. The outputs of each layer serve as inputs of the succes-
sive layer. In Figure 3, a stacked autoencoder with two hidden layers and a �nal softmax
classi�er layer is used for water extraction.

Figure 3. The structure of a stacked autoencoder for water body extraction

From top to bottom, the �rst sparse antoencoder is trained onthe raw inputs to learn
the primary features �rstly. Then these outputs from the �rst sparse autoencoder would
be regarded as inputs to the second sparse autoencoder. As well, secondary features are
learned on a�erent primary features. What is more, secondary features are obtained
through the trained second sparse autoencoder. And these secondary features would act
as \raw inputs" to a softmax classi�er for training. Finally, a three-layer model which is
able to classify water body and other object is established.

3. Method.

3.1. Study areas. Three study areas in China with di�erent water body types were
chosen to evaluate the robustness of the proposed method. Each of them possesses their
typical regional features. Table 1 shows the details of the three study areas.

The �rst area is called Xinjiang (Xj) which covers the area of73� 400E � 96� 180E,
34� 250 � 48� 100N. It is located in Eurasia inland and shows up a typical half-arid, arid
climate. And there are about 500 rivers in Xinjiang, including Tarim River, Ebinur Lake,
Yili River and so on. Xinjiang possesses Taklimakan desert which is the largest desert in
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Table 1. The view of the study areas and data source

No Study Area Path/Row Acquisition Date Climate
1 Xinjiang 140/34 7 June 2014 half-arid, arid
2 Jiangsu 131/36 23 July 2013 humid
3 Sichuan 118/39 13 June 2014 humid

China. Therefore, the key to enhance extractable accuracy of water body is the distinction
between water and arid soil.

Jiangsu (Js), the second area, covers the area of 116� 180E � 121� 570E, 30� 450N �
35� 200N. Jiangsu is located in the middle of the coastal provinces in East China, and
also lies in the lower reaches of the Yangtze River and HuaiheRiver. Thus, it has abun-
dant water resources. In 2013, the Yangtze River delta urbanagglomeration (including
Jiangsu, Shanghai and Zhejiang) becomes a number of the six word-class international
urban agglomeration. Apparently, we should put our center of gravity on distinguishing
shadows of buildings from water body.

The last area is Sichuan (Sc), which covers the area of 97� 210E � 108� 330E, 26� 030N
� 34� 190N. Sichuan is a mountainous province. The east of Sichuan includes Ridge and
Valley Province of Chuandong and Hills of Chuanzhong; the west is West Sichuan Plateau.
Thus, the shadows of mountains must be removed from water body.

3.2. Data preprocessing. The whole process of data preprocess is divided into two
steps. First, radiometric calibration and atmospheric correction are executed for each
image. Then for each study area, �ve images are selected randomly for experiments.
The last column describes the corresponding validation samples for each image. And
the whole validation samples were obtained by executing supervised classi�cation and
likelihood classi�cation on high-resolution images.

3.3. Feature extraction. Water possesses a stronger ability to absorb sunlight than
other objects. So it has a weaker re
ectance. Especially in NIR and MIR, the re
ectance
of water is almost zero [1]. Aiming to learn and master the characteristics of water, a
variety of methods are proposed by several scholars, including Water Index Method (WI),
IHS (Intensity, Hue, and Saturation) Transformation and soon. These methods provide
a probability to obtain more precise extraction results. Far from increasing, however, the
extract accuracy will decrease with inappropriate methods. Hence, we analyzed all the
useful methods (each method is regarded as a feature, such asMNDWI, and NDWI).
Some typical methods of water body extraction were shown in Table 3.

Then for each pixel, well-chosen features are computed to construct a feature matrix.
Figure 4 shows the mapping relationship from pixel to feature matrix.

Figure 4. The view of a pixel and its homologous feature rectangle



1920 L. YANG, S. TIAN, L. YU, F. YE, J. QIAN AND Y. QIAN

Table 2. View of the selected images of study areas

No Name Width � Height Pixels Image Validation Samples

1 Xj 1 375� 310 116250

2 Xj 2 669� 342 228798

3 Xj 3 370� 200 74000

4 Xj 4 400� 302 120800

5 Xj 5 277� 208 57616

6 Js 1 400� 375 150000

7 Js 2 434� 325 141050

8 Js 3 362� 304 110048

9 Js 4 482� 393 189426

10 Js5 579� 554 320766

11 Sc1 403� 299 120497

12 Sc2 392� 397 156418

13 Sc3 373� 338 126074

14 Sc4 352� 309 108768

15 Sc5 408� 375 153000
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Table 3. The elaborate description about typical methods of water body extraction

Methods Examples Equation Advantages
Single-band
threshold Band 5 Gray value< threshold

Simple and easy
to implement

Multiband
spectral

relationship
b2, b3, b4, b5. (b2 + b3)> (b4 + b5)

It can extract small
linear water area better
than single-band method.

Water index

NDVI (b4 { b3)/(b4 + b3)
It can expand the
di�erence between water,
vegetation and soil.

NDWI (b2 { b4)/(b2 + b4)

Restrains the information
of vegetation and
highlight water body's
information.

MNDWI (b2 { b5)/(b2 + b5)
It is good at extracting
water body in urban
environments.

NDBI (b5 { b4)/(b5 + b4)
The di�erence between
water and building is
expanded.

Spectrum
transform

K-Thomas
transformation

It can show six parts,
such as soil brightness,
greenness, and yellow stu�.

It eliminates the in
uence
of shadow from cloud.

HIS

It is able to extract Hue,
Intensity and Saturation
from images of remote
sensing.

It is suitable for
extracting small
linear water bodies.

3.4. Feature Expansion Algorithm. Each image can be regarded as numerous grids
consisting of pixels. In an image, each pixel is not self-existent. And adjacent pixel
points may have some e�ects on target pixels. Thus, we proposed a Feature Expansion
Algorithm (FEA) to dig neighborhood information. First of all, each grid was mapped
into a pixel point. Next, we chose a point as a target point. Meanwhile, we drew a
circle whose center and radius are respectively target point and r . Then the distance
between object point namedo and adjacent point namedoi;j was computed. Afterwards,
for each target point, we got a related dataset which was madeup of adjacent points
wheredist (o; oi;j ) � r . Finally, for given features, we got the mean of the related dataset
as a new feature. Meanwhile, we can adjust the length ofr to �nd the best expansion
distance. As is showed in Figure 5, there are some situationsin which r = 1, � = 0:5.
Among the following pictures, related datasets comprised some grids with shadow. The
detailed process and pseudo-code are described in Table 4.

In order to get better e�ects, we added weight coe�cient to Feature Expansion Al-
gorithm, namely related rank (RR). As is shown in Figure 6, weset di�erent values for
RR according to the distances between target point and its adjacent points. The nearest
point is given the highest related rank with lower weight fordistant point on the contrary.

Therefore, the detailed pseudo-code of modi�ed feature expansion is showed in Table
5.
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(a) when r = 1 (b) when r = 1 :5

(c) when r = 2 (d) when r = 2 :5

Figure 5. Four examples of the Feature Expansion Algorithm

Table 4. Key codes of the Feature Expansion Algorithm

Algorithm: Feature Expansion
Input: Feature matrix f [][]
Output: Mean of new feature matrixnewf [][]
1. Con�rm a point f [a][b] as a target point namedo;
2. As the centre ofo, draw a circle with given radius (r + � ).
3. Compute distance betweeno and its adjacent pointsoi;j

4. for eachoi;j

5. if (dist (o; oi;j ) � r + � )
6. total+ = f [i ][j ];
7. count + +;
8. end if
9. mean = total=count;
10. if (dist (o; oi;j ) � r + � )
11. total+ = ( f [i ][j ] � mean)2;
12. num + +;
13. end if
14. end for each
15. Return Mean

4. Experiments and Results Analysis. Based on stacked sparse autoencoder (SSAE),
a water body extraction model was established. Through several experiments, parameters
from Table 6 were set for the initiation of sparse autoencoder and softmax. And we
chose MATLAB (Matrix & Laboratory) for simulation experiments and adopted Feature
Extraction Algorithm to enhance accuracy.
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Figure 6. The contrast of related rank and distance

Table 5. The key codes of modi�ed Feature Expansion Algorithm

Algorithm: ComputeRR(dist (o; oi;j ) ; weight; � )
1. for eachoi;j

2. if (dist (o; oi;j ) � r + � )
3. if (dist (o; oi;j ) � 1&&dist(o; oi;j ) > 0)
4. total+ = weight � f [i ][j ];
5. count + +;
6. end if
7. if (dist (o; oi;j ) � 1:5&&dist(o; oi;j ) > 1)
8. total+ = ( weight + � ) � f [i ][j ];
9. count + +;
10. end if
11. Other situation can be done in the same manner . . .
12. end if
13. mean = total=count;
14. end for each

Table 6. The parameter initialization for SSAE

Parameter Initialization for SAE
Input Size 50
Hidden Size 50
Sparsity parameter 0.1
Lambda 3e� 3

Beta 5
Iterations 800
Parameter Initialization for Softmax
Lambda 1e� 4

Iterations 900

To present a detailed evaluation of our extraction model forwater body, four exper-
iments were designed to validate the availability and performance of this model. The
details of the experiments and result analysis were shown below.

4.1. Training and testing dataset preprocessing. As shown in Table 2, �fteen im-
ages were selected uniformly from three di�erent study areas. At �rst, four images from



1924 L. YANG, S. TIAN, L. YU, F. YE, J. QIAN AND Y. QIAN

Table 7. View of the experimental dataset

No Data Volume Training Data Testing Data
1 50000 40000 10000
2 150000 120000 30000
3 250000 200000 50000
4 500000 400000 100000
5 750000 600000 150000

Figure 7. The in
uence of the number of layers

each study area were chosen to make up a dataset for training.The rest of images were
used for testing. Then we get unique feature matrixes one by one through the process of
feature extraction. As shown in Table 7, there were several datasets of di�erent volumes
for experiments.

4.2. The impacts of di�erent number of layers on extraction accur acy. The
number of layers about stacked sparse autoencoder (SSAE) has more to do with accuracy.
Thus, an experiment is executed to �nd the optimal number of layers. The experiment
results were shown in Figure 7.

When the layer number ranged from one to two, extraction accuracy was enhanced.
However, the accuracy had a declining trend when the number was greater than 2. Ob-
viously, the proposed model got the highest accuracy when the number of layers was 2.
With the increase of data volume, the whole accuracy raised steady. When the volume
of dataset was 750000, accuracy increased to 95.74%. Therefore, we set the number of
layers of sparse autoencoder to 2.

4.3. Comparison with SVM and NN. To evaluate the performance of the proposed
model, we selected two frequently-used models as contrasts. Before the experiment, sev-
eral testing experiments were carried out to �nd suitable parameters for SVM and NN.

Figure 8 showed the results of the experiment based on which several conclusions were
summarized:

(1) From high to low, the accuracy of three models can be arranged as: SSAE, NN and
SVM, whose average accuracies are 90.32%, 91.97%, 94.35%, respectively. The proposed
model has marked unique advantages that can learn higher level features from the lower
ones. It can select not much but optimal features which may not be found from the
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Figure 8. The in
uence of di�erent number of layers

Table 8. Initialization parameters of SAE and softmax

Parameter Initialization for SAE
Input Size 100
Hidden Size 100
Sparsity param 0.1
Lambda 3e� 3

Beta 5
Iterations 800
Parameter Initialization for Softmax
Lambda 1e� 4

Iterations 900

given features; (2) Extraction accuracy is under 90% exceptthe proposed model when
data volume is 50000. From a small amount of dataset, SVM and NN cannot learn full-
scale features of the whole water types. Other than surface learning approach, SSAE
adopts greedy layer-wise training method. The original training data is mapped into a
new feature space by means of layer-by-layer feature transformation. These new features
express substantive characteristics of water preferably.As we can see that the accuracy
of our model is 6.51% higher than SVM; (3) Extraction accuracy maintains a steady
increasing trend along with the growth of data volume. Through large amount of data,
further features are learned to extract water precisely.

4.4. The impacts of the size of radius on extraction accuracy. Considering the
neighborhood characteristics for every pixel, we put forward a Feature Expansion Algo-
rithm. Here, we re-process the former dataset and expand thenumber of features from
50 to 100. The initialization of parameters of our model is shown in Table 8.

For Feature Expansion Algorithm, the size of radius has e�ects on extractable accuracy.
Thus, we design an experiment to �nd the best size of radius.

Apparently, in Figure 9, with the increase of radius, the accuracy keeps up a decreasing
tendency. This phenomenon corresponds to our strategy about setting rank for neighbor
pixels in the light of pixels' position. The farther the distance of adjacent pixels is, the
less the target pixel is a�ected. Therefore, we expand the former 50 features to 100 by
making use of Feature Expansion Algorithm.
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Figure 9. The in
uence of the size of radius

Table 9. The increases of accuracy using FEA

Data Volume SVM NN SSAE Total
50000 2.08% 0.59% 0.9% 3.57%
150000 2.13% 1.18% 1.0% 4.31%
250000 2.18% 2.17% 1.24% 5.59%
500000 2.3% 2.51% 1.54% 6.35%
750000 2.32% 2.6% 2.24% 7.16%
Average 2.20% 1.81% 1.38% 5.39%

4.5. Qualitative evaluation of feature expansion algorithm. A new experiment
was conducted on the new dataset for qualitative evaluationof feature expansion algo-
rithm. Similarly, SVM and NN model were regarded as competitors. In the experiment,
each original feature matrixes was expanded to a new matrix with 100 features. Under
di�erent volumes of dataset, �ve line charts are delineatedin Figure 10. In Figure 10,
\50" stands for the number of the original features, and \100" is the number of the new
feature matrix.

In Figure 10, from (a) to (e), we conclude that the Feature Expansion Algorithm has
better ability to describe the characteristics of water body. Among the results, the highest
accuracy is 97.98% (using 50 features, the corresponding accuracy is 95.54%). Table 9
expresses the situation of increases in detail.

5. Conclusions. Water body extraction is still confronted with a long-standing challenge
in removing various shadows (including shadows of mountains, buildings and clouds, etc.)
and eliminating noise within water. To �gure out that, we proposed a model for water
body extraction based on the stacked sparse autoencoder. Many features were concate-
nated for training model. Meanwhile, we put forward a Feature Expansion Algorithm
(FEA) to dig more characteristics for water body.

The experiment results showed that the proposed model has outstanding capability of
feature learning and gets better results by contrasting with the Support Vector Machine
(SVM) and traditional neural network (NN). In particular, b ecause of unsupervised fea-
ture learning, the proposed model provides a lead for using limited number or few training
samples and getting higher accuracy. It makes much sense to decrease the cost of prepar-
ing training data. Getting accurate information of water body by the proposed model,
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(a) Data volume: 50000 (b) Data volume: 150000

(c) Data volume: 250000 (d) Data volume: 500000

(e) Data volume: 750000

Figure 10. The contrast of SVM and NN using Feature Expansion Algo-
rithm on the di�erent volumes of dataset

we can monitor the status of water resources fast and timely.It is of great immediate sig-
ni�cance for protecting the environment and achieving sustainable development.
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