International Journal of Innovative
Computing, Information and Control ICIC International ©)2013 ISSN 1349-4198
Volume 9, Number 8, August 2013 pp. 3415-3436

BUILDING COMMUNICATION SOFTWARE: A PROJECT-BASED
APPROACH FOR TEACHING C++4 OBJECT-ORIENTED
PROGRAMMING

YEN-LIN CHEN!, CHUAN-MING Liv!, CHUAN-YEN CHIANG?
SHYAN-MING YUAN? AND JENQ-HAUR WANG!H*
!Department of Computer Science and Information Engineering
National Taipei University of Technology

No. 1, Sec. 3, Chung-hsiao E. Rd., Taipei 10608, Taiwan
*Corresponding author: jhwang@csie.ntut.edu.tw

2Department of Computer Science
National Chiao Tung University
No. 1001, University Road, Hsinchu 30050, Taiwan
smyuan@cs.nctu.edu.tw

Received July 2012; revised November 2012

ABSTRACT. This paper presents a project-based remedial curriculum for teaching the
C++ programming language, as well as object-oriented programming (OOP) skills and
concepts. The pedagogical approach of the proposed curriculum comprises of a set of
homemade projects to assist students in learning essential C++ and OOP skills quickly
by accordingly implementing a large-scale communication software system. Based on
constructivist learning technology, the proposed project-based curriculum can effectively
enhance the learning effectiveness and interests of students via hands-on, minds-on,
and learning-by-doing practices related to their lives. Based on the student survey and
grade assessment results, the proposed project-based curriculum and practical homemade
projects demonstrate effectiveness and feasibility in motivating student to enhance C++
and OOP skills and incorporate these skills for developing practical, large-scale software.
Keywords: Computer science education, Project-based approach, Communication soft-
ware, Object-oriented programming (OOP)

1. Introduction. In contemporary information and communication technology (ICT)
industries, language programming and object-oriented programming (OOP) have become
essential skills for engineers graduating from computer science (CS) related departments.
Programming courses are generally offered in the undergraduate curricula of computer
science related departments [1,2]. Whereas fundamental OOP features are usually taught
in conventional OOP courses, the ability to develop a large-scale software system to
solve practical and technical problems is still difficult for students to learn and develop.
Therefore, a practical lab-based or project-based curriculum is necessary for developing
student abilities to incorporate various OOP programming skills in designing large-scale
software [3].

Courses in various object-oriented programming languages, such as C/C++, C#, Java,
and Delphi, are widely offered in contemporary computer science and engineering cur-
ricula [4]. The conventional OOP courses might adopt the largest share of course time
for teaching the essential topics of OOP, including data types, string and I/O processing,
class design, inheritance, and generic programming technicalities [5]. To assist students in
learning OOP skills and concepts, computer-assisted educational and learning systems are
developed to assist course instructors in enhancing teaching performance [6,7]. However,

3415

3416 Y.-L. CHEN, C.-M. LIU, C.-Y. CHIANG, S.-M. YUAN AND J.-H. WANG

although students might have chances to practice some of the aforementioned OOP con-
cepts and technicalities in a traditional programming curriculum, they mostly practice the
concepts and technicalities via isolated and small-scale programming exercises (no more
than hundreds of code lines) throughout the entire curriculum. Moreover, in a typical
computer science curriculum in Computing Curricula CC2001 [1,2], the advanced course
for training students to implement relatively large-scale software is generally offered in
the Capstone Project or Major Project in the senior or junior year, whereas the basic
programming courses are given in the first two to three semesters. Therefore, some gaps
exist in the sophomore year of students developing abilities to incorporate programming
skills for designing and completing a software application.

According to the constructivist learning technology from epistemological theory [8],
the hands-on, minds-on, and learning-by-doing practices can significantly promote the
learning effectiveness and interests in some technological courses, such as the autonomous
robotic laboratory [9], high performance computer networks [10,11], computer architec-
ture and embedded system courses [12,13], and control system engineering education [14].
To resolve the aforementioned problems in the programming curriculum, project-based
teaching approaches based on the constructivist learning technology, which involve practi-
cal projects related to students’ lives and interests, are presented to improve the students’
learning performance and interests in the programming courses [15-17]. Based on the
attraction and popularity of computer games among students, Chen and Cheng [15] pre-
sented an object-oriented framework for computer game programming, and utilized this
programming framework to design a project-based OOP laboratory to instruct the sopho-
more students to incorporate and enhance their programming skills after enrolling in the
fundamental programming courses. In Zhu’s OOP teaching approach [16], the financial
literacy of students’ lives, including student loan concerns, savings and debt management,
and mortgage calculation topics, are arranged into a project-based Java OOP course to
help students study the programming skills toward overcoming life’s obstacles. Pérez and
Rosell [17] proposed a goal-directed course for students to design a robotic motion planning
software, offering students opportunities to practice and incorporate C++ programming
skills, opensource software libraries, and development tools.

Because of the industrial trends of information and communication technology (ICT)
in the authors’ country, industrial employers primarily require software engineers hav-
ing the abilities to program communication software, embedded system software, device
drivers, and multimedia signal processing applications of consumer electronics products.
The C++ programming language is essential for students seeking technical jobs, because
C++ language technicalities can provide not only high-level programming features, such
as object-orientation paradigms and generic programming, but also low-level program-
ming features, such as bit-wise and device I/O control abilities [18,19]. Although the
steep learning curve of the C++ programming language may diminish students’ interests
and motivations while performing coursework, relevant studies on four-year undergraduate
computer science curricula, such as CC2001 [1,2] and project-based programming labora-
tory courses [15], can offer sufficient training for students to practice C++ programming
and OOP skills.

However, in each academic year, many students (including domestic and international
students) who hold non-CS bachelor degrees are admitted into the graduate program
in the authors’ department (i.e., the Department of Computer Science and Information
Engineering at National Taipei University of Technology, Taiwan). These non-CS ad-
mitted students may enroll in basic programming courses from other engineering-related
departments, but those who lack sufficient CS experience did not have qualified and suffi-
cient training in C++ and OOP programming skills for their graduate studies and theses.

BUILDING COMMUNICATION SOFTWARE 3417

Therefore, to satisfy these programming skill requirements, students without CS experi-
ence need a supporting and remedial curriculum to strengthen their C++ programming
and software design skills quickly and efficiently.

To fulfill the aforementioned demands, this study designed a project-based curriculum
to rapidly instruct these students in major C++ and object-oriented programming (OOP)
skills, as well as to instruct them in implementing a set of homemade projects, toward
eventually constructing a large-scale software system.

The motivation of this paper is based on a concept that the students may more desire
to put more efforts on implementing some useful tools that can facilitate their works (i.e.,
the graduate thesis studies) during their course studies. In this sense, the objective of
the proposed curriculum mainly focuses on allowing the students to learn essential OOP
concepts and problem-solving skills, rather than simply teaching a programming language.
During their thesis studies, the students may need some convenient tools to collect the
communicated information, share their discussion records, and research materials with
their class and lab mates, or advisors. Therefore, through a set of homemade projects
with various programming solutions toward a consistent objective (that is, creating their
own multimedia communication application for supporting their thesis studies), students
can rapidly develop problem-solving skills and learn how to apply practical solutions using
different OOP concepts. Furthermore, based on the cooperative learning concepts via the
knowledge-sharing portal, blogging, and social networks [20,21], an interactive course web
forum based on Web 2.0 social-network technology is also established. This interactive
course approach can assist students in conveniently obtaining the announcements of course
resources and project assignments, and in posing questions for seeking help from and
discuss with the TAs and instructor, as well as immediately providing feedback and sharing
knowledge of programming skills and concepts.

Based on the above-mentioned features, the major innovation and significances of the
proposed project-based curriculum and interactive course forum are:

1) Effectively arousing the students’ interests in problem-solving skills and paradigms
with OOP;

2) Providing high-quality chances for them to learn the advantages of OOP on imple-
menting their own tools that can facilitate their thesis works;

3) Promotion on students’ learning efficiency practical software engineering.

According to the student survey and grade assessment results, the proposed project-
based curriculum and practical homemade projects demonstrate the effectiveness and fea-
sibility of the proposed curriculum in motivating student to apply and incorporate C++
and OOP skills for developing practical, large-scale software. Moreover, the proposed
project-based curriculum not only can apply in teaching C++ OOP, and its project-based
concept and pedagogic methodology can widely be adapted for teaching many practical
programming courses in different, such as embedded system programming, network pro-
gramming, and mobile application programming with C++, C+#, Java, or Objective-C
programming languages.

The rest of this paper is organized as follows. Section 2 introduces the course ma-
terials adopted in the proposed project-based curriculum. In Section 3, the proposed
project-based curriculum design for the students to develop multimedia communication
software is introduced in detail. The results on the proposed project-based curriculum
are demonstrated and discussed in Section 4. Finally, Section 5 offers the conclusions to
this paper.

2. Course Materials. To facilitate the students’ learning process in designing large-
scale software applications using the C++ programming and object-oriented programming

3418 Y.-L. CHEN, C.-M. LIU, C.-Y. CHIANG, S.-M. YUAN AND J.-H. WANG

(OOP) skills, the Unified Modeling Language (UML) [22] proposed by the Object Manage-
ment Group (http://www.UML.org) is also introduced and applied in the project-based
curriculum. The UML modeling process is very useful and feasible for software project
management and design in different aspects, such as designing the software components
of the configurable system frameworks [23,24], and modeling and implementation for the
distributed repositories of learning objects in service-oriented architecture on e-learning
systems [25]. Therefore, through UML modeling and analysis, the students can learn how
to visualize, specify, construct, and describe the analytical architectures and system mod-
ifications while developing software-intensive systems. Thus, the UML provides students
with an approach for considering problems using models based on real-world ideas.

In this curriculum, several useful UML diagrams are introduced for students to apply
in analyzing, modeling, and developing their own multimedia communication software
projects, including class diagrams, use case diagrams, and sequence diagrams. In co-
ordination with the instructive lectures on the OOP, the use case diagrams can assist
students in learning how to analyze and plan for the requirements and functional be-
haviors of a particular software system. Then class diagrams are then introduced to
assist students in identifying and organizing the structural and behavioral characteris-
tics of the provided classes of objects, which are combined to construct a large software
system. The structural characteristics can describe the attributes and respective associ-
ations of the classes, whereas the behavioral characteristics can express their cooperative
operations and methods. To express elaborately the interactions and communications
among the class objects in a software system, the sequence diagrams are also discussed
to help students define and illustrate how interactive events and messages are sequen-
tially transmitted and received for certain class objects in particular use cases. The three
aforementioned major UML diagrams are the most frequently used and are capable of
describing and modeling most designs and implementations of multimedia communica-
tion software in this curriculum. Along with learning the UML diagrams, UML graph-
ical design tools, such as StarUML (http://staruml.sourceforge.net/) or Microsoft Vi-
sio (http://office.microsoft.com/en-us/visio/), are extremely useful for students to create
some initial software designs by illustrating their ideas according to the aforementioned
UML diagrams, as well as to refine and extend the initial designs to those that are more
elaborate.

Because concurrent software generally requires a graphical user interface (GUI) to in-
teract with users, it is also essential to teach students how to develop their own GUIs
associated with software projects. For this purpose, a GUI programming framework
comprising sufficient OOP implementation features and which is released as opensource
libraries should be the satisfactory choice for supporting an OOP software development
curriculum. The Microsoft Foundation Class (MFC) library in Windows is an effective
example of strong OOP features, including encapsulation, inheritance hierarchy, and poly-
morphism. However, adapting the MFC on different platforms and operating systems is
not easy. Because multimedia communication software is usually developed and applied
on handheld platforms, cross-platform portability is particularly essential.

Among these requirements, the Qt library [26] (http://qt.nokia.com/) and FLTK tool
library (http://www.fltk.org), which are originally offered in Unix/Linux environments
and can also be ported and applied on different OSs (such as Windows and Mac OS), can
provide not only the desired OOP features but also source-opened features. Thus, the
two aforementioned opensource GUI framework libraries are adopted in this curriculum to
support students in learning the OOP features and developing the GUI in their software
projects. In addition, because a high-quality code project should accompany appropriate
documentation and comments, a code-commenting tool is also required. For this purpose,

BUILDING COMMUNICATION SOFTWARE 3419

the Doxygen (http://www.stack.nl/~dimitri/doxygen/index.html), a cross-platform code
documentation tool, is introduced for students to practice effective programming styles
and habits by commenting their codes. Using the Doxygen tool, students can easily
document their software project codes by simply adding their comments within the codes
using a specific mark; thus, well-organized code documentation can be automatically
produced for review and refinement.

Furthermore, student learning performance can be promoted further via the knowledge-
sharing portal, such as blogging and social networks, as demonstrated in previous empir-
ical studies [20,21]. Therefore, for immediate feedback and knowledge sharing, an inter-
active course web forum is based on the Web 2.0 social-network technology of Facebook
(http://www.facebook.com/). The students can conveniently obtain the announcements
of course materials and project assignments, as well as pose questions and quickly seek
help from and discuss with the TAs and instructor. In addition, the TAs and instructors
can also obtain the solutions of most common programming problems and skills, and then
announce these solutions and related experiences in the interactive course web forum.

3. Curriculum Design and Homemade Project Assignments. This section intro-
duces the proposed project-based curriculum design for students to practice effectively
and faithfully all of the general and critical OOP tasks of designing applicable multime-
dia communication software. This goal can be achieved in class lectures discussing the
major elements of OOP, as well as in correlated homemade project assignments. The
overall task for developing multimedia communication software is arranged into seven
successive project assignments, so that the students can gradually design and implement
a large-scale software system by applying their learned OOP programming skills. The
students will then create fully functional multimedia communication software at the end

TABLE 1. Curriculum topics and project assignments

Homemade Project

Contents Assignments

Major Topics

Basic data types, variables, strings,
computations, error handling,
functions, source code files
Console mode I/0, file I/0,
I/O streams, string processing,
Class design, UML class diagrams,
encapsulation, inheritance hierarchy;,
subtype polymorphism
GUI tool libraries, GUI widgets,
GUI design, event-driven

Basic Programming Skills Homemade Project 1

Input and Output

. Homemade Project 2
Programming

Object-oriented

. Homemade Project 3
Programming

Graphical User Interface Homemade Project 4

(GUI) Programming

based programming

Generic data processing
and network programming

Templates, data containers,
algorithms, the standard template
library (STL), network
communication programming

Homemade Project 5

Software Engineering

Software testing and maintenance,
UML modeling diagrams
for OOP, Basic Design Patterns

Homemade Project 6

Network and Mobile
Communication Software
Design

Real-time communication software,
advanced GUI implementation,
software integration

Homemade Project 7

3420 Y.-L. CHEN, C.-M. LIU, C.-Y. CHIANG, S.-M. YUAN AND J.-H. WANG

of the curriculum. The proposed curriculum is arranged into seven major lecture topics
and seven homemade project assignments, as listed in Table 1.

In the semester, we spend the first month introducing basic C++ programming skills
and input and output programming topics, including basic data types, variables, string
processing, numerical computations, error handling, functions, managing source code files,
I/O streams, and file I/O processing skills [18,19]. We then spend a majority of the class
lectures addressing the major topics of object-oriented programming. In addition, topics
of OO-based GUI programming libraries and software engineering [22,26] are introduced
to the students. This includes details of class design, encapsulation, inheritance hierarchy,
polymorphism, and using opensource GUI tool libraries (Qt and FLTK libraries) to facil-
itate learning large frameworks with OO paradigms, as well as teaching the students to
apply software engineering tools and concepts to developing their own software systems.
Next, to help the students manage large amounts of data and the reusability of code
components in large software systems, we also explain the data structures and generic
programming skills using the standard template library (STL) [27]. Finally, the students
are asked to apply their learned OOP skills and software engineering concepts to creating
their own multimedia communication software systems for their livelihood applications
during graduate studies, which is the goal of this course.

The homemade projects assigned in the proposed curriculum are addressed as follows.

Project Assignment 1: Implementing Text-Parsing Application. In this first
homemade project, students implement a text-parsing application to practice fundamental
C++ programming skills. This text-parsing application must have the functions necessary
to record and parse the text contents of a real-time interactive chat, including the names
of the members having joined the chat, their corresponding talk message sentences typed
in the chat console, and the time records of each talk message given by someone who has
joined the chat. To facilitate chat recording, students are also requested to transform
and save accordingly the chat records into the XML formatted file, as shown in Figure
1(a). The XML file should also be able to be correctly loaded and parsed for displaying
the formatted chat record content on the console mode user interface, as shown in Figure
1(b).

To implement this simple text-parsing application, students can practice the required
basic programming skills, including string processing and manipulation, function design,
basic error handling, and file and console mode I/O stream processing. Consequently, stu-
dents will develop a basic software application using file I/O, text string parsing functions,
and a console-mode user interface.

Project Assignment 2: Text Searching & Retrieval Functions. In the second
homemade project, students implement new fundamental functions of the messenger com-
munication system based on the previous project they had completed, including a search
function with simple query syntax. The goal of this project is to provide information
searching and retrieval functions of the desired textual data from the XML files of the
archived chat records from the previous project. A search syntax must be implemented to
perform information retrieval functions within various fields of message records (including
message speaker and receiver, message contents, and message timing records) using field
tags and logical operators along with search keywords, as illustrated in Figure 2(a). Here,
the field tags are utilized to specify the contents of the given record fields to be searched
(without case sensitivities) and are defined as follows:

Attendee-Name tag ([name]):

The attendee-name tag is utilized for searching a keyword within the field of the chat at-
tendee name records, and its syntax is defined as: [name] “keyword string of an attendee’s
name”.

BUILDING COMMUNICATION SOFTWARE

Attendee-Role tag ([S], [R], [RS] or [SR]):

The combination of the attendee-role tag with the attendee-name tags can be applied
for searching the chat records that contains the users who are attending with the same

chat in different roles. Users can add “[S]”, “[R]” or “[SR]” (or “[RS]”) at the left of a
given keyword of an attendee name to indicate who had acted as a message speaker, a

receiver, or both, respectively.
Message tag ([message]):

Using the message tag is similar to using the nametag. By specifying the message
tag (i.e., [message| “keywords or incomplete sentences”), the user can use some partial
keywords or incomplete sentences to search for the recorded messages having the desired
keywords or sentences, and the incomplete sentences can comprise multiple fragmented

words.

FIGURE 1.

- <MSN>
- <Chat>
<date>Mon Sep 21 10:21:43 2010</date>
<From>Chandler</From>
- <To Friend_Name="2">
<Friend_Name>Joey</Friend_Namez>
<Friend_Name>Monica</Friend_Name=>
</To>
<message>All right Joey, be nice. \n So does he have a hump? A hump and a hairpiece? </message>
</Chat>
- <Chat>
<date>Mon Sep 21 10:22:02 2010</date>
<From>Phoebe</From>
- <To Friend_Name="3">
<Friend_Name>Chandler</Friend_Name>
<Friend_Name>Joey</Friend_Name=>
<Friend_Name>Monica</Friend_Name:>
</To>
<message>Wait, does he eat chalk?</message>
</Chat>
- <Chat>
<date>Wed Oct 10 10:22:02 2010</date>
<From=>Rachel</From=>
- <To Friend_Name="5">
<Friend_Name>Chandler</Friend_Name=>
<Friend_Name>Joey</Friend_Name=>
<Friend_Name>Monica</Friend_Name>
<Friend_Name>Phoebe</Friend_Name>
<Friend_Name>Ross</Friend_Name=>
</To=>
<message>It's my life. Well maybe I'll just stay here with Monica.</message>
</Chat>
- <Chat>
<date>Wed Oct 10 10:22:41 2010</date>
<From>Monica</From=>
- <To Friend_Name="5">
<Friend_Name>Chandler</Friend_Name>
<Friend_Name>Joey</Friend_Name=>
<Friend_Name>Phoebe</Friend_Name>
<Friend_Name>Rachel</Friend_Name>
<Friend_Name>Ross</Friend_Name>
</To>
<message>Well, I guess we've established who's staying here with Monica...</message>
</Chat>
</MSN=>

(a) Snapshot of the sample chat records in XML format

SN Chat:
.Enter the speaker’s name
-Enter the receiver’s name

[Please Enter the Chat’s content
> There’s nothing to tell? “n He’'s just some guy I work with?_

(b) Snapshot of the console mode user interface

Snapshots of the text-parsing application in the first homemade project

3422 Y.-L. CHEN, C.-M. LIU, C.-Y. CHIANG, S.-M. YUAN AND J.-H. WANG

[time 1:"2018"&"Sep"i"October 18"&"Wed" ! "Mon'T™"H1B"

[name 1:"[SrIChandler"&"Monica"i"[s 1Joey" ™" [R1Ross"

[meszage 1="Moni,"i"just some guy I work with?'™"Life"

[time]1: "2@1@"&"Sep'[name 1:"Monica"i"[=]Juey"""'[R]Russ'@[message 1:"ife"

(a) Snapshots of the sample usage of the field tags and logical operators

Search (from Joey.xml>:
1.8et Parameter of Searching
2.8et Parameter of Sorting Result

Fleaze Enter the Parameter of Searching :
> [time 1:"28180"8"Sep"&&[name 1:"MHonica" " [s lJoey"" "' [R]1Ross"&&Inessage 1 "oes"’

Setting successfully.

Search (from Joey.xml>:

1.8et Parameter of Searching
2.8et Parameter of Sorting Result
3.Do Search

Pleaze Enter Parameter of Sorting Result :
: 1.Time 2.Speaker 3.Receiver 4.Messagel

Betting successfully.

Search (from Joey.xml):

1.8et Parameter of Searching
2.8et Parameter of Sorting Result
3.Do Seawrch

4. Exit

> 3

Total Chat = 2

Chat 1

KT ime >

Mon Sep 21 18:21:43 2818

KMessage>

A1l right Joey. be nice.

20 does he have a hump? A hump and a hairpiece?

Mon Sep 21 18:22:82 2818
KMessage>
Wait, does he eat chalk?

(b) Snapshots of performing text search and retrieval functions in the second
homemade project

FIGURE 2. Snapshots of the text search and retrieval functions requested
in the second homemade project

Time tag ([time]):

The time tag is utilized for searching any message records in a particular period. Be-
cause the time records are stored in “(date)” fields of XML files, the students must
implement formatting criteria to search for the desired times appropriately. For example,

BUILDING COMMUNICATION SOFTWARE 3423

when the user enters the search command: [time] “2011” & “Jun” & “Sun”, the applica-
tion should search and report any message records on any Sundays in June in 2011 (where
“&” is a logical operator that is described later).

The logical operators are then adopted to search more specifically for the conditions of
the desired contents, including “And”, “Or”, and “Not” operators. Students must also
allow these three operators to have computing priority in the manner of the fundamen-
tal operations of arithmetic; that is, the Not operator should have the highest priority,
followed by the And operator and the Or operator, who has the lowest priority. These
logical operators are described as follows,

And operator (&, &&):

“&”: This binary operator reveals that a pair of keywords or sentence fragments to
the left and right of the “&” must simultaneously exist in the contents in a given field
specified by a field tag.

“&&”: Using this operator is similar to using “&”, but the double of And operators
is utilized to associate the specified keywords or sentence fragments in different fields of
various tags.

Or operator: (|, ||):

“|”: This binary operator means that the search results from the contents in a specified
field should contain any of the paired keywords or sentence fragments to the left and right
of the “|”.

“||”: Similarly, the double Or operator is applied to obtaining search results with
any of the paired keywords or sentence fragments from different fields of various tags.

Not operator:(~, ~n~)

“~”: This unary operator requires that the search results should exclude the contents

having any keyword or sentence fragment specified by a “~”.

“~~y7: Similarly, the double Not operator “~~" is used for searching the results ex-
cluding those with the specified keyword or sentence fragment in any different fields of
various tags.

Accordingly, the students are requested to implement the aforementioned search and
retrieval functions by parsing and processing the XML files of chat records, and integrate
these functions using an enhanced console user interface to respond to the user command
lines and display the processing results, as shown in Figure 2(b).

Project Assignment 3: Using OOP Skills and Exception Handling. In the
third homemade project, students have the chance to practice the OOP skills and con-
cepts to rework and re-organize their developed programs from the two previous projects;
thus, the students can learn how to solve programming problems using essential OOP
skills. Accompanying the course lectures on the basics of object-orientation and Uni-
versal Modeling Language (UML) class diagrams, students are asked to convert their
procedural codes (i.e., the text parsing and searching functions implemented in the previ-
ous two assignments) to OO implementation, as depicted in Figure 3. Moreover, students
are also required to implement some exception handling classes in their developed classes
to provide error message reporting and handling functions.

Based on the code fragments shown in Figure 4(a), students should implement a class
“chat” that integrates the text file processing and XML parsing functions they imple-
mented in the first assignment. The students are then required to design a set of hi-
erarchical classes to provide different ways to apply search functions, such as searching
the chat records according to time, name, and message contents, by implementing a
base class “DoSearch”, as well the sub-classes “DoTimeSearch”, “DoNameSearch”, and
“DoMessageSearch” for conducting specific search functions by practicing the OO skills
of inheritance and polymorphism, as depicted in Figure 4(b).

££||77

3424 Y.-L. CHEN, C.-M. LIU, C.-Y. CHIANG, S.-M. YUAN AND J.-H. WANG

imitial_pro. Da_search
o _chat: Do_msn_chat *format_emor int
Do halp ~main_tooi: Chat_main #hre: Serch_virtual
+help{): vord “-tohelp: Do_help sanrch_u: Search_used
-sk_Paip(}: veud -toparse; Do_parse #iomen_cha: Do_msn_chat
“tosearch: Do_ssarch #ini; Chat_main
-read_msn_chat_data: Msn_chat data <<orastes>-Do_ssarch()
= <crentes»-inkial_proj} <<destroy>>-Do_searchi]
o cetrop> >-inkial_prof} +searchmain{msn_chat_data: Msn_chat_data, flensme: string): void
+initiak}: veid B +isk_searchfikename: string): void
sk nmll) veoid *Copy_load_data(wmall_msn_chat_dae: Msn_chat_datn, msn_chat_data: Msn_chat_daia): void

+iosmali{msn_chat_data: Man_chat_data, parameter: siring): void
+changesmall{s: string): void
+50rt_prinb{msn_chat_data: Msn_chat_datn, Sort_panm: String, SFTR_index: wector<ints): veid
+sorts(sorted: vector<int |: vecor<int>
Do_parsa #s0rt_para_formassort_para: string]: int
-ini; Chat_main (] i '
-toensn_chat: Do_man_chat
<ograpte>>-Do_parse()
<<destroy>»-00.)
+parseman(men_chat_data: Msn_chat_dats, text: string): void
“parsecata(tat: String, dath_num_count_pos: int): string
-parsetrom e sring, data_nm_courtpas: k). srng
st st dats_pum,_count_pos: int): string
“parsetoftest: ging, Gata_num_count _pos: | i) vector <seing>

Han_chat_data
+all: vector<Temp,_msn_chat_data®>

Chat_main

+ir2ste{i; int): string
)ndmm RIg, b Riing, ¢ gﬂamm count_pos: int): string

- void
—Mm chat_data: Msn_chat_deta): verd
= readxrri flename: siring: sring
#i5_formatnum| friend_num: stringl: int
wtest_format{raed_text: string): int
+ask_finaemet): string Temp_msn_chat_data
*Hputtime(): string +5pedte_name: Sting

+BCEHEr_name: wector <sting>

chat_time: streg
Search_used ' ' :
+Groupby{On: VECTOr<int»); vector <int> D e chat
+etipace(s: string): void iz Chat_main
+aelsutispace]s: string]: void < <crite>»-Do_men_chae)
el (s stzing, tag: string): void < <destroy > >-00_men_chat)

+del_spacets: siring, & strewg): st

+putinto_Msn_chan_ wamzmdﬂm(mmcmmwm SPANKEr_rame: SITG, ECEE:_NME; WCte <string’s, chat_MEssage: string): voul
+men_chat{}: void

+ask_msn_chaty): void

~fibe_outimen_chiat_cata: Msn_chat_data, file_name: siring]: void

writgami{msn_char_den: Msn_chat_data, usermame: wng) void

-sort >, speskes_name: 9> g

Search_virtual

+search_u: Search_used
wini: Chan_main
+format_error: ink

<treate> >-Sasech_virtial()
“dmopa- -Search_virtual{}
+setformat._esror{up._format_error: int): void
ge(.‘wmat error(): int

tobesearched{small_msn_chat_data: Msn_chat_data, pwumeu Rring, level: ink): vecior<ing>

#searchvange{msn_chan_detn: Man_chat_tatn, parameter: string, level: it} vector et
#searchand{msn_chat_data: Msn_chat_data, parameter: string, bevel: int): vector<int=
#searchiag(man_chat_data: Msn_chat_data, parameter: string, level: int): vector <int>

Dot Domessagesearch Donamesearch
+search{men_chet_datn: Msn_chat_data, parmmeter: string, level: int): vector <int> +gARrCR(rran_chat_cata: Msn_enat WS SIring, I int): veCtor<ints +gearch{mnsn_chat_data: Men_chat_dath, parimeter: tring, kevel: int): vector <int>
+Ermeparatr ana pasameter- Si7ing): g chamn_chae_data: Msn_chas_daca, pari g, beved: int): _chat s _chat._

FiGUuRrE 3. Snapshots of the UML class diagram of hierarchical classes of
text parsing and searching functions

Regarding the exception handling practices, students must implement two sets of ex-
ception classes, and implement corresponding error-recovery functions for XML parsing
and text searching functions of the designed classes, thus practicing OO skills in handling
program errors. For example, for the XML parsing functions, when parsing the XML file
with lost or erroneous tags, the program should raise corresponding exceptions and tell
users which tags are lost or erroneous, as well as where they are. For the searching func-
tions, when the user types an incorrect search notation, the program should respond to
explain where and what the incorrect logic notation is. In addition, when the user enters
an incorrect search range (e.g., inappropriate ranges of “time”, “name”, or “message”),
the program should raise associated exceptions and respond by stating that the search
cannot be conducted and inform users of the erroneous range. After raising exceptions
and response error messages, the program should recover from the errors and be able to
execute functions correctly.

Project Assignment 4: Developing a Graphical User Interface (GUI). Stu-
dents are often interested in developing GUI applications, which can be conveniently im-
plemented via the Qt opensource GUI tool library using OO programming concepts. In
the course lectures, several sample programs are provided for students to become quickly

BUILDING COMMUNICATION SOFTWARE 3425

[¥]
o]
[41]

s DoSearchi

virtual void search() = 0;

logic not():
logic _and();

logic_oxr({):

ot

}:

]

lazs DoTimeSearch : pubklic DoSearchi{

Ls]

ublic:

volid searchi):;

b

cla=ss DoNameSearch @ public DoSearchi
vold searchi);
private ’
string time; br
string speaker;

ztring reciewver; cla=z=z DoMessageSearch : public DaoSearch{
gtring message; f/

void searchi():

I
bi
(a) Sample code fragments of (b) Sample code fragments of the base class
the class “chat” “DoSearch” and its sub-classes

FIGURE 4. Snapshots of OO implementation of text parsing and searching
functions in the previous homemade projects

familiar with how to apply the essential Qt classes and APIs for building their own GUI
applications. Moreover, the Model-View-Controller (MVC) design pattern is also intro-
duced for students to elaborate their GUI applications. Through this practice, students
can have a deeper understanding of the OOP concepts in designing a software system
that interacts with various users.

In this homemade project, students are required to implement a set of cooperative win-
dows with corresponding GUI widgets, including chat windows, chat invitation windows
that interact with each other, and content search windows, as shown in Figure 5. First,
the students must design their main chat windows using text input and output, a “sub-
mit” button, and a tool menu with required action items, where the submit button and
functional items should be appropriately enabled and disabled under different conditions,
as depicted in Figure 5(a) and 5(b). For instance, the submit button can only be enabled
if the user has logged in (as Figure 5(b) depicts), and the “Login” and “Logout” func-
tional items should be toggled as disabled or enabled once the user logs in or logs out,
respectively (Figure 5(a)).

To invite other class friends to a new discussion chat, a new-chat invitation window,
which can be invoked using the functional item in the main chat window, should also be
implemented. Such a new-chat invitation window should provide some selection functions
to allow users to choose the friends whom they want to invite by applying GUI widgets
(such as text boxes and radio buttons), as illustrated in Figure 5(c). To practice text data
processing skills further, the search functions implemented in the previous assignments

3426 Y.-L. CHEN, C.-M. LIU, C.-Y. CHIANG, S.-M. YUAN AND J.-H. WANG

118 Edit Help File Edit Help
Disable
Togout Hebe has joined El'lggf
Simulate Tom has joined Mary
. Mary has joined Zod
Exit Enable Zod has jnined

<00:12:15»

Hebe says: Hil Everyone.
<00:12:57»

Admnindstrator says: Hi! Hebe.
<00:13:57»

Adynindstrator says: Where are u

[Time
Submit Submit
(a) Sample user menu of main chat window (b) Main chat GUI window used during discus-
sion
M Simulate Bl Zearch Chat
Friend 1 [Hebe |® Name | "Monica” & "Joey” | "Shelley” |
Friend 2 |Tom |O Time ["2023"1'0ct10" & "H4" |
Friend 3 Moy |O Message |"Gu” & "He" I'K" 1 "n" |
Friend 4 [Zod |O Time [] Speaker [] Recedver [¥] Message
Friend 5 | (:) [Seach][Defoutt | Total: (J chat
Hil Everyone. Disable
> Chat 1 2
<Time»
Wed Oct 10 04:59:41 2023
<Mesmages
Hew guys! Lre wou ready?
- e
Wed Oct 10 04.59:45 3023
<Mesmge= =3
QK|
[ok [Comel | Chat D v
(c) New-chat invitation win- (d) Search window invoked using
dow invoked using the main the main chat window

chat window

FIGURE 5. Snapshots of GUI implementation of the chat windows using
Qt and MVC patterns

must also be integrated into students’ chat GUT as a search window, which can be invoked
using the menu item of the main chat window, as depicted in Figure 5(d). Here, the
search window should offer diverse criteria for users to perform a search action in one
or more record fields (including names, times, and message contents) using the searching
syntaxes implemented in the second assignment. The search result display of the chat
records, which include times, speaker roles, receiver roles, and message contents, can be
customized by selecting the corresponding field tags, as illustrated in Figure 5(d).
Project Assignment 5: Implementing Network Communication via Socket
Programming. In this project assignment, students have the opportunity to practice

BUILDING COMMUNICATION SOFTWARE 3427

exploiting the socket programming techniques to transfer messages and data between
users via the network communication. To implement network communication functions,
students may consider integrating the socket classes provided by Qt or MFC class libraries
into their projects. Moreover, this project also accompanies the course lectures on the
UML diagrams and the standard template library (STL) [27]. Thus, students have op-
portunities to adopt the use-case and sequence diagrams to determine the requirements
and flows of the network communication functions, as well as to apply the appropriate
STL containers and algorithms in solving the message queuing problems associated with
network communication.

In this sense, students should implement some protocols and processes for making a
connection between users. When a connection for transmitting messages between users
is begun, the message speaker should send a formatted request string that includes the
receiver’s [P address and username using the created socket; after receiving the request
string, the message receiver should then send a formatted response string that includes the
speaker’s IP address and username. Thus, a connection between two users is created, and
users can begin talking by utilizing formatted strings to specify the speaker, receivers, and
message contents transmitted via the connected socket. Figure 6(a) shows the snapshot
of the user IP setting window, and Figure 6(b) exhibits the snapshot of the chat message
transmission after the connection being created.

T — lgix — o

Fie Edit Help

<00:12:15>

Administrator says: Hil Hebe.
<00:13:57>
Administrator says; Where are u

[0 et Friead 1P RS

Friend [P

|ld|)1'_-’418'2'26

ok | o |
I Tome
St \) Submit
(a) Snapshot of the user IP setting win- (b) Snapshot of the chat message trans-
dow mission after the connection is created

FIGURE 6. Snapshots of network communication functions

To practice the requirement analysis of a system, students can determine the require-
ments of the network communication functions of the chat system as use-case diagrams,
as illustrated in Figure 7(a). The connection and transmission processes of the message
information via the network communication can also be analyzed and implemented ac-
cording to the sample UML sequence diagram shown in Figure 7(b). To appropriately
manage messages to be transmitted to multiple users, students can also practice using
the STL containers (such as dequeue containers) and implement efficient message queuing
and management machineries. This can further benefit the students in learning the data
structures and developing problem-solving techniques for network communication.

3428 Y.-L. CHEN, C.-M. LIU, C.-Y. CHIANG, S.-M. YUAN AND J.-H. WANG

I~
=

Friend 1 Eriend 2 Friend 3

11 Request()

2:Response_adto) &

3:sendChat g

E 4 : sendChat_02({)

5. sendchat_036) :

& Request()

7t Respanse_autol :
& : Request_sutal) m -autol) H

9; Respunslp_autu()

-

1
10 ¢ sendChat_04{) ; T

System

U 1L:sendchatod) 'U
login/} ut H H 12 Request() o H
[: : :

e | 13:Response_auto) i i

/ U 14 ; Request_auto() E '
-)_________~———’"r_~_; -
o :

15 Reuued‘t_autu() U B
: 16 : Response_suto() H
H ' P
Lee, Minkyu \ ! 17 Response_auta() U
s : : —'D
: 181 edChat 050 4 g nedChat 05

i : : >

- H
U 20 snedChat_0s()

(a) Use-case diagram of the chat system commu- (b) Sample sequence diagram of the network com-
nication functions munication process of chatting

FiGure 7. UML use-case and sequence diagrams of the chat system com-
munication functions

Project Assignment 6: Integrating Software Testing and Improving Infor-
mation Management. Because of the importance of unit testing in software testing and
maintenance, this project asks students to design and practice using the unit testing pro-
cesses of all crucial functions of their designed classes of communication software functions
and previous projects, as well as re-work their codes to ensure that their designed soft-
ware are testable. Therefore, all functions of content searching and text parsing, network
communication, message archiving, and any other facilities implemented in their previous
projects must be automatically tested and verified via a systematic unit testing program,
which can be implemented using the Qt Unit Test modules provided by the Qt Library,
as depicted in Figure 8. When the user executes the testing program, the program should
accordingly begin executing each test function, and no additional commands are required
for the testing process.

Moreover, in addition to improving the efficiency and reliability of their message com-
munication software, students are also asked to apply some advanced data structures and
language features. In this project, they practice adopting the associative containers (i.e.,
map containers) to rewrite the corresponding classes and algorithmic functions of mes-
sage record searching and retrieval in their program, so that these functions can provide
more efficient message archiving performance. After completing the new program using
the improved message searching and retrieval functions, students can again practice the
software testing process and learn how to verify effectively the new version of the program
when classes and functions are updated. Having the complete testing program experience,

BUILDING COMMUNICATION SOFTWARE 3429

(1] l:jl'ﬂ'n“m;:::l..'r!'ﬂ'nm.'_:l g
Al o
G » @ inioioldaia o Coom CI |
o or
F :“ q 3.’.:';
E! ® WD | ll.l'|‘:|
= gogodaddogode ki)
WO DD DODDD DD MW~ e
L AT e L
O T N R LT n
[TR R I R R R R Hos W
d @ b b bbby
e A G | »
E#y HH S @ E
N - - . . -9 RN R RN oM oMo
vold UniTestTest: :DoTimeSearch search testCase() En R LR B B! nm b
; - - FE L ~0E 8
W oW o P oo @

; n ds TELEREEEERNETC 8
DoTimeSearch d; FEenmEzadbnEbenD.

3 =" "o 2 d O g B i W M R e H
string aa= ; oo M H 3 E RO 1]

i —m S LS TS L N
string bb="%"hO8\""; %“'Hq.lc'v:fﬁu.-r- i-ﬁn
R _ ﬁf W@ | B fa o = oM
int = 37 SmutyH BB OE . R

L L BEdadda sl mom el
d.getInfo("tue oct 16 hOS8:50:45 2010"); [I I B L
a h(b,aa) ; dEBndaace.aTEET S
.search (b, aa); zaR2 BEERD N “Aub
QVERIFY2 (b==3, "DoTimeSearch search Failure"); [sagailly *.E ﬁ

] - - IR TN]
d.searchi(k,bb); 5, ALldE*2 312
R - - - . . . * Eom o 0 am o
QVERIFYZ (b==2, "DoTimeSearch search Failure"); o . ARNBE D] g

_ wow oo | I L
} L | (L R RN N L
) " m oo | 1 - LI - *
e - . . g RN -]
volid UniTestTest::DollameSearch search testCase () 2 . gm0 L

- — = o -

. - E==fal 0a
-] m T -
. I = & p q
DoNameSearch dn; - ~ -]

- i o A
string aa="ken"; E =] & B
string bb="panda ken pu gg"; 5 :';

= ™ o
[]]

5 =mi m d T e -] :‘::
string a="\"panda\""; 2 ie

j \) - i
string bbb="'\"gggg\"": z W oo

[=%]
X =y
dn.getInfoiaa):; = t.
= :
dn.getInfol (bb) ; = “
[+] '}
8
int b=3;]

. [=] m
dn.search(b,a): E
QVERIFYZ2 (b==2, "DoNameSearch search Failure"); =

] - [
dn.=zearch(b,bkk); [
QVERIFYZ2Z (b==2, "DoNameSearch search Failure™):; "

- o
¥ "
vold UniTestTest: :DoMessageSearch search testCase () "
; &

o
DoMe=z=zageSearch dm; i
dm.getInfo("haha i am beach"):; B

- \ 1
string a=""keach\""; w
string b="%"ddddd\""; H

int check=3;

dm.zearch (check,a) ;
WERLIFYZ2 (check==2, "DoMessageSearch search Failed"):
dm.search (check,b) ;
QVERIFY2 (check==2, "DoMessageSearch_search Failed");

FI1GURE 8. Snapshots of the unit testing program and results

students can efficiently, skillfully, and elegantly improve and maintain their implemented
message communication software.

Project Assignment 7: Completing a Messenger Communication Software.
The purpose of the final project assignment is to provide students with a chance to
practice integrating all of the C++ programming skills and technicalities to complete a
communication software application. At this point, the students should have sufficient un-
derstanding of applying and integrating C++ programming skills and OOP technicalities,
including file processing, string processing, OOP paradigms, GUI programming, generic
data retrieval, software testing, and network communication design, to achieve their own
large scale real-time communication applications. Thus, students are encouraged to ex-
tend the basic messenger communication application by incorporating additional skills
and features, such as multimedia data file transferring, undo/redo functions, and other
customized creative designs.

3430 Y.-L. CHEN, C.-M. LIU, C.-Y. CHIANG, S.-M. YUAN AND J.-H. WANG

5 J ¥
Coubuds § Coudreds
| —
< ! 3 : 1)
Codwdo § Coddredo Coldwdo) Coddredo |
o e ~ 0000
1
: H H
Dosearch o 1 D atch o e 1 1
1]
4] o I ;
! ! Comiwds § Coubredo
—
o
¥
7
- QOO0
i
1
2} | 4t ! 1
_ : Codizeds Coldwds | Coudreds . .
i — [J i
1) i Comwnds § Coublredo
i H — | e
N oa : Do saarets °°°° ! s
1 5
4 o
| i ws Q@ QO
1 1

(a) Hlustration of basic undo and redo applications (b) Illustration of additional undo and redo ap-
of content search functions plications of content search functions

FIGURE 9. Illustrations of “Undo” and “Redo” implementations

To provide advanced multimedia communication functions, students should implement
the network file transferring functions, which should be accompanied by a well-known
drag-and-drop in their designed messenger GUIs to allow chatting users to transmit and
receive multimedia files through the network communications. Thus, students can prac-
tice incorporating the programming skills of file processing, generic data retrieval, GUI,
and network programming to create a friendly interface of multimedia communication
application.

“Undo” and “Redo” functions also provide high-quality practice for students to incorpo-
rate data retrieval and GUI programming skills. Thus, students are required to implement
undo and redo functions on the search and retrieval interfaces of chat records, which can
be implemented by adopting the C++ technicalities of STL containers and standard al-
gorithms. As illustrated in Figure 9, a circle represents a search or retrieval action of chat
records. An action at the left of the dashed line means that the current action can be
undone. An action at the right of the dashed line means that the action can be redone.
When the user presses the search button first, and the undo button is enabled, the redo
button is still disabled because no action has been executed for undoing. Figure 9 illus-
trates an example of performing a series of subsequent search operations along with undo
and redo actions. Notably, the eighth operation (Figure 9(b)) indicates that if the actions
that can be redone exist and the user can perform a new search operation, then all of
the operations that can be redone are deleted. Through the practice of implementing the
undo and redo functions on students’ messenger applications, students have the oppor-
tunity to practice incorporating the C++ technicalities of STL containers and standard
algorithms, as well as the skills of user interface design.

In this final project, students are encouraged to extend their messenger software projects
using innovative ideas, including additional elegant human-computer interfaces (such as
automatic IP recording, multi-language supporting, customized font color, and size setting
interfaces), multimedia chatting interfaces, and message record management functions.
The implemented classes and functions of the students’ resulting messenger communi-
cation software must also undergo the unit testing processes. The snapshots and class
diagram of the students’ messenger communication software are shown in Figure 10 and
Figure 11. Therefore, these extensive practices could help the students in this course ap-
ply creative skills and integrate multiple opensource projects with their codes to develop
large-scale software projects.

BUILDING COMMUNICATION SOFTWARE

" . HFT bl
i Lid-des

™ Tine

\ﬂl

W COAT [=10]]

Fi» B4 Hep

™

(a) Snapshots of network file transferring applications

Bl SearchChat HE

Name [Fappe”

Time T

Message |

7 Time ¥ Speaker T Rechver T Message

Redo Undo I
_Diw | e Dl

Chat -1

<Time>
Sat Apr 30 17:21:54 2011
<Speskers

apple

Chat 2
<Times

SatApr 30 17:21:54 2011
<Speaker>

apple

Chat 3

«Time>
Sat Apr 30 17:21:54 2011

<Bpeakers :‘

M ScarchChat HE

Hame [en”

Tima |

Message |

W Tine 7 Speaker [~ Reciver [Message

Undo
I | L
Sat Apr 30 17:18:07 2011 :_I
<Speaker>
kent
Chat:14
<Tome>
Sat Apr 30 17:18:07 2011
<Speakers
kent
Chat:15
<Tome>
Sat Apr 30 17:18:07 2011
<Speaker>
kent
-

(b) Snapshots of undo and redo interfaces of chat record retrieval appli-

cations
NCHAT E o [=])|
File Edit Help
1
ken
Fri Jan 14 10:14:53 3011
Fr Jan 14 10:15.37 3011
ken says: adasdasd
Fr Jan 14'10:15.27 3011
ken savs: adasdasd
¥ Time
Submit

4

M CHAT
File Edit Help

Hebe says: Hil Everyone
Administrator ssys: Hil Hebe
Administrator s Where are u
Hebe says Sory! | have 1o 20

Hebe says: 88.
C:?efah&s]&?t >

leaving message

No Hebe

Hebe has jodned }T,fa“,.‘y

Tom has joined Zod
Mary has ioined

Zod has jained. _/

[Time

Submit

(c) Snapshots of customized font color and (d) Snapshots of improved chat interface

size setting interfaces

FI1GURE 10. Snapshots of the extended messenger communication software

in the final project

with additional leaving notifications

3431

Y.-L. CHEN, C.-M. LIU, C.-Y. CHIANG, S.-M. YUAN AND J.-H. WANG

3432

ToolFunctions

+ToolFunctions()

DoSearch

_\/\ +DoSearch()

+search(int&, string&): void
+getInfo(string): void
+getInfol(string): void

aChat

+data: string

/\

DoNameSearch

DoTimeSearch
MsnChat PrintLoadFile LoadFile -data: string
+MsnChat() +PrintLoadFile(string) +LoadFIle(string) +search(int8, siring&): void

+getInfo(string): void
+getInfol(string): void

-sender: string
-reciver: string

+search(int&, string&): void
+getInfo(string): void
+getInfol(string): void

+sender: string
+recivers: vector<string>
+messages: vector<string>

Search

DoMessageSearch

-message: string

+search(int&, string&): void
+getInfo(string): void
+getInfol(string): void

errorDet

mainfunction

+loadFileName: string

+errorDet(string)

+mainfunction()

+star(): woid

+searchPar: string

+NotTimeTag: vector<string>
+NotNameTag: vector<string>
+NotMessageTag: vector<string=
+notnotTime: vector<string>
+notnothame: vector<string=
+notnotMessage: vector<string>
+notAllAndTime: vector<vector<string==>
+notlame: vector<string>

+orAndMame: vector<vector<string=>
+notMessage: vector<string>
+orAndMessage: vector<vector<string>=
+tempSearch5tr: vector<string>
+andTag: vector<string=

+orTag: vector<string>

+allandTag: vector<vector<string=>
+notAllAndMame: vector<vector<string==>
+notAllAndMessage: vector<vector<string==>
+notTime: vector<string>
+allNotCondition: vector<string>
+allMotConditionOK: vector<vector<string=>
+chioceSortResult: vector<int=

+Search(string)

FiGure 11. Sample UML class diagram of the students’ resulting messen-

tion software

ger communica

BUILDING COMMUNICATION SOFTWARE 3433

4. Results and Discussions. The remedial C++ object-oriented programming course
for native and international students who held non-CS bachelor degrees began in the Fall
2009 semester (when this course was taught by the conventional programming course
curriculum [2]) in the graduate school of the Department of Computer Science and Infor-
mation Engineering at National Taipei University of Technology, Taiwan. In the Fall 2010
semester, the project-based curriculum for implementing a large-scale practical commu-
nication software by incorporating C++ programming and OOP skills was introduced in
this remedial course. Various forms of student feedback, such as that from discussions via
the course Facebook social-network forum and project reports, were accordingly adopted
to adjust and improve the course contents. In each project assignment, the students were
encouraged to discuss and report their encountered difficulties and required programming
skills and knowledge via the course forum and project reports. In this way, the students
enrolled in the course with the proposed project-based curriculum in the Fall 2010 and
2011 semesters are adopted as the experimental groups, while the students enrolled in the
course without the project-based curriculum in the Fall 2009 semester are adopted as the
control group.

As depicted in Figure 12, the students’ grade distribution and their GPA trend obtained
from the Fall 2009 to the Fall 2011 semesters demonstrate the effectiveness of the proposed
project-based curriculum. When the project-based curriculum was introduced in the Fall
2010 semester, although the failed and withdrawn students (i.e., GPA = 0) increased
somewhat because of the heavy loading of homemade projects, the average GPA increased
to 3.25 in the Fall 2010 semester, and to 3.47 in the Fall 2011 semester. Concurrently, the
students’ grade distribution also shifted to the higher ends, and the students’ dominant
GPA became A (4.0) in the Fall 2011 semester. As a comparison, in the Fall 2009
semester, the students’ average GPA was approximately 2.91 when they are taught by
the conventional programming course curriculum [2].

50 3.6
45

%)

= 40

~

g 32 — GPA-4
[

S 30 — GPA=3
B 25

o0 GPA=2
= 20 -

= GPA=1
L 15

¥

= m— GPA=0
@ 10 -

P~ —0—Avg GPA

5_
0_

09T all 10Fall 11Fall

Ficure 12. Tllustrations of students’ grade distribution and GPA trend
from Fall 2009 to Fall 2011

A course survey was administered at the end of the Fall 2011 semester, and all 27
students (including domestic and international students) enrolled in the course completed
the survey questionnaires. The survey results from five questions are listed in Table 2. As
depicted in Table 2, most students agreed strongly that applying C++ and OOP concepts
and software design skills from the course contents and homemade projects contributed
significantly to their understanding of developing communication software (Table 2, 4.46
out of 5 in Question 1, and 4.55 out of 5 in Question 2, respectively).

3434 Y.-L. CHEN, C.-M. LIU, C.-Y. CHIANG, S.-M. YUAN AND J.-H. WANG

TABLE 2. Course survey questions and results from students enrolled in Fall 2011

Survey questions

(1 = Strongly Disagree to 5 = Strongly Agree)
1. I fell that I have a better understanding of the C++ and | 4.46/5
OOP concepts and software design after taking this course.
2. The homemade projects can effectively help me to learn | 4.55/5
the C++ and OOP software design
3. I'study hard to develop my programming skills and solve | 4.64/5
the problems of developing large-scale software.
4. The course contents interest me and I would recommend | 4.36/5
this course to my junior classmates.
5. The course social-network forum can help me learn pro- | 4.55/5
gramming skills and conveniently obtain support from TAs
and the instructor.

Results

The students also definitely agreed that they were interested in the course contents and
homemade projects, and were encouraged to study hard to enhance their problem solving
abilities in developing large-scale software projects (Table 2, 4.64 out of 5 in Question
3, and 4.36 out of 5 in Question 4, respectively). They pay more than 20 hours weekly
in average on their homemade projects throughout the whole semester. The remaining
question also reflects that the students feel the course social-network forum can efficiently
provide intermediate supports and helps from the TAs and the instructor, provide them a
feedback way to the instructor to improve the course contents, and share the programming
knowledge and experiences (Table 2, 4.55 out of 5 in Question 5). The survey results
demonstrate that the proposed project-based curriculum successfully provokes student
interests in developing real-time communication software. By applying C++ and OOP
skills, the proposed curriculum contributes to students learning the advantages of OOP
and practical software engineering.

The students’ grade assessment results in Figure 12 reveal that the students’ learning
performance applying C++ and OOP skills significantly improved, and their interests
and motivation in incorporating the programming concepts and skills for constructing a
practical large-scale software system related to their lives also effectively improved, as
compared with the grade assessment results in the Fall 2009 semester using the conven-
tional programming course curriculum [2]. Accordingly, the student survey and grade
assessment results in Table 2 and Figure 12 reveal the efficiency and effectiveness of the
proposed project-based curriculum, including the course contents of C++ and OOP fea-
tures, homemade projects for developing large-scale communication software, and course
social-network forum. Most of the students significantly benefited from rapidly devel-
oping their problem-solving skills and learning how to apply practical solutions in using
different OOP concepts for their thesis studies.

The proposed teaching approach integrates practical applications of communication
software design and network social connections on OOP course. After taking this curricu-
lum, the students significantly and strongly develop their sense of accomplishment and
their interests on solving practical engineering problems using OOP skills. The course
contents and projects can be widely adapted for many practical aspects of students’ re-
search studies and their careers in information and communications technology (ICT)
industries, e.g., mobile computing software design, social computing, cloud computing,
user interface design, and embedded systems.

BUILDING COMMUNICATION SOFTWARE 3435

5. Conclusions. This study developed a project-based remedial curriculum for teach-
ing the skills and concepts of the C++ programming language and object-oriented pro-
gramming (OOP). The proposed curriculum is designed for domestic and international
students admitted into CS graduate programs without CS bachelor degrees or sufficient
computer programming experience. To assist such students in quickly learning the major
C++ and OOP skills for their graduate studies, the pedagogical approach of the pro-
posed curriculum includes a set of homemade projects, whose results are used to create
a large-scale communication software system related to their lives and theses. Based on
constructivist learning technology, the proposed project-based remedial curriculum can
significantly promote the learning effectiveness and interests of students via hands-on,
minds-on, and learning-by-doing practices. Furthermore, an interactive course web forum
based on the Web 2.0 social-network technology of Facebook was also established. This in-
teractive course forum approach can help students to obtain the announcements of course
materials and project assignments conveniently, and to pose questions for assistance from
and discussion with the TAs and instructor. In addition, the forum approach facilitates
providing immediate feedback and knowledge sharing of programming skills and concepts.

Because the proposed teaching approach incorporates practical applications of commu-
nication software design and network social connections on OOP course, the students’
interests on software design and problem-solving skills for their graduate studies are effi-
ciently aroused. The student survey and grade assessment results demonstrate that this
project-based curriculum can effectively provoke student interests in applying C++ and
OOP skills as well as cultivate their problem-solving abilities, thus providing effective
chances to learn the advantages of OOP and practical software engineering. Besides, the
proposed project-based curriculum not only can apply in teaching C++ OOP, and the
proposed course contents and projects can widely be adapted for teaching many practi-
cal programming courses in different, such as embedded system programming, network
programming, and mobile application programming with C++, C#, Java, or Objective-
C programming languages. Thus, the students can widely and effectively adapt their
learned concepts and skills for many practical aspects of students’ research studies and
their careers in ICT industries.

Acknowledgment. This work is supported by the National Science Council of Taiwan
under Contract No. NSC-101-2219-E027-002, NSC-101-2219-E-027-006, and NSC-101-
2219-E-027-007.

REFERENCES

[1] ACM AIS IEEE-CS, Curricula Recommendations, http://www.acm.org/education/curricula-
recommendations, 2009.

[2] The Joint Task Force on Computing Curricula, Computing curricula 2001, J. Educ. Res. Comput.,
vol.1, pp.1-240, 2001.

[3] J. Lang, G. C. Nugent, A. Samal and L.-K. Soh, Implementing CS1 with embedded instructional
research design in laboratories, IEEE Trans. Educ., vol.49, pp.157-165, 2006.

[4] Z. Anik and O. F. Baykoc, Comparison of the most popular object-oriented software languages
and criterions for introductory programming courses with analytic network process: A pilot study,
Comput. Appl. Eng. Educ., vol.19, pp.89-96, 2011.

[5] H. Zhu and M. Zhou, Methodology first and language second: A way to teach object-oriented
programming, Proc. of the 18th Annu. Conf. OOP Syst. Lang. Appl., Anaheim, CA, pp.140-147,
2003.

[6] J. Galvez, E. Guzméan and R. Conejo, A blended E-learning experience in a course of object oriented
programming fundamentals, Knowledge-Based Syst., vol.22, pp.279-286, 2009.

[7] G. Licea, R. Judrez-Ramirez, C. Gaxiola, L. Aguilar and L. G. Martinez, Teaching object-oriented
programming with AEIOU, Comput. Appl. Eng. Educ., 2011.

3436 Y.-L. CHEN, C.-M. LIU, C.-Y. CHIANG, S.-M. YUAN AND J.-H. WANG

[8] B. Hofer and P. Pintrich, The development of epistemological theories: Beliefs about knowledge and
knowing and their relation to learning, Rev. Educ. Res., vol.67, pp.88-140, 1997.

[9] T. Inanc and H. Dinh, A low-cost autonomous mobile robotics experiment: Control, vision, sonar,
and handy board, Comput. Appl. Eng. Educ., vol.20, pp.203-213, 2012.

[10] M.-H. Chen and T.-L. Li, Construction of a high-performance computing cluster: A curriculum for
engineering and science students, Comput. Appl. Eng. Educ., vol.19, pp.678-684, 2011.

[11] C.-Y. Chen and H.-M. Cheng, Open architecture design of embedded controller for industrial com-
munication gateway, ICIC Express Letters, Part B: Applications, vol.1, no.1, pp.51-56, 2010.

[12] Y. Tang, L. M. Head, R. P. Ramachandran and L. M. Chatman, Vertical integration of system-on-
chip concepts in the digital design curriculum, IEEE Trans. Educ., vol.54, pp.188-196, 2011.

[13] C. Mu, S. Liu and J. Chen, Hardware/Software integrated training on embedded systems, Interna-
tional Journal of Innovative Computing, Information and Control, vol.2, no.2, pp.457-464, 2006.

[14] F. Valles-Barajas and W. Schaufelberger, A proposal for the software design of control systems based
on the personal software process, International Journal of Innovative Computing, Information and
Control, vol.6, no.8, pp.3451-3466, 2010.

[15] W.-K. Chen and Y. C. Cheng, Teaching object-oriented programming lab with computer game
programming, IEEE Trans. FEduc., vol.50, pp.197-203, 2007.

[16] H. Zhu, Teaching OOP with financial literacy, IEEE Trans. Educ., vol.54, pp.328-331, 2011.

[17] A. Pérez and J. Rosell, A roadmap to robot motion planning software development, Comput. Appl.
Eng. Educ., vol.18, pp.651-660, 2010.

[18] S. Lippman and J. Lajoie, C++ Primer, 3rd Edition, Addison-Wesley, MA, 1998.

[19] B. Stroustrup, Programming: Principles and Practice Using C++, Addison Wesley, 2009.

[20] H. S. Du and C. Wagner, Learning with Weblogs: Enhancing cognitive and social knowledge con-
struction, IEEE Trans. Prof. Commun., vol.50, pp.1-16, 2007.

[21] C. Safran, Blogging in higher education programming lectures: An empirical study, Proc. of the 12th
MindTrek, Tampere, Finland, pp.131-135, 2008.

[22] Unified Modeling Language (UML) Specification, Object Management Group, http://www.omg.org/.

[23] J.-R. Chang Chien, A handheld electronic patient record using a new UML component-based archi-
tecture, Biomed. Eng. Appl. Basis. Comm., vol.22, pp.437-451, 2010.

[24] Y. L. Chen, C. Y. Chiang, C. W. Yu, S. M. Yuan and Z. W. Hong, A customized and portable
component-based framework for intelligent home-care system design with video and physiological
monitoring machineries, Biomed. Eng. Appl. Basis. Comm., vol.23, pp.325-348, 2011.

[25] S. Otén, A. Ortiz, J. R. Hilera, R. Barchino, J. M. Gutierrez, J. J. Martinez, J. A. Gutiérrez, L.
de Marcos and M. L. Jiménez, Service oriented architecture for the implementation of distributed
repositories of learning objects, International Journal of Innovative Computing, Information and
Control, vol.6, no.3, pp.843-854, 2010.

[26] J. Blanchette and M. Summerfield, C++ GUI Programming with Qt4, 2/e, Prentice Hall, 2008.

[27] N. M. Josuttis, The C++ Standard Library: A Tutorial and Reference, Addison Wesley, 1999.

