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ABSTRACT. In this paper, we deal with the v-solution path problem for v-support vector
regression (v-SVR). An effective v-solution path algorithm for v-SVR is proposed which
can avoid the infeasible updating path during the adiabatic incremental adjustment for
v. Compared with the existing v-solution path algorithm, our algorithm first solves the
two complications in the dual formulation of v-SVR. Then a novel strateqy is utilized to
address the infeasible updating path problem. Moreover, we prove the feasibility and finite
convergence of our algorithm. Finally, simulation experiment results further demonstrate
that our algorithm can effectively avoid the infeasible updating path, and will converge to
the optimal solution of minimization problem within finite steps.

Keywords: Machine learning, Model selection, v-solution path, Feasibility analysis,
Finite convergence analysis

1. Introduction. The support vector machine (SVM) proposed by Vapnik is a machine
learning algorithm based on statistical learning theory, which can solve small sample
learning problem effectively [1]. To date, SVM has been widely used in many areas, such
as forest fires burned area prediction [2], and fast predictors for large-scale time series [3].
However, there are still some open questions needed to be addressed. The central one is
model selection, i.e., how to tune the parameter of SVM to achieve optimal generalization
capacity [4-6].

The idea of general model selection approach is to select some candidate parameter
values and then apply cross validation (CV) to choose the optimal parameter value among
the candidates [4]. Unfortunately, if the search space is very large, the general model
selection approach must train SVM many times under different parameter settings. This
greatly limits its application in online scenarios.

Over the last decades, various approaches have been developed to address the problem
mentioned above. Based on the piece-wise linear fashion, a novel approach is proposed for
C-SVM (hereinafter referred to as the SvmPath), which can fit the entire solution path for
the regularization parameter C' and only needs to train SVM once [7]. In the work of [8-
10], the SvmPath is extended to the solution path for e-support vector regression (s-SVR),
hereinafter referred to as the SvrPath. The work of [11,12] focuses on the asymptotically
optimal selection of parameter v for »-SVM. In the work of [13], a novel v-solution path
for v-support vector regression (v-SVR) is proposed; however, directly applying it will not
guarantee that there always exists a feasible updating path [14]. To address this issue,
an effective v-solution path for »-SVR (called the v-SvrPath) is proposed in this paper,
which can be viewed as an extension of the SvrPath.
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The main contributions of this paper are summarized as follows. (1) We present an
equivalent formulation of v-SVR such that the constraints are independent of regular-
ization parameter and the size of the training set, and then transform the inequality
constraint of the equivalent formulation into equality constraint. (2) The v-SvrPath en-
sures that there always exists a feasible updating path by utilizing a novel strategy. (3)
We prove the feasibility and finite convergence of the v-SvrPath, which ensures that the
v-SvrPath is reliable and will converge to the optimal solution of minimization problem
within finite steps.

The rest of this paper is organized as follows. Section 2 provides a brief review of
v-SVR, and then discusses how to address the two complications in the dual problem of
v-SVR. The v-SvrPath is presented in Section 3. In Section 4, we prove the feasibility
and finite convergence of the v-SvrPath. The simulation experiments are carried out in
Section 5. Finally, conclusions are made in Section 6.

Notations: R™ denotes the n-dimensional Euclidean space; (x) stands for a variable
without and with %; A stands for the amount of the change of each variable; ‘def above
‘=""means that the left side of the equal sign is defined as the right side; the superscript
T stands for transposition; @ stands for the empty set; det(-) stands for the determinant
of a square matrix; P~! denotes the inverse of the matrix P; eg denotes the all ones
column vector indexed by the set S; 0 denotes the all zeros column vector with proper
dimensions; I,,, denotes the identity matrix with m dimensions; Qg; denotes the subvector
of the matrix Q with the rows and columns indexed by the sets S and ¢, respectively; Qsg
denotes the submatrix of Q with the rows and columns indexed by the set S; My denotes
the i7;th row and the 7;th column of the matrix M, where 4; stands for the corresponding
index in M; M\ denotes the submatrix of M with deleting the 7;th row and #;th column,
where 7; stands for the corresponding index in M.

2. Equivalent Formulation of v-SVR.

2.1. Brief review of v-SVR. The v-SVR proposed by Scholkopf et al. is an interesting
type of SVM [11]. Given a training sample set 7" = {(x1,41),- -, (X;, %)} such that
x; € R" is an input and y; € R is a target output, the v-SVR considers the following
primal problem [15]:
1 14
min P ==|w|*+C (l/€+_z (fz+§z*)>

wb,e £ 2 L=t
st (W) +b) —y S e+ &,y — (Wholx) +b) <e+&, &7 >0,

1=1,---,0,e>0

Here the training samples x; are mapped into a high dimensional reproducing kernel

(1)

Hilbert space (RKHS) by the transformation function ¢, flg*) are nonnegative slack vari-
ables, b is bias, and the e-insensitive loss function means that if w’¢(x;) + b is in the
range of y; + &, no loss is considered. v is the proportion parameter with 0 < v < 1,
which makes one control the number of support vectors and errors. To be more precise, v
is an upper bound on the fraction of margin errors, and a lower bound of the fraction of
support vectors. In addition, with probability 1, asymptotically, v equals both fractions.
Therefore, it is easier to tune parameter v than e-SVR.
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The Corresponding dual problem of (1) is [15]:

l !
rn(lgl D= Z Z (; — af)Hj (aj — oz;f) + ; (o — af)y;
- - - (2)
S.t.Z(Ozi af) = 0; 0<a <C’/lz—1 UGS (i +af) <Cv
= i=1
where H;; = K(x;,%;) = (¢(x;), #(x;)), K is the kernel function, and (-,-) denotes the
inner product in RKHS.

However, in comparison to the dual problem of 5 SVR [15], »-SVR has two complica-
tions: the first one is that the constraints 0 < a < CJl, i =1,---,1 are related to
regularization parameter and the size of the training set, and the second one is that (2)
has an extra inequality constraint.

2.2. Equivalent formulation of v-SVR. To solve the first complication, we multiply
the objective function P of (1) by the size of the training sample set, and consider the
following primal problem:

I !

min P =—|w|*+C (Vl€+2(§i+§f)>

w,b,a,fi(*) 2 =1

st (WIo(xi) +0) —ys <e+6&, yi— (Wo(x) +b) <e+&, e >0,
i=1, 0, 2>0

(3)

It is easy to verify that (3) is equivalent to (1). The corresponding dual problem of (3) is
!

min D = - ZZ( —a})Qy (g — o) = X (s — )y

) i= i=
SIS i ()
st Y (a; —af) =0; Ogag*) <Lyi=1,---,1; Y (g +af) <vl
=1 1=1
where Qi; = H;;/l = ($(xi), ¢(x;)) /I and y; = —y;/C.
Note that the original training sample set 7' = {(x1, 1), -, (Xx;, y1)} will be changed
into the new training sample set F' = {(x1,v}),- -, (x5, ;) }-

Furthermore, we can solve the second complication based on Theorem 2.1.
Theorem 2.1. For (), if 0 < v < 1, there are always optimal solutions which happen at
!
the equality > (o + af) = vl.
i=1

The detailed proof of Theorem 2.1 can be found in [15], and it is omitted here.

! !
Based on Theorem 2.1, Y (o; + o) < vl can be replaced by Y (o; + o) = vl. There-
=1 i=1
fore, we can consider the following minimization problem instead of (4):

min D= 5303 (05— 00)Qu (0 — ) = 33 (05— o)

0‘1(*) 1=1j= i=1

l l (5)
st S (—a)=0,0<a” <1, i=1,---, 3 (o +af) = v

i=1

=1

Given the solution of (5), the regression function of (1) can be written as:

Fx) = (o — ) [K(x;,%)/1] +b (6)

Jj=1
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According to the convex optimization theory, the solution of (5) can be obtained by
minimizing the following convex quadratic objective function under constraints:

ol !
min w 2522(%‘ — ;) Qi (aj - aj) - Z(ai — af)y;
> =1 7=1 =1
l l (7)
+bZ(aZ~ —af)+p (Z (i + ) —1/l>
i=1 i=1
where b and p are Lagrange multipliers.

For simplicity, let 6; = a; — o denote coefficient difference. Then optimizing (7) leads
to the following Karush_Kuhn_Tucker (KKT) conditions [16,17]:

oW
9= Ban ZZQiﬂj—y;‘i‘b‘i‘P (8)
j=1
. 0w :
gz':acﬁ:—ZQiﬂj‘i‘yz{—bﬂLP:—giﬂL?P (9)
1 j:1
oW .
i=1
oW
P
Combining (8) and (9), we have:
gi > 2p, g8 <0 0, =—1 a; =0, of =1 Vi € Fg
g =2p,9,=0 -1<60,<0 o,=0,0<0af<1 VieSg
0<gi9:<20  0;=0 o =a; =0 Vie R (12)
gi=0, g- =2p 0<#,<1 0<aq <1, a; =0 Vi e Sy,
9: <0, g5 >2p 0, =1 a=1a =0 Vi € Ej,

According to the value of #;, the new training sample set F' can be partitioned into
three sets as shown in Figure 1.

(a) the set S = S, USg = {i|0 < |6;] < 1}, which includes margin support vectors
strictly on the margins;

Ex(ﬁ; =-1)

// Sp(-1<4,<0)

R(6,=0)

5,(0<8 <1)
/ L i
/ E (6, =1)

(whtp)=

FiGure 1. Partition of the new training samples F' into three sets by the
KKT conditions
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(b) the set £ = E U Egr = {i||0;] = 1}, which includes error support vectors exceeding
the margins;

(c) the set R = {i||¢;] = 0}, which includes the remaining vectors ignored by the
margins.

For convenience, suppose the number of samples in the sets S;, Sg and S is p, ¢ and
r, respectively. It is obvious that r = p + ¢.

3. The v-SvrPath. In this section, we will address the infeasible updating path problem
during the adiabatic incremental adjustments for v. The v-SvrPath mainly includes two
parts: the first part is to establish the initial solution for the minimization problem of
(5), and the second part is to explore the solution path for all values of 0 < v < 1.

3.1. Initialization. Firstly, the v-SvrPath needs to establish an initial solution for the
minimization problem (5).

Lemma 3.1. If v = 0, the optimal solution of (5) is ag*) =0.
!
Proof: If v = 0, then according to (11), we have > (a; +af) = 0. Note that 0 <

=1
ag*) <1, so we have ag*) = 0. This completes the proof.

In fact, the v-SvrPath can be started at any intermediate solution, i.e., the solution of
the minimization problem (5) for any feasible value of 0 < v < 1.

Lemma 3.1 means 0; = 0, so according to (8) and (9), we have g; = —y. + b + p and
g9F =y, — b+ p. Then according to (12), we have:

{Oé—ly£+b+p§2p (13)
0<y;—b+p<2p
Picking 1, = arg max y. and i = arg rzrélél y;, for simplicity, we assume that i, and i_
are unique. Obviously, the solutions of (13) can be formulated as follows:
p>(yi, —vi)/2 (14)
be (v, —pyi + 7] (15)

Furthermore, if p = (y;, — yi_)/2, then we can easily obtain that b = (i, + vl )/2,
which constitutes the initial state of p and b. This also means that two or more samples
start in the set S [8].

3.2. v-Solution path. After the initialization was completed, the v-solution path will
explore the solution path by gradually increasing v from 0 to 1 under the condition of
rigorously keeping all samples satisfying the KKT conditions, and will terminate when
S, (i + af) = 1 is met. Furthermore, if the v-SvrPath starts at an intermediate solu-
tion, we can also obtain the solution path similarly [8].

A. Adiabatic Incremental Adjustments for v. During the adiabatic incremental
adjustments for v, in order to keep all the samples satisfying the KKT conditions, the 6;
in the set S, the Lagrange multipliers b and p should also be adjusted accordingly. Based
on (8)-(11), we can obtain the following linear system:

Ag; = Z Aa;Qij — Z AdjQij +Ab+Ap =0, Vie Sy (16)

JESL JESR

Agr=—> Ao;Qij+ Y AajQij —Ab+Ap=2Ap—Ag; =0, VieSp (17)

JESL JESR
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d Ao - Aaj=0 (18)

JESL JESR
Y Aaj+ Y Aaj=Av-l (19)
JESL JESR

Note that Av in (19) is unknown and Av > 0. Obviously, if S;, = @ or Sg = @, (18) and
(19) cannot hold simultaneously. We call this the contradictions, as shown in Table 1.

TABLE 1. Two cases of contradiction during the adiabatic incremental ad-
justment for v

St and Sg Contradiction (Yes or No)
SL 7é %) SR 7é %) No
S, =0 | Sp# 90 Yes
S, £ | Sp=0 Yes

To avoid the contradictions, we change (19) into the following form:
> Aa;+ > Aal+9Ap+Ap=0 (20)
JESL JESR
where, An is the introduced new variable for adjusting ZjesL o + ZjESR aj; U is any
negative number; YAp is an extra term. The purpose of using 9Ap + An is to prevent

the occurrence of contradictions as described in Table 1; meanwhile, it can preserve the
KKT conditions of the path.

Define eg = [ESL ], mg = [ ©s1 ], Qss = [ Qspsn —Qsisn ] and Aag =

Sk —€gy, —Qsps, Qspse
[ Ao, Aai! ]T, where Aag, = [Aay, -+, Agp]" and Aaf, = [Aaf,--, Acf]".
Then the linear systems (16)-(18) and (20) can be further rewritten as:
[ 0 0 mf 1 [ Ab 1 [ 0 1
0 9 e |- Ap | =—111Ap (21)
Lms e; QSSJ [AQSJ LOJ
P

Letting M = P~!, then we have:

Ab By
{AACCS}M{E}MM{;?)JM’ Vies (22)
B

where 3, stands for the dimension corresponding to b in the column vector B, and /3, and
,82(*) have the same meaning. From (20) and (22), we have > ;¢ Aaj + > g Aaj =
— (96, + 1)An, which also indicates that the control of the adjustment of ZjeSL a; +
> jesy @ can be realized by An.

Finally, substituting (22) into (16) and (17), we have:

Ag; = <Z BiQij — Z @sz + By + 5;;) An e (IAY) (23)

JESL JESR

Ag; = (‘ > BiQi+ Y BiQu— B+ 5;:) ap™ rran = (28, - ) An (24)

JESL JESR
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Obviously, we have 7; =0, 7 € Si, and 777 =0, 7 € Sk.
B. Compute the Minimal Adjustment Quantity An™. The samples will mi-
grate between the sets S, E, and R during the adiabatic incremental adjustment for v,
and this will change the composition of the sets S, F, and R. To address this problem, the
strategy is to compute the minimal adjustment quantity An™™ such that only a certain
sample migrates among the sets S, F, and R. Four cases should be considered to account
for such membership changes.

Case 1: A certain sample is added to the set S from the set £ or R. Firstly, compute
the sets I92 = {B; # 0,4 € S} and I°® = {BF # 0,4 € Sp}, where the samples with

B =0 are ignored due to their insensitivity to An.

2
Then the minimal possible adjustment is

AnC’asel — min (al(*) _ 1/62(*)7 af*)/ﬁf*)) .

ieISLUISR

Case 2: A certain sample is removed from the set S to the set E. Firstly, compute
the sets IY* = {r;, > 0,i € E;} and I"®* = {7 > 0,i € Eg}, where the samples with
TZ-(*) = 0 are similarly ignored. Then the minimal possible adjustment is An©®5¢? =

() /(%)

minielfLulfR Yi /Ti
Case 3: A certain sample is removed from the set S to the set R. Similar to Case
2, compute the set I® = {Ti(*) <0,i € R}. Then the minimal possible adjustment is

AnC’asei’) — miniel§ g(*)/T(*)

1 i
Case 4: Y., (a; +a}) =1, i.e., the termination condition is met. Then the minimal
adjustment is Ap©eset = <22:1 (i +af) — l)/(ﬁﬁp +1).
Finally, the largest of the four values

Anmin — max {AT]C’asel,AnCase2,AnCase3,AnCase4} (25)
will constitute the minimal adjustment quantity of An.

C. Update v, b, p, o', glg*), S, E, and R. After the minimal adjustment quan-

tity of Ap™n is determined, v can be updated from (19), (20), and (22) as v + v —
(98, + 1)Anp™ /1. Similarly, b, p, ol and ¢ can be updated from (22), (23), and (24)
as b < b+ ByAn™n p < p+ B,Anpmin, ag*) — ag*) +B§*)A77mi“, and gf*) — gf*) +TZ-(*)A77mi“,
respectively.

After the minimal adjustment quantity of An™™ is calculated, if Ap™® = Ap©@sed the
v-SvrPath has to terminate. Otherwise, the index of the sample yielding the maximum in
(25) can be obtained, which is denoted as ¢. Then the sets S, E, and R can be updated
accordingly as follows: if Ap™i" = An©es¢! then ¢ should be added to the set S from the
set E or R; if Ap™™ = An©ee2 then ¢ should be removed from the set S to the set E; if
Anp™in = Ap©se3 then t should be removed from the set S to the set R.

D. Update the Inverse Matrix M. Once a sample is either added to or removed from
the set S, there will also exist changes in matrix P and its inverse matrix M accordingly.
Fortunately, based on Lemma 3.2, we can update the inverse matrix M effectively.

Lemma 3.2. Suppose a (s + 1) x (s + 1) matriz B can be partitioned into a block form:

A
B =
[ 77tT Qut ]
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where A is an s X s matriz and A can be inverted, My = [Qy, -+, Qst) T, and Qu # 0 is
a constant.
Then, the inverse matriz of B can be expanded as follows:

1 1 T
SN R
where By = —A7'n; and k = 1B + Q-

Furthermore, if B can be inverted and (B™')y # 0, t = s+ 1, then the inverse of matriz
of A can be contracted as follows:

((B_l)*t ) (B_l)t*)\tt

ATl = (B_l)\tt - (B-1),,

where x # 1.

It can be easily verified that BB™' = I,,; and AA™" = I,. The detailed proof of
Lemma 3.2 can be found in [18], and it is omitted here.

Based on Lemma 3.2, if a sample (x;, y;) is added to the set S, then the inverse matrix
M can be expanded as follows:

M 1 g
we o o] V][] @
@b 2
where ~; = g’: =-M ZtéSLt , Tt = %4 <j€ZSL BjQij - jeZSR B;Qz‘j + Bb) + Bp +
B —21Qspt

Qu, 22 = +1 or z; = —1, which corresponds to the sample (x;,y;) is added to the set S,
or Sg, respectively.

Similarly, if a sample (x;, ;) is removed from the set S, then the inverse matrix M can
be contracted as follows:
(M*t ) Mt*)\tt

A (27)

M <— M\tt -

E. The v-SvrPath Procedure. The v-SvrPath procedure is presented in Algorithm
1.

4. Feasibility and Finite Convergence Analysis.

4.1. Feasibility analysis. The feasibility analysis ensures that each adiabatic incremen-
tal adjustment for v is reliable.

Assumption 4.1. The matriz Qgs is positive definite.

It is easy to prove that if and only if {y]é(x1), -,y ¢(x,)} in RKHS is linearly in-
dependent, the matrix Qgg is positive definite. For example, if radial basis function is
used as kernel function and where x; # £x; for ¢ # j, then the matrix Qgg is positive
definite. In practice, the size of matrix Qgg is a very small number in comparison to the
dimension of RKHS. Therefore, Assumption 4.1 always holds.

Lemma 4.1. Suppose that C, D, E, F are n x n, n Xx m, m X n, m X m matrices,
respectively, and F has the inverse matrixz. Then

det ({ g g D = det(F) - det(C — DF 'E).
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Algorithm 1 The v-SvrPath procedure: high-level summary.

Inputs: the new training set F' and Av
(=) (%)

Outputs: «; ’, ¢g; ’, and v

1: Initialize v, b, p, Z( , gZ , S, E, R // see Section 3.1
2: repeat

3:  set exception<«—false.

4 while v > 0 and exception<—false

5: compute B8 and 7" // see Section 3.2.A
6: compute Anmin // see Section 3.2.B
7 update v, b, p, « Z ), gZ , S, Fand R // see Section 3.2.C
8: update the inverse matrlx M // see Section 3.2.D
9: ifSLZQ&ELZQOI'SRzg&ERZQ

10: set exception<—true

11: update v < v + 0.001

12: endif

13: endwhile
14: until v < 1

Proof: It is easy to verify that

CD| [I, D] [C-DF'E 0
EF| |0F F'E I, |’

C D I, D C-DF'E 0
Therefore, we have det({E F]) dt<[ 0 F] [ F'E Im]) B

det(F) - det(C — DF 'E). This completes the proof.

Theorem 4.1. During the adiabatic incremental adjustments for v, if 9 < 0, then the
determinant of P is always greater than zero.

0 0 ml}
Proof: Define the matrix N = 0 0 ef |. From Assumption 4.1, Qgg is

m;,; € QSS
positive definite. This means Qggs can be inverted, and det(Qgss) > 0. From Lemma 4.1,
we have:

TO-1 TO-1
a9 = (@ (GG Q)
= det(Qss) - (m5Qzgm. - e5Qzge; — mgQge, - e5Qzgm.) .
According to the Cauchy-Schwarz inequality, we have:
mgQgsm, - e5Qge; — mgQgge; - egQggm, > 0.
Then we have det(N) > 0.
Similarly, we can also prove that det(Py,,) = det(Qgs) - det(—m%Qgsmg) < 0.

By comparison of determinant expansion of the second row for P and N, and note that
¥ < 0, then we have det(P) = det(N) + ¢ det(P\,,) > 0. This completes the proof.

Corollary 4.1. During the adiabatic incremental adjustments for v, there always exists
the inverse matriz M for P.

Proof: According to the necessary and sufficient condition of an inverse matrix, the
corollary can be easily derived from Theorem 4.1.
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Lemma 4.2. During the adiabatic incremental adjustments for v, if S = {(xs,y:)}, then
B =o0.

Proof: From (22), we have 6,5*) = —M,,. According to the definition of an inverse
matrix, we have My, = (—1)"**det(P\ ) /det(P). If S;, = {(xs, )}, it is easy to verify
that det(P\,) = 0, and then based on Theorem 4.1, we have ;, = 0. Similarly, if
Sr = {(xs,y:)}, we can prove that 8 = 0. This completes the proof.

Theorem 4.2. During the adiabatic incremental adjustments for v, the set S will always
be nonempty.

Proof: From Lemma 4.2, if S = {(xy,y;)}, then ﬁt(*) = 0, so the sample ¢ will not be
removed from the set S. This completes the proof.

4.2. Finite convergence analysis. The finite convergence analysis ensures that the
v-SvrPath will converge to the optimal solution of minimization problem within finite
steps.

Lemma 4.3. During the adiabatic incremental adjustments for v, if 9 < 0, then 98,+1 >
0 with equality if and only if S, = @ or S = @.
Proof: Based on (22) and the proof in Theorem 4.1, we have:
(—1)tetiedet(Py,,) . det(P) —ddet(Py,,)  det(N)
det(P) B det(P) ~ det(P)
with equality if and only if det(N) = 0.

This requires that mLQgem;, - eLQgie, — mLiQgse, - €L Qgim, = 0, i.e., m; = eg or
m, = —eg, which means that S;, = @ or S = &. This completes the proof.

9B, +1=—1-

> 0.

Corollary 4.2. For each adiabatic incremental adjustment for v, we have An™" < 0.

Proof: According to the presentation in 3.2.B, based on Lemma 4.3 and (25), it is easy
to prove that Ap™" = max { Ap@ase! ApCese2 ApCased3 ApCesetl — max{< 0,< 0,< 0, <
0} <O0.

Lemma 4.4. During the adiabatic incremental adjustments for v, if S;, = @, then we
have Bf =0, 7, = =2/0, 77 =0, Vi € F, if Sp = &, and then we have ff =0, 1, =0,
TF=-2/0,Vi€F.

Proof: If S, = &, then the matrices P and N change into

0 0 —ef, 0 0 —ef,
P= 0 v el and N = 0 0 e, |, respectively.
—€s, €5, Qsgsy —€s, €5, Qsgsy

According to (22) and the definition of the inverse matrix, we have
Bi = —(=1)"*" det(P\,;) /det(P) = det(P\ ;) /det(P),Vi € F
By = — (—=1)"*" det(Py ) /det(P) = det(P\ ) /det(P)
Bo=— (_1)ip+ip det(P\pp)/det(P) = _det(P\pp)/det(P)
It is easy to verify that det(P,,;) = 0, and then based on Theorem 4.1, we have ;" = 0,
v If ii.also easy to verify that det(N) = 0, and then from the proof of Theorem 4.1, we

have det(P) = det(N)+d det(P\,,) = ¥ det(P,,), which means 5, = —1/1. Furthermore,
we can prove that det(P\,,) = ¢ and det(P) = ¥ det(P\,,) = —Vq, so we have 3, = —1/4.
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Then according to (23) and (24), we have 7, = 8, + 3, = —2/V and 77" = =3, + 3, = 0,
Vi € F', respectively.

Similarly, if S = &, then we can also prove that g =0, 7, =0, 7 = =2/9, Vi € F.
This completes the proof.

Assumption 4.2. If S, = &, then E;, # &; if Sp = &, then Er # 9.

Simply speaking, Assumption 4.2 assumes that there does not exist the case of S;, = @
and E;, = @ or Sg = @ and Er = @ during the adiabatic incremental adjustments for v.
We call these two cases the exceptions. In fact, the occurrence of exceptions is infrequent
during the adiabatic incremental adjustments for v, which is verified by the experimental
results in Section 5.

If an exception occurs, from Lemma 4.4 and the presentation in 3.2.B, the minimal
adjustment quantity of Ap™® = max{—o0, —00, —00, —00} = —oo. This implies that
there does not exist any change in the composition of the set S, i.e., the corresponding
solution will not vary with An. Therefore, the v-SvrPath must terminate.

Theorem 4.3. During the adiabatic incremental adjustments for v, the convex quadratic
objective function W in (7) is strictly monotonically increasing.

Proof: Suppose that the previous adjustment is indexed by k£ — 1, the immediate next
adjustment is indexed by k, note that ﬂg) =0 and ﬂg) = 0, according to (7), (10), (12),
(18) and (22)-(24), we have:

Wk =gyt 57 gl (Bi[kfl] _ Bf[k’”)An[’“*”

1eF

4 % ZE’WH (@WH _ B:[kfﬂ) (An[k—l})Z _ %Bl[jcu (9 + B 1) (An[kq])?

icF
+ gk (Z (az[k—ﬂ 4 a;‘[k—ﬂ) _ l) Aple=1l
icF
_ -1 %5£k1} (9 + A1) (An[k,uy
i 5,[,’“*” (Z (az[k—ﬂ 4 a;‘[k—ﬂ) _ l) A1,
icF

In other words,

_ _ _ _ ol 1 ~ ~
Wik k=1 = glk=tl g plk=1 (Z (az[k U gk 1}) g ; (9 + A1) Aplt 1]) _
ic€F

Then according to Corollary 4.2 and (25), it is easy to verify that

I 1 . .
Aplt=1l (Z (o T ai™ ) — 1= 5 (0 + B At ”) > 0.

i€l
Furthermore, according to the proof of Lemma 4.3, it is easy to prove that 5,[,]“_1} > 0.

Therefore, we have WK — Wk=1 > 0, i.e., the convex quadratic objective function W in
(7) is strictly monotonically increasing. This completes the proof.

Theorem 4.4. During the adiabatic incremental adjustments for v, the convexr quadratic
objective function W in (7) will converge to the optimal solution of min W within

0<aM<1
finite steps.
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Based on Theorem 4.3 and the strong duality theorem of the convex quadratic pro-
gramming problem [19], it is easy to verify that the conclusion in Theorem 4.4 is correct.
The detailed proof of Theorem 4.4 is omitted here, and a similar analysis can be found in
[20].

5. Simulation Experiments. The simulation experiments include two parts: the first
part is the verification experiments of the v-SvrPath, and the second part is comparison
with the SvrPath.

Table 2 summarizes the three benchmark datasets used in our experiments, which
can be downloaded from http://archive.ics.uci.edu/ml/datasets.html. The datasets are
randomly partitioned into the training set and the test set, and some are selected as the
validation test. For each dataset, the validation test is used in a 5-fold CV procedure
to obtain the optimal v, and then the minimum regression error (MRE) can be obtained
using the optimal parameter on the test set.

TABLE 2. Three benchmark datasets used in our experiments

Dataset | Attributes | Mlaximal training set | Validation set | Test set

Triazines 60 186 60 60
MPG 8 392 80 80

Housing 13 506 120 120

All experiments are performed on a 3.1 GHz Inter® Core™ i5-2400 with 4GB RAM
and MATLAB 2010a platform. According to the description after Assumption 4.1, the
radial basis function, K (x;, x;) = exp(||x; — x;||?/20?), is used in our experiment, where
the kernel width parameter o is set as 0.7071, 2.2361 and 7.0711, respectively. The
function of the regularization parameter C'is to transform the original training set T into
the new training set F', so for simplicity, C' is set as 1. The parameter ¢ is fixed at —1,
because it is easy to verify that ¢ only depends on det(Qgs), and ¥ is independent of
the membership changes of the sets S, E, and R. Moreover, if an exception occurs, we
reestablish the initial solution for a larger value v <— v + 0.001.

5.1. The verification experiments of the v-SvrPath. In order to demonstrate the
effectiveness of the v-SvrPath, we count the numbers of “contradictions”, “exceptions”
and “steps”, where “contradictions” represents the two cases of contradiction as shown in
Table 1, “exceptions” stands for the events as described in Assumption 4.2, and “steps”
denotes the iterations of adiabatic incremental adjustments for v.

A. Triazines Dataset. The task of triazines dataset is to predict the qualitative struc-
ture activity relationships. The dataset has 186 instances with 60 continuous attributes.
Table 3 presents the numbers of contradictions, exceptions and steps over 50 trials with
the training data size of 40, 80, 120 and 160, respectively. From Table 3, it is obvious
that the occurrences of contradictions and exceptions are infrequent, which means the
v-SvrPath can effectively avoid the infeasible updating path during the adiabatic incre-
mental adjustments for v. In addition, the number of steps shows that the v-SvrPath will
converge to the optimal solution of minimization problem within finite steps.

B. MPG Dataset. The MPG dataset was taken from the StatLib Library which is
maintained at Carnegie Mellon University. The data concerns city-cycle fuel consumption
in miles per gallon, to be predicted in terms of 3 multivalued discrete and 5 continuous
attributes. Table 4 presents the numbers of contradictions, exceptions and steps over 50
trials with the training data size of 80, 160, 240 and 320, respectively. From Table 4,
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TABLE 3. Results of the v-SvrPath on the Triazines dataset

Dataset size 40 80 120 | 160
contradictions | 0.4 | 1.3 2.4 2.5
o = 0.7071 | exceptions 0.1 0.3 0.2 0.0
steps 72.2 1 125.6 | 176.4 | 157.3
contradictions | 0.5 1.3 2.3 2.4
o = 2.2361 | exceptions 0.3 0.1 0.5 0.1
steps 73.2 | 85.4 | 148.3 | 186.5
contradictions | 0.7 | 1.8 2.0 2.3
o = T7.0711 | exceptions 0.2 0.3 0.1 0.1
steps 75.2 | 88.6 | 132.6 | 188.5

TABLE 4. Results of the v-SvrPath on the MPG dataset

Dataset size 80 | 160 | 240 | 320
contradictions | 15.9 | 26.3 | 14.3 | 1.2

o = 0.7071 | exceptions 1.1 1.3 0.7 | 0.6
steps 36.5| 82.3 | 134.2| 6.5
contradictions | 19.4 | 40.2 | 32.1 | 2.3

o = 2.2361 | exceptions 1.2 1.0 1.1 0.7
steps 45.3 | 135.6 | 189.6 | 17.6
contradictions | 20.6 | 18.2 | 185 | 1.8

o = T7.0711 | exceptions 1.2 1.0 0.8 | 0.8
steps 52.3| 80.2 | 145.3 | 36.4

it is clear that the number of exceptions is much less than that of contradictions and
the occurrences of exceptions are infrequent. This proves that the v-SvrPath can avoid
the infeasible updating path as far as possible. Furthermore, from the number of steps
in Table 4, we can draw the conclusion that the v-SvrPath will converge to the optimal
solution of minimization problem within finite steps.

C. Housing Dataset. The housing dataset was taken from the StatLib Library which
is maintained at Carnegie Mellon University. The dataset has 506 instances with 13
continuous attributes and 1 binary-valued attribute, which concerns housing values in
suburbs of Boston. Table 5 presents the number of contradictions, exceptions and steps
over 50 trials with the training data size of 120, 240, 360 and 480, respectively. Table
5 shows that the number of exceptions is much less than that of contradictions and the
occurrences of exceptions are infrequent. Therefore, the v-SvrPath can avoid the infeasible
updating path as far as possible. Moreover, the number of steps in Table 5 demonstrates
that the v-SvrPath will converge to the optimal solution of minimization problem within
finite steps.

Furthermore, we can also verify that the set S will always be nonempty and there
always exists the inverse matrix M for P on three benchmark datasets, which will ensure
that the feasible updating path for v is reliable.

5.2. Comparison with the SvrPath. In order to demonstrate the superiority of the v-
SvrPath, we compare the v-SvrPath with the SvrPath proposed in [13]. The parameter of
insensitive loss function € in the SvrPath is fixed at 1. The size of validation set is shown
in Table 2. According to GCV standard, model selection was done based on the v-solution
path obtained from the SvrPath and the v-SvrPath, respectively. Table 6 presents the
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TABLE 5. Results of the v-SvrPath on the Housing dataset

Dataset size 120 | 240 | 360 | 480
contradictions | 16.1 | 25.8 | 14.5 | 1.1

o = 0.7071 | exceptions 1.1 1 1.0 0.8 | 0.7
steps 36.2 1 82.01 1 133.4| 6.5
contradictions | 17.2 | 42.3 | 28.3 | 1.6

o = 2.2361 | exceptions 09| 1.0 09 | 0.7
steps 42.51134.2 | 185.3 | 17.6
contradictions | 21.3 | 18.2 | 18.6 | 1.8

o = 7.0711 | exceptions 1.1 1 1.0 0.8 | 0.8
steps 53.2 | 79.8 | 134.6 | 36.1

TABLE 6. MRE between the SvrPath and the v-SvrPath

Dataset set Triazines | MPG | Housing
P = 00T a0 % | 62 |84
7= 22060 | oz o4 |8
P =TT | 131 740 | 1013

MRE based on the size of test set as shown in Table 2. It is clear that the v-SvrPath
has smaller MRE, which can be interpreted by the fact that the parameter of »-SVR is
easier to be tuned than e-SVR. This means that the v-SvrPath is more effective than the
SvrPath.

In summary, there always exists a feasible updating path for the v-SvrPath, and the
v-SvrPath will converge to the optimal solution of minimization problem within finite
steps. Moreover, the MRE of the v-SvrPath is smaller than the SvrPath, which further
verifies the effectiveness and advantage of the v-SvrPath.

6. Conclusions. This paper investigates the effective v-solution path problem for v-
SVR. Based on the equivalent formulation of »-SVR and a novel strategy, we propose the
v-SvrPath and present its v-solution path. Theoretical analysis and simulation experiment
results verify that the v-SvrPath is effective. Furthermore, the v-SvrPath is superior to
the SvrPath.

In fact, the v-SvrPath can be directly applied to a broader class of learning machines
which have several equality constraints, such as incremental learning for v-support vec-
tor classification [21], incremental learning for »-SVR [22], and incremental learning for
support vector ordinal regression [23].

Unfortunately, we need Assumptions 4.1 and 4.2 for the proofs. In addition, we just
assume that only one sample can migrate from set to set at any given time. Can multiple
samples migrate from set to set at the same time? There is no apparent reason that this
is impossible. We hope this question can be answered sometime in the future.
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