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Abstract. Association rules mining aims to extract associations and causal structures
among sets of frequent items or attributes in a large database. In practice, interesting as-
sociation rules satisfy predefined minimum support and minimum confidence thresholds.
In this paper, we propose a new method to generate association rules which is focused on
not only minimum support and minimum confidence thresholds but the shortest length
among templates as well. The method is started by a transformation of a multi-valued
information system into a two-valued information system. Then, we obtain a binary
relation on attributes of the two-valued information system and deduce a topology for the
attributes based on the binary relation. Formally, we present two kinds of lattice of the
topology for the attributes, i.e., the lattice of the topology and the quotient lattice of the
topology which is deduced by the support of subset of attributes. Finally, a new associ-
ation rules mining method is proposed in the quotient lattice of the topology. Compared
with existing association rules mining methods, three contributions of our method were
achieved as: (1) all templates of association rules are embedded in the quotient lattice of
the topology for attributes; (2) templates with minimum support are shown in the quo-
tient lattice, and association rules with confidence 1 can be mined from equivalent classes
of the quotient lattice; (3) association rules with minimum support, confidence 1 and
the shortest length among templates can be extracted from the quotient lattice. Examples
show that our method is an alternative approach for association rules mining.
Keywords: Knowledge discovery in databases, Association rules, Topology, Lattice

1. Introduction. Data mining is very important and necessary in information process-
ing due to data’s abundant. The aim of data mining is to extract non-trivia, implicit,
previously unknown and potentially useful information from large databases, such as sci-
entific data [4, 5, 18, 27], network data [7, 11, 17, 19, 20], and marketing transaction data
[2, 13, 14, 22, 23]. Data mining can be categorized into several models, including associ-
ation rules, clustering and classification. Among these models, association rule mining is
the most popular method, which aims to extract associations and causal structures among
sets of frequent items or attributes in a database, and is widely applied to scientific and
industrial problems.
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Formally, association rules are extracted from a two-valued information system A =
(U,A) (where U is a non-empty finite set of objects, A is a non-empty finite set of at-
tributes, and for any ai ∈ A, there is mapping ai : U −→ {0, 1}), they are considered
interesting if it satisfies predefined minimum support and minimum confidence thresholds
[1]. For any fixed A = (U,A), association rules are formalized as follows [21]: Let a
template T = {ai1 , ai2 , · · · , aik} ⊆ A, the support supportA (T ) ⊆ U of T be the number
of objects which satisfy T . An association rule generated from T is

φ ≡ P → Q ≡
∧

ail∈P

ail →
∧

air∈Q

air , (1)

where P ∪Q = T and P ∩Q = ∅, P and Q are antecedent and consequent, respectively.
The confidence of the association rule φ is defined by

confidenceA (φ) =
supportA (ai1 ∧ ai2 ∧ · · · ∧ aik)

supportA (
∧

ail∈P
ail)

. (2)

There are two basic steps used in existing methods to generate association rules (in which,
s and c are thresholds of support and confidence, respectively) [21]:

1. Generate as many templates T = {ai1 , ai2 , · · · , aik} as possible such that supportA
(T ) ≥ s and supportA (T ∧ am) < s for any am 6= T ;

2. Search for a partition {P,Q} of T such that

(a) supportA (P ) ≤ supportA (T )
c

;
(b) P has the shortest length among templates satisfying (a).

In practice, interesting associations rules are more than enough; therefore, it is desirable
to find methods reducing them under no loosing information, and many improved asso-
ciation rule mining methods have been proposed, such as in [3], the COGAR framework
is introduced to efficiently support constrained generalized association rule mining, the
opportunistic confidence constraint is proposed to discriminate between significant and
redundant rules. In [8], the approach based on soft set theory is presented to mine reg-
ular association rules and maximal association rules from transactional data-sets. In [9],
a change and connection mining algorithm are used to discover a time delay between the
quantitative changes in the data of two temporal information systems and for generating
the association rules of changes from their connected decision table. In [12], the particle
swarm optimization algorithm is presented to determine the threshold values of support
and confidence, the method improves the quality of association rule mining. In [16], a
form of the directed item-sets graph is used to store the information of frequent item-sets
of transaction databases, the mining algorithm of maximal frequent item-sets and associa-
tion rule based on the graph is developed. In [26], a strategy is defined by combining data
mining and statistical measurement techniques, including redundancy analysis, sampling
and multivariate statistical analysis, which is used to discard the non-significant rules. In
[29], an evolutionary method for directly mining interesting association rules is developed,
in which, whether a rule is interesting or not is decided by its relation to the keywords,
and semantic and statistical methods are introduced to measure such relation.
Different from the above mentioned association rule mining method, the proposed

method pays more attention to generate association rules in which P has “the short-
est length among templates”. To do this, we firstly present a multi-valued information
system which is transformed into a two-valued information system, obtain a binary re-
lation on attributes of the two-valued information system and deduce a topology for the
attributes based on the binary relation, all of these are also discussed in our previous work
[24]. Then, we discuss two kinds of lattice of the topology for the attributes, the lattice
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of the topology and the quotient lattice of the topology. Formally, the quotient lattice of
the topology is deduced by the support of subset of attributes. Finally, a new association
rules mining method is proposed in the quotient lattice of the topology. We compare our
new method with [20], which is widely used in existing association rules mining methods.
The results demonstrate the advantages and effectiveness of our method.

2. Topology for Attributes of Multi-valued Information Systems. Multi-valued
information systems can be transformed into two-valued information systems by adding
attributes, formally, let A = (U,A) be a multi-valued information systems, i.e., for any
ai, Vai = {vi1, vi2, · · · , viji}. Accordingly, we can obtain a new set of attributes as follows:

A′ = {a11, a12, · · · , a1j1 , a21, a22, · · · , a2j2 , · · · , an1, an2, · · · , anjn}, (3)

in which, aij′i (i ∈ {1, 2, · · · , n}, j′i ∈ {1, 2, · · · , ji}) is equal to vij′i of ai ∈ A, then A ′ =
(U,A′) is a two-valued information system, i.e., for any aij′i ∈ A′, aij′i : U −→ {0, 1} means
that in A = (U,A), object u has the value vij′i or not, i.e., aij′i(u) = 1 or aij′i(u) = 0,
respectively.

Example 2.1. Considering the multi-valued information system A = (U,A), in which,
U = {u1, u2, · · · , u18} with 18 objects and A = {a1, a2, a3, a4, a5} (shown in Table 1).

Table 1. The information system A = ({u1, u2, · · · , u18}, {a1, a2, a3, a4, a5})

A\U u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18

a1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1
a2 1 2 2 2 2 1 1 2 2 2 3 2 2 2 2 2 2 2
a3 1 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1
a4 2 0 0 0 1 1 1 0 0 0 0 0 0 2 0 0 0 0
a5 2 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 2

According to Table 1, we obtain new A′ = {a11(= 0), a12(= 1), a21(= 1), a22(= 2), a23(=
3), a31(= 1), a32(= 2), a41(= 0), a42(= 1), a43(= 2), a51(= 1), a52(= 2)}, and the new two-
valued information system A ′ = (U,A′) is shown in Table 2.

Table 2. The two-valued information system A ′ = (U,A′)

A′\U u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18

a11 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0
a12 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1
a21 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
a22 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1
a23 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
a31 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1
a32 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0
a41 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1
a42 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
a43 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
a51 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0
a52 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1

Formally, we have the following notions based on a two-valued information system.
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Definition 2.1. Let A = (U,A) be a two-valued information system. ∀ai ∈ A, denotes

Aai = {aj ∈ A|∀u′ ∈ {u ∈ U |ai(u) = 1}, aj(u′) = 1}, (4)

then a binary relation on A induced by Aai (ai ∈ A) is defined as follows, ∀ai, aj ∈ A,

RA(ai, aj) =

{
1, if aj ∈ Aai ,
0, if aj /∈ Aai .

(5)

Example 2.2. Continues Example 2.1. Based on Table 2 and (4), we can obtain Aa11 =
{a11}, Aa12 = {a12}, Aa21 = {a21}, Aa22 = {a22}, Aa23 = {a11, a23, a31, a41, a52}, Aa31 =
{a31}, Aa32 = {a32}, Aa41 = {a41}, Aa42 = {a32, a42, a51}, Aa43 = {a11, a43, a52}, Aa51 =
{a51} and Aa52 = {a52}. The binary relation on A induced by the above mentioned Aaij

is shown in Table 3.

Table 3. The binary relation on A = {a11, a12, · · · , a51, a52}

A′\A′ a11 a12 a21 a22 a23 a31 a32 a41 a42 a43 a51 a52
a11 1 0 0 0 0 0 0 0 0 0 0 0
a12 0 1 0 0 0 0 0 0 0 0 0 0
a21 0 0 1 0 0 0 0 0 0 0 0 0
a22 0 0 0 1 0 0 0 0 0 0 0 0
a23 1 0 0 0 1 1 0 1 0 0 0 1
a31 0 0 0 0 0 1 0 0 0 0 0 0
a32 0 0 0 0 0 0 1 0 0 0 0 0
a41 0 0 0 0 0 0 0 1 0 0 0 0
a42 0 0 0 0 0 0 1 0 1 0 1 0
a43 1 0 0 0 0 0 0 0 0 1 0 1
a51 0 0 0 0 0 0 0 0 0 0 1 0
a52 0 0 0 0 0 0 0 0 0 0 0 1

Proposition 2.1. [24] Let A = (U,A) be a two-valued information system. The binary
relation RA on A is decided by (5), then

1. aj ∈ Aai implies Aaj ⊆ Aai;
2. RA is a reflexive and transitive relation on A.

Definition 2.2. Let A = (U,A) be a two-valued information system and the binary
relation RA on A decided by (5). (A,RA) is called an approximation space of A = (U,A).
For any Ak ⊆ A, RA(Ak) and RA(Ak), which are called upper approximation and lower
approximation of Ak about (A,RA), respectively, are defined as follows:

RA(Ak) = {ai ∈ A|Ak ∩ Aai 6= ∅}, RA(Ak) = {ai ∈ A|Aai ⊆ Ak}, (6)

where, Aai is defined by (4).

In Example 2.2, we notice that RA is not symmetrical relation on A, i.e., it is not
necessary that RA is an equivalence relation on A. If RA is an equivalence relation, then
for any ai ∈ A, Aai is the equivalent class [ai]RA

, and ∀Ak ⊆ A, RA(Ak) = {ai ∈ A|[ai]RA
∩

Ak 6= ∅}, RA(Ak) = {ai ∈ A|[ai]RA
⊆ Ak}, which are Pawlak’s upper approximation and

lower approximation.

Theorem 2.1. [24] Let A = (U,A) be a two-valued information system. TRA
= {RA(Ak)|

Ak ⊆ A} is a topology for A, (A, TRA
) is a topological space. TRA

is called the topology
for A induced by the approximation space (A,RA).
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Theorem 2.2. Let A = (U,A) be a two-valued information system. Then,

1. for any ai ∈ A, RA(Aai) = Aai, i.e., Aai ∈ TRA
;

2. BA = {Aai|ai ∈ A} is a basis for the topology TRA
.

Proof: 1) According to (6), for any aj ∈ RA(Aai), we have aj ∈ Aaj ⊆ Aai , hence,
RA(Aai) ⊆ Aai . On the other hand, according to Proposition 2.1, for any aj ∈ Aai implies
Aaj ⊆ Aai , this means aj ∈ RA(Aai), i.e., Aai ⊆ RA(Aai).

2) For any ai ∈ A, due to ai ∈ Aai , hence,
∪

ai∈AAai = A. On the other hand, ∀Aai ,
Aaj ∈ BA, assume ak ∈ Aai ∩ Aaj , then ak ∈ Aai and ak ∈ Aaj , according to Proposition
2.1, Aak ⊆ Aai and Aak ⊆ Aaj , i.e., ak ∈ Aak ⊆ Aai ∩Aaj holds, according to [10] (Chapter
1 Theorem 11), BA = {Aai|ai ∈ A} is a basis for TRA

.
According to Theorem 2.2, the topology TRA

for A can be expressed by

TRA
=

 ∪
Aai∈B

′
A

Aai|∀B′
A ⊆ BA

 . (7)

Because any multi-valued information system (U,A) can be transformed into its two-
valued information system (U,A′) by (3), we still denote the topology TRA

for A of (U,A)
without confusion by TRA′ for A

′ of (U,A′).

Example 2.3. Continues Example 2.2. According to Theorem 2.2, we know that BA =
{Aa11 , Aa12 , · · · , Aa52} is a basis for TRA

for A of Table 1. According to (7), theoretically,
we have |TRA

| ≤ 212 = 4096, i.e., the number of subsets of BA. In this example, e.g., due
to Aa23 = {a11, a23, a31, a41, a52}, hence, Aa11 ∪ Aa23 = Aa23 ∪ Aa31 = · · · = Aa23, hence,
|TRA

| is less than 4096, we finally generate TRA
and |TRA

| = 879 without including ∅.

3. Lattice Structures of the Topology TRA
for A of (U,A). In this section, we

discuss two kinds of lattice structure of the topology TRA
for A of (U,A). One is directly

constructed on TRA
, the other is constructed on a quotient set of TRA

.

3.1. The lattice of the topology TRA
. TRA

for A of (U,A) is generated by the basis

BA = {Aai|ai ∈ A}, i.e., for any T1 ∈ TRA
, T1 =

∪Aai⊆T1

ai∈A Aai . TRA
is an poset by ∀T1, T2 ∈

TRA
, T1 ≤ T2 ⇐⇒ T1 ⊆ T2. On the poset (TRA

,≤), for any T1, T2 ∈ TRA
, we define

T1 ∧ T2 =

Aai⊆T1∪
ai∈A

Aai

 ∩

Aaj⊆T2∪
aj∈A

Aaj

 , (8)

T1 ∨ T2 =

Aai⊆T1∪
ai∈A

Aai

 ∪

Aaj⊆T2∪
aj∈A

Aaj

 . (9)

For any ak ∈ T1 ∧ T2, we have ak ∈
∪Aai⊆T1

ai∈A Aai and ak ∈
∪Aaj⊆T2

aj∈A Aaj , hence, there exists
Aai ⊆ T1 and Aaj ⊆ T2 such that ak ∈ Aai and ak ∈ Aaj , according to Proposition 2.1,
Aak ⊆ Aai and Aak ⊆ Aaj , hence,

Aak ⊆

Aai⊆T1∪
ai∈A

Aai

 ∩

Aaj⊆T2∪
aj∈A

Aaj

 = T1 ∧ T2,
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this means T1 ∧ T2 =
∪

ak∈T1∧T2
Aak ∈ TRA

. Similarly, we can prove T1 ∨ T2 ∈ TRA
.

Formally, (8) and (9) can be generalized to any subset T ⊆ TRA
, i.e.,

∧T =
∧
Ti∈T

Ti =
∩
Ti∈T

Aai⊆Ti∪
ai∈A

Aai

 ;

∨T =
∨
Ti∈T

Ti =
∪
Ti∈T

Aai⊆Ti∪
ai∈A

Aai

 .

Theorem 3.1. (TRA
,∧,∨) is a complete lattice, in which, ∧ and ∨ are defined by (8) and

(9), A and ∅ are the greatest and least elements, respectively.

Example 3.1. Continues Example 2.3. (TRA
,∧,∨) generated by the basis BA = {Aa11 ,

Aa12 , · · · , Aa52} is a complete lattice with 880 elements, in which, A = {a11, a12, a21, a22,
a23, a31, a32, a41, a42, a43, a51, a52} and ∅ are the greatest and least elements, respectively.
Aa11 = {a11}, Aa12 = {a12}, Aa21 = {a21}, Aa22 = {a22}, Aa31 = {a31}, Aa32 = {a32},
Aa41 = {a41}, Aa51 = {a51} and Aa52 = {a52} are all atoms of (TRA

,∧,∨), A − Aa11,
A− Aa12, A− Aa21, A− Aa22, A− Aa31, A− Aa32, A− Aa41, A− Aa51 and A− Aa52 are
all molecules.

3.2. The quotient lattice of the topology TRA
. For any T ∈ TRA

, we denote

T ↓ = {u ∈ U |∀ai ∈ T, ai(u) = 1}. (10)

As a special case, we denote ∅↓ = U . In Example 2.1, according to Table 3, we have
A↓

a12
= ({a12})↓ = {u ∈ U |a12(u) = 1} = {u5, u7, u18} and T ↓ = (Aa12 ∪ Aa22)

↓ =
({a12, a22})↓ = {u ∈ U |a12(u) = a22(u) = 1} = {u5, u18}.

Proposition 3.1. For any T1, T2 ∈ TRA
, 1) if T1 ⊆ T2, then T ↓

1 ⊇ T ↓
2 ; 2) (T1 ∪ T2)

↓ =

T ↓
1 ∩ T ↓

2 .

For any T1, T2 ∈ TRA
, we define a binary relation on TRA

as follows:

T1 ∼↓ T2 if and only if T ↓
1 = T ↓

2 , (11)

it is obvious that ∼↓ is an equivalence relation on TRA
, denote quotient set (all equivalent

classes of TRA
) of TRA

decided by ∼↓ as TRA
/ ∼↓= {[T ]|T ∈ TRA

}, in which, for any
T ′ ∈ [T ], T ′↓ = T ↓.

Example 3.2. Continues Example 2.3. There are 880 elements in TRA
. According

to (11), we obtain 46 equivalent classes of TRA
, in which, there are 760 elements in

[{a11, a12}] = [A] such that {a11, a12}↓ = A↓ = ∅, 9 elements in [{a11, a21, a31}] such
that {a11, a21, a31}↓ = {u1}, 15 elements in [{a11, a22, a31}] such that {a11, a22, a31}↓ =
{u2, u3, u4, u8, u9, u10, u13, u15, u16, u17}, and 16 elements in [{a12, a31}] such that {a12,
a31}↓ = {u18}, all equivalent classes of TRA

are shown in Table 4.

For any [T ] ∈ TRA
/ ∼↓ and |[T ]| > 1, ([T ],⊆) is a poset, e.g., [{a11, a32, a42, a51}] such

that ({a11, a32, a42, a51})↓ = {u6}, [{a11, a32, a42, a51}] = {{a11, a32, a42, a51}, {a11, a21, a32},
{a11, a21, a32, a42, a51}, {a11, a21, a51}, {a11, a32, a51}, {a11, a21, a32, a51}}, in which, {a11, a21,
a32} ⊆ {a11, a21, a32, a51} ⊆ {a11, a21, a32, a42, a51}, and {a11, a21, a32, a42, a51} is the great-
est element.

Proposition 3.2. For any [T ] ∈ TRA
/ ∼↓ and T ′, T ′′ ∈ [T ], 1) T ′ ∪ T ′′ ∈ [T ]; 2) there

exists the greatest element in [T ], denoted by ∪[T ].
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Table 4. All equivalent classes of TRA

[A] [Aa11 ] [Aa12 ] [Aa21 ] [Aa22 ] [Aa23 ] [Aa31 ] [Aa32 ] [Aa41 ] [Aa42 ] [Aa43 ] [Aa51 ] [Aa52 ] [{a11, a21}]
760 1 1 1 1 2 1 1 1 2 1 1 1 1
[{a11, a22}] [{a11, a31}] [{a11, a32}] [{a11, a41}] [{a11, a51}] [{a11, a52}] [{a12, a21}] [{a12, a22}]

1 1 1 1 1 1 5 1
[{a12, a31}] [{a12, a32}] [{a21, a32}] [{a22, a31}] [{a41, a52}] [{a22, a32}] [{a22, a41}] [{a22, a51}]

16 4 4 2 1 1 1 1
[{a22, a52}] [{a31, a41}] [{a31, a52}] [{a12, a22, a32}] [{a11, a32, a41}] [{a11, a41, a52}]

1 1 1 6 9 1

[{a11, a32, a42, a51}] [{a11, a21, a31}] [{a11, a22, a31}] [{a22, a41, a52}] [{a31, a41, a52}]
6 9 15 1 1

[{a11, a22, a32}] [{a11, a22, a41}] [{a11, a22, a43, a52}] [{a11, a31, a41}] [{a11, a31, a52}]
6 1 3 1 1

In fact, according to (10), T ′↓ = {u ∈ U |∀ai ∈ T ′, ai(u) = 1} = T ′′↓ = {u ∈ U |∀aj ∈
T ′′, aj(u) = 1} = {u ∈ U |∀ak ∈ T ′ ∪ T ′′, ak(u) = 1} = (T ′ ∪ T ′′)↓, i.e., operator ∪ is closed
in [T ] and there exists the greatest element in [T ]. For any [T1], [T2] ∈ TRA

/ ∼↓, define

[T1] ≤ [T2] if and only if T ↓
1 ⊆ T ↓

2 , it is obvious that (TRA
/ ∼↓,≤) is a poset. For any

[T1], [T2] ∈ TRA
/ ∼↓, we define

[T1] ∨ [T2] = [(∪[T1]) ∩ (∪[T2])], [T1] ∧ [T2] = [T1 ∪ T2]. (12)

Due to for any T1, T2 ∈ TRA
,

(∪[T1]) ∩ (∪[T2]) =
∪

ai∈(∪[T1])∩(∪[T2])

Aai ∈ TRA
, T1 ∪ T2 =

∪
aj∈T1∪T2

Aaj ∈ TRA
,

this means [(∪[T1]) ∩ (∪[T2])] ∈ TRA
/ ∼↓ and [T1 ∪ T2] ∈ TRA

/ ∼↓.

Proposition 3.3. For any T ′ ∈ [T1] and T ′′ ∈ [T2], [T1 ∪ T2] = [T ′ ∪ T ′′].

Proof: According to (10) and (11), for any T ′ ∈ [T1] and T ′′ ∈ [T2], {u ∈ U |∀ai ∈
T1, ai(u) = 1} = T ↓

1 = T ′↓ = {u ∈ U |∀aj ∈ T ′, aj(u) = 1} and {u ∈ U |∀ak ∈ T2, ak(u) =

1} = T ↓
2 = T ′′↓ = {u ∈ U |∀al ∈ T ′′, al(u) = 1}, according to Property 3.3, we have

(T1 ∪ T2)
↓ = T ↓

1 ∩ T ↓
2 = T ′↓ ∩ T ′′↓ = (T ′ ∪ T ′′)↓, i.e., T1 ∪ T2 ∈ [T ′ ∪ T ′′].

Theorem 3.2. (TRA
/ ∼↓,∧,∨) is a bounded lattice, called quotient lattice of TRA

, in
which, the greatest and least elements are [∅] and [A], respectively.

Example 3.3. Continues Example 3.2. According to (10), for any [T ] ∈ TRA
/ ∼↓, we

can obtain each [T ]↓ = T ↓ (shown in Table 5).

4. Association Rules Mining from TRA
/ ∼↓. In quotient lattice (TRA

/ ∼↓,∧,∨)
of TRA

, we denote Ts ⊂ TRA
/ ∼↓ such that for any [T ]s ∈ Ts, 1) [T ]s ∈ TRA

/ ∼↓; 2)
1 ≤ s ≤ |U |; 3) |[T ]↓s| ≥ s; 4) for any [T ′] ∈ TRA

/ ∼↓, if [T
′] < [T ]s, then |[T ′]↓| < s. We

propose the following method to generate an association rule φ:

1. Generate templates: For any [T1] ∈ TRA
/ ∼↓ such that there exists [T ]s ∈ Ts and

[T ]s ≤ [T1] in the quotient lattice (TRA
/ ∼↓,∧,∨) of TRA

, then T ∈ [T1] is a template;
2. Search a partition: For any T ∈ [T1], if P ∈ [T1] is a minimum element, then

T = {P,Q (= T − P )}.
Formally, the partition T = {P, T − P} generates the association rule φ ≡ P −→ Q,
where Q = T − P and the confidence of φ is

confidenceA (φ) =
supportA (T )

supportA (P )
=

|T ↓|
|P ↓|

= 1. (13)
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Table 5. All [T ]↓ = T ↓ of TRA
/ ∼↓

[Aa11 ] [Aa12 ] [Aa21 ] [Aa23 ]
{u1, u2, u3, u4, u6, u8, u9, u10, u11, u12, u13, u14, u15, u16, u17} {u5, u7, u18} {u1, u6, u7} {u11}

[Aa22 ] [Aa32 ] [Aa42 ]
{u2, u3, u4, u5, u8, u9, u10, u12, u13, u14, u15, u16, u17, u18} {u5, u6, u7, u12, u14} {u5, u6, u7}

[Aa31 ] [Aa43 ] [{a11, a21}] [{a12, a21}] [{a12, a31}]
{u1, u2, u3, u4, u8, u9, u10, u11, u13, u15, u16, u17, u18} {u14} {u1, u6} {u7} {u18}

[Aa41 ] [{a12, a22, a32}] [Aa52 ]
{u2, u3, u4, u8, u9, u10, u11, u12, u13, u15, u16, u17, u18} {u5} {u1, u11, u12, u14, u18}

[Aa51 ] [{a11, a21, a31}] [{a11, a32, a41}] [{a12, a22}]
{u2, u3, u4, u5, u6, u7, u8, u9, u10, u13, u15, u16, u17} {u1} {u12} {u5, u18}

[{a11, a22}] [{a11, a31}]
{u2, u3, u4, u9, u10, u12, u13, u14, u15, u16, u17} {u1, u2, u3, u4, u8, u9, u10, u11, u13, u15, u16, u17}
[{a11, a22, a32}] [{a12, a32}] [{a21, a32}][{a11, a32}] [{a22, a32}] [{a31, a52}] [{a41, a52}]

{u12, u14} {u5, u7} {u6, u7} {u6, u12, u14} {u5, u12, u14} {u1, u11, u18} {u11, u12, u18}
[{a11, a41}] [{a22, a31}]

{u2, u3, u4, u8, u9, u10, u11, u12, u13, u15, u16, u17} {u2, u3, u4, u8, u9, u10, u13, u15, u16, u17, u18}
[{a11, a51}] [{a11, a52}] [{a22, a52}] [{a22, a41, a52}]

{u2, u3, u4, u6, u8, u9, u10, u13, u15, u16, u17} {u1, u11, u12, u14} {u12, u14, u18} {u12, u18}
[{a22, a41}] [{a11, a22, a41}]

{u2, u3, u4, u8, u9, u10, u12, u13, u15, u16, u17, u18} {u2, u3, u4, u8, u9, u10, u12, u13, u15, u16, u17}
[{a22, a51}] [{a11, a22, a43, a52}] [{a11, a32, a42, a51}]

{u2, u3, u4, u5, u8, u9, u10, u13, u15, u16, u17} {u14} {u6}
[{a31, a41}] [{a11, a31, a41}]

{u2, u3, u4, u8, u9, u10, u11, u13, u15, u16, u17, u18} {u2, u3, u4, u8, u9, u10, u11, u13, u15, u16, u17}
[{a11, a22, a31}] [{a11, a31, a52}] [{a11, a41, a52}] [{a31, a41, a52}]

{u2, u3, u4, u8, u9, u10, u13, u15, u16, u17} {u1, u11} {u11, u12} {u11, u18}

Accordingly, the extracted association rule φ satisfies: 1) the template of φ is supportA (T )

≥ s; 2) the confidence of φ is c ≤ supportA (T )
supportA (P )

= confidenceA (φ) = 1; 3) the antecedent P

of φ has the shortest length among the template of φ.

Example 4.1. In Table 5, if we fix s = 10, then we obtain all [T ] ∈ TRA
/ ∼↓ such that

|[T ]↓| ≥ 10, i.e., {[Aa11 ], [Aa22 ], [Aa31 ], [Aa41 ], [Aa51 ], [{a11, a22}], [{a11, a31}], [{a11, a41}],
[{a22, a41}], [{a31, a41}], [{a22, a51}], [{a11, a22, a31}], [{a11, a51}], [{a22, a31}], [{a11, a22, a41}],
[{a11, a31, a41}]}, in which, T10 = {[{a11, a22, a31}]}. Due to [{a22, a31}] = {{a22, a31}, {a22,
a31, a41}}, we have a template T = a22 ∧ a31 ∧ a41 and the association rule

φ1 ≡ {a22, a31} −→ {a41} ≡ (a2 = 2) ∧ (a3 = 1) −→ (a4 = 0)

with supportA (T ) = |T ↓| = |[{a22, a31}]↓| = 11 and confidenceA (φ1) =
|{a22,a31,a41}↓|
|{a22,a31}↓| = 1.

Due to [{a11, a22, a31}] = {{a11, a22, a31}, {a11, a22, a51}, {a11, a31, a51}, {a11, a41, a51}, {a11,
a22, a31, a41}, {a11, a22, a31, a51}, {a11, a22, a41, a51}, {a11, a31, a41, a51}, {a11, a22, a31, a41, a51},
{a22, a31, a51}, {a22, a41, a51}, {a22, a31, a41, a51}, {a31, a51}, {a31, a41, a51}, {a41, a51}}, mini-
mum elements of [{a11, a22, a31}] are {{a31, a51}, {a41, a51}, {a11, a22, a31}, {a11, a22, a51}},
for any T ∈ [{a11, a22, a31}] such that T is not a minimum element, T is a template such
that supportA (T ) = |[{a11, a22, a31}]↓| = 10, e.g., for template {a11, a22, a41, a51}, we gen-
erate the association rule φ2 ≡ a11∧a22∧a51 −→ a41. For template {a11, a22, a31, a41, a51},
we generate association rules φ3 ≡ a11 ∧ a22 ∧ a31 −→ a41 ∧ a51, φ4 ≡ a11 ∧ a22 ∧ a51 −→
a31 ∧ a41, φ5 ≡ a31 ∧ a51 −→ a11 ∧ a22 ∧ a41 and φ6 ≡ a41 ∧ a51 −→ a11 ∧ a22 ∧ a31.
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5. Example Analysis. In this section, we continue Example 2.1 to compare our new
method with that based on frequent closed itemsets [20]:

1. Discover all frequent closed itemsets in the information system, i.e., itemsets that
are closed and have support greater or equal to minsupport (threshold s of support);

2. Derive all frequent itemsets from the frequent closed itemsets found in phase 1. This
phase consists in generating all subsets of the maximal frequent closed itemsets and
deriving their support from the supports of frequent closed itemsets;

3. For each frequent itemset T ⊆ A found in phase 2, generate all associate rules
that can be derived from T and have confidence greater or equal to minconfidence
(threshold c of confidence).

The itemset T ⊆ A is said to be frequent if the support of T is at least s, and denote
the set of frequent itemsets L = {T ⊆ A|support(T ) ≥ s}. The set of maximal frequent
itemsets is defined as M = {T ∈ L|@T ′ ∈ L, T ⊂ T ′}. To define frequent closed itemset,
one needs Galois connection (↑, ↓) between the power set of U and power set of A, i.e.,

for each U1 ⊆ U , U↑
1 = {ai ∈ A|∀u ∈ U1, ai(u) = 1} and ↓ is defined by (10), then the

itemset I ⊆ A is a closed itemset if and only if I = (I↓)↑. The closed itemset I is said
to be frequent if the support of I is at least s, and denote the set of all frequent closed
itemsets FC = {I ⊆ A|I = (I↓)↑ and support(I) ≥ s}. The set of maximal frequent
closed itemsets is defined as MC = {I ∈ FC|@I ′ ∈ FC, I ⊂ I ′}. Evidently, all maximal
frequent itemsets are also maximal frequent closed itemsets, i.e., M = MC. From the
formal concept analysis point of view, for each I ∈ FC, (I↓, I) is a formal concept of
A = (U,A) and FC is the set of intensions of all formal concepts of A = (U,A) such
that support(I) ≥ s.

Example 5.1. Let the two-valued information system be shown in Table 2. To mine asso-
ciate rules from Table 2, the method based on frequent closed itemsets firstly generates all
frequent closed itemsets, i.e., the closure function Gen-Closure (using the closure operator
↓↑ to generators and their support) is applied to each generator in FCCi (generators of
size i = 1, 2, · · · , |A|), determining the candidate closed itemsets and their support. Next,
the set of candidate closed itemsets obtained is pruned: closed itemsets with sufficient sup-
port value are inserted in the set of frequent closed itemsets FCi (generator of the frequent
closed itemset). Finally, generators in the set FCCi+1 (containing all i+1-generators that
will be used to construct the set of candidate frequent closed itemsets at iteration i+1) are
determined by applying the function Gen-Generator (it returns the the set FCCi+1) to the
generators of frequent closed itemsets in FCi. This process takes place until FCCi+1 is
empty. Then, all frequent closed itemsets have been produced and their support is known.
During iterations of generating all frequent closed itemsets, one pass over the two-valued
information system is necessary, in order to construct the set of candidate frequent closed
itemsets (closures of generators) and count their support, e.g., for i = 1 in Table 2,
i.e., 1-itemsets generators FCC1 = {a11, a12, a21, a22, a23, a31, a32, a41, a42, a43, a51, a52}, by
applying Gen-Closure on FCC1, all candidate closed itemsets are shown in Table 6.

Table 6. Candidate closed itemsets (CCI) of FCC1

FCC1 a11 a12 a21 a22 a23 a31
CCI {a11} {a12} {a21} {a22} {a11, a23, a31, a41, a52} {a31}
FCC1 a32 a41 a42 a43 a51 a52
CCI {a32} {a41} {a32, a42, a51} {a11, a43, a52} {a51} {a52}
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Assuming that minsupport is s = 4, according to Table 5, we obtain FC1 = {{a11},
{a22}, {a31}, {a32}, {a41}, {a51}, {a52}}. By applying Gen-Generator on FC1, we ob-
tain FCC2 = {{a11, a22}, {a11, a31}, {a11, a32}, {a11, a41}, {a11, a51 }, {a11, a52}, {a22, a31},
{a22, a32}, {a22, a41}, {a22, a51}, {a22, a52}, {a31, a32}, {a31, a41}, {a31, a51}, {a31, a52}, {a32,
a41}, {a32, a51}, {a32, a52}, {a41, a51}, {a41, a52}, {a51, a52}}. This process takes place until
FCCi+1 is empty. Finally, we obtain all frequent closed itemsets FC={{a11}, {a22}, {a31},
{a32}, {a41}, {a51}, {a52}, {a11, a22}, {a11, a31}, {a11, a41}, {a11, a51}, {a11, a52}, {a22, a41},
{a22, a51}, {a31, a41}, {a11, a22, a41}, {a11, a31, a41}, {a22, a31, a41}, {a11, a22, a31, a41, a51}}.
Based on frequent closed itemsets FC =

∪|A|
i=1 FCi, frequent itemsets L =

∪
k Lk can be

derived, i.e., we put each frequent closed itemset I ∈ FC in the set of frequent itemsets L|I|
corresponding to the size of I and determine the size k of the largest frequent itemsets.
Then we construct all sets Li, starting from Lk down to L1, the set Li−1 is completed
using itemsets in Li. For each i-itemset I in Li, all (i− 1)-subsets of I are generated. All
subsets that are not present in Li−1 are added to the end of Li−1 with support value equal
to the support of c. This process takes place until L1 has been completed. According to
above mentioned FC, frequent itemsets L =

∪
k Lk is shown in Table 7.

Table 7. Frequent itemsets L =
∪

k Lk based on FC

L1 {{a11}, {a22}, {a31}, {a32}, {a41}, {a51}, {a52}}
L2 {{a11, a22}, {a11, a31}, {a11, a41}, {a11, a51}, {a11, a52}, {a22, a41}, {a22, a51}, {a31, a41}}
L3 {{a11, a31, a41}, {a11, a22, a41}, {a22, a31, a41}}
L5 {{a11, a22, a31, a41, a51}}

For {a11, a22} ∈ L2, 1-subsets are {a11} ∈ L1 and {a22} ∈ L1, there is no 1-subsets
added to the end of L1. For {a22, a31, a41} ∈ L3, 2-subset {a22, a31} is not present in
L2 and support({a22, a31}) = support({a22, a31, a41}) = 11, hence, {a22, a31} is added to
the end of L2. For {a11, a22, a31, a41, a51} ∈ L5, 4-subsets are not present in L4 = ∅ and
their support value are equal to the support of {a11, a22, a31, a41, a51}, hence, L4 = {{
a11, a22, a31, a41}, {a11, a22, a31, a51}, {a11, a22, a41, a51}, {a11, a31, a41, a51} , {a22, a31, a41, a51
}}. Based on all frequent itemsets and their support, the problem of generating valid
association rules can be solved in a straightforward manner, i.e., for every frequent itemset

I1, all subsets I2 of I1 are derived and the ratio support(I1)
support(I2)

is computed, if it is at least

minconfidence c, then the rule I2 −→ (I1 − I2) is generated, e.g., according to L4 and L5,
we can generate a11 ∧ a31 ∧ a41 ∧ a51 −→ a22 with support 10 and confidence 1.

Example 5.2. Let the two-valued information system be shown in Table 2. To mine
associate rules from Table 2, the method proposed in this paper is as follows: 1) Se-
lect subset B of the basis BA = {Aai|ai ∈ A} for the topology of Table 2 such that
for each Aaj ∈ B, support(Aaj) ≥ s, Assuming s = 4, according to Table 5, we ob-
tain B = {{a11}, {a22}, {a31}, {a32}, {a41}, {a51}, {a52}}; 2) Basis B is used to generate
the topology such that their support is at least minsupport, in the example, the topology
is L =

∪
k Lk of Example 5.1; 3) Generate the quotient lattice L/ ∼↓ of the topology

by using operator ↓, in this example, L/ ∼↓= {[{a11}], [{a22}], [{a31}], [{a32}], [{a41}],
[{a51}], [{a52}], [{a11, a22}], [{a11, a31}], [{a11, a41}], [{a11, a51}], [{a11, a52}], [{a22, a41}],
[{a22, a51}], [{a31, a41}], [{a11, a31, a41}], [{a11, a22, a41}], [{a22, a31, a41}], [{a11, a22, a31, a41,
a51}]}; 4) Generate valid association rules in L/ ∼↓, i.e., for every equivalent classe
[I] ∈ L/ ∼↓, we can extract valid association rules such that their support is at least
minsupport, confidence 1 and the shortest length antecedent that is a minimum element
in [I], e.g., in equivalent classe [{a11, a22, a31, a41, a51}], we can extract association rules
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“a41 ∧ a51 −→ a11 ∧ a22 ∧ a31” with support 10, confidence 1 and the shortest length
antecedent a41 ∧ a51 that is a minimum element in [{a11, a22, a31, a41, a51}].

Compared with Examples 5.1 and 5.2, differences between them are: 1) In Example 5.1,
all frequent closed itemsets are generated by using the closure operator ↓↑ to generators
and their support. In the method proposed in this paper (Example 5.2), all frequent closed
itemsets are included in equivalent classes of the quotient lattice L/ ∼↓ of the topology
for attributes A, i.e., all frequent closed itemsets are the greatest elements of equivalent
classes of the quotient lattice L/ ∼↓ such that their support at least minsupport, e.g.,
{a22, a31, a41} is a frequent closed itemsets with support 11 by the closure operator ↓↑, on
the other hand, {a22, a31, a41} is the greatest element of equivalent class [{a22, a31, a41}];
2) In Example 5.1, all frequent itemsets are generated by all i-subsets of a frequent closed
itemsets I (i ≤ |I|) with their support values equal to the support of I. In Example 5.2, all
frequent itemsets are generated by basis Basis B with their support at least minsupport,
and they are equivalent classes by the equivalence relation ∼↓, e.g., frequent itemsets
[{a22, a31, a41}] = {{a22, a31}, {a22, a31, a41}}; 3) In Example 5.1, interesting association
rules satisfy their support and confidence at least minsupport and minconfidence. In
Example 5.2, interesting association rules satisfy at least minsupport and minconfidence
as well as the shortest length of their antecedent.

6. Conclusions. In this paper, associate rules mining is finished in the quotient lattice
(TRA

/ ∼↓,∧,∨) of TRA
, its advantages are that 1) the relation among attributes is ex-

plained by the basis BA; 2) the topology TRA
is generated by the basis BA; 3) templates

are found in the quotient lattice. Extracted associate rules satisfy at least minsupport c,
confidence 1 and the shortest length of antecedents.
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