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Abstract. Fuzzy measure, as a non-additive metric, is an effective tool for information
fusion. Constructing a determining mechanism for fuzzy measure with operability is the
key focus in academic and application fields. In this paper, we first take core samples as
knowledge carriers on the decision information system. According to changes of knowl-
edge carriers, we second give a knowledge-based metric of attributes importance. Third,
combining with Choquet fuzzy integral, we establish a fuzzy synthetic evaluation model
(denoted as BIS-FSEM) to deal with correlation indexes. And finally, we analyze the
effectiveness of BIS-FSEM and give its implementation steps through a teaching quality
evaluation case. Theoretical analysis and computation results show that BIS-FSEM has
good operability and interpretability. It enriches the existing data-based metric theories
of attributes importance to some extent. So it can be applied in many fields such as
information fusion, synthetic evaluation and fuzzy decision-making.
Keywords: Fuzzy synthetic evaluation, Fuzzy measures, Fuzzy integrals, Core samples
set, Decision information system

1. Introduction. Synthetic evaluation is a multi-factor decision-making method by giv-
ing a comprehensive evaluation to object, and it is the core problem of resource manage-
ment, complex system optimization and so on. Since the connotation and extension of
the evaluation factors are often not precise and they correlate with each other, fuzzy syn-
thetic evaluation is a common used evaluation method. Constructing a fuzzy synthetic
evaluation model which can deal with the interaction is concerned widely in academic
fields. Many scholars gave many discussions under different backgrounds and also ob-
tained many important research results. Mi et al. [1] did an assessment of environment
lodging stress for maize using fuzzy synthetic evaluation and provided a scientific basis for
maize variety extension and recommendation and comprehensive management to reduce
maize planting risk and loss. Xu et al. [2] proposed a fuzzy synthetic evaluation model
aiming at risk assessment of PPP projects in China, which provided a deeper understand-
ing of managing different types of PPP projects. Wang et al. [3] did a fuzzy synthetic
evaluation of wetland soil quality degradation of northeast of China with a case study on
the Sanjiang Plain. It is of scientific and practical significance for protection and man-
agement of soils and for sustainable development of agriculture. Ren et al. [4] provided
a method of fuzzy synthetic evaluation of location plan of city distribution center. It
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successfully eliminated the fuzziness and uncertainties in determining the location of city
distribution center. Sheng et al. [5] gave a fuzzy synthetic evaluation on the quality of
different mixed feeds for fattening lambs by using in vitro method. Zou et al. [6] did a
risk assessment of concentrating solar power based on fuzzy synthetic evaluation. Yan et
al. [7] did a research on the synthetic evaluation of business intelligence system based on
BP neural network. Fukami et al. [8] did a quantitative evaluation of eye opening and
closure with time variation in routine EEG examinations. Wen [9] put forward a new
gray clustering and fuzzy synthetic evaluation method to evaluate the students’ scores in
a high school of Taiwan successfully. Zuo et al. [10] proposed an application of a hybrid
method combining multilevel fuzzy synthetic evaluation with asymmetric fuzzy relation
analysis to mapping prospectivity in western China.
At present, the commonly used fuzzy synthetic evaluation methods [11] include (i) the

single factors determining type; (ii) the main factors determining type; (iii) the geometric
average type; (iv) the weighted average type. However, it is worth noting that these
methods are dependent on some weight systems. They are only suitable for some special
evaluation problems and all have some shortcomings difficult to overcome. For example,
methods (i) and (ii) cannot make good use of the relevant information and the evaluation
results excessively depend on a few related values, so the distinguishing ability is lower;
methods (iii) and (iv) consider the information of all indexes, but they are too dependent
on the weight of each index. When the correlation between the indexes is strong, the
evaluation result will distort seriously. AHP-based fuzzy synthetic evaluation considers
the category characteristics of the index to a certain degree, but it cannot solve the
correlation between indexes. This problem coexists in all fuzzy synthetic evaluations based
on weight system. With the development of the fuzzy measure and fuzzy integrals theory,
many scholars describe the interaction between the evaluation indexes by using the non-
additivity of the fuzzy measure, and they put forward many fuzzy synthetic evaluations
based on different fuzzy integrals (such as Sugeno fuzzy integral, Choquet fuzzy integral).
These methods can solve information fusion with the interaction in theory, but it is very
difficult to determine an appropriate fuzzy measure.
For the determining methods, besides some methods given by some domain experts,

the commonly used ones are obtained according to study from some known decision data.
Keller et al. [12] studied a method based on confusion matrix. This method was not
influenced by the form of integral and could achieve search in short time, but it often
could not obtain the optimal solution, so it is only suitable for some problems with
special structures. Grabisch and Nicolas [13] presented a method based on quadratic
programming to identify fuzzy measures. This method requires the objective function to
be differentiable. Although completed theories have formed, they are not universal. Hu
[14] put forward a genetic algorithm based method to determine fuzzy measures, in which
operation process is simple and easy to understand, while the algorithm design depends
on the type of training data. Keller and Osborn [15] proposed a training algorithm based
on gradient descent method, which required all the fuzzy density values are considered at
each iteration with a problem with many independent training algorithms.
From the analysis above, fuzzy synthetic evaluation based on the fuzzy integrals can

describe the interaction between the evaluation factors effectively. However, the methods
to determine fuzzy measures still lack systematic operation mechanism, and it is the bot-
tleneck restricting the application. With the development of the information technology,
more and more data have been produced and stored from many fields such as transporta-
tion, electric power, production process control. Although these data has uncertainty (i.e.,
noise, incompleteness), much valid knowledge may be hidden. And the knowledge reflects
the relationship of each attribute in information system to a certain degree. If we take
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the dependent relationship between knowledge and attributes set as a measure basis of
attribute correlation, then we can establish some importance metric methods of attribute
using proper data mining methods. On this basis, we further establish information fusion
methods and fuzzy synthetic evaluation methods. Considering that the correlation metric
of attributes cannot be determined by analytic methods, it is very useful and applicable
to discuss the correlation metric of attributes based on data sets. In this paper, for the
multi-attributes decision problem, according to the influence on decision system by con-
dition attributes, we first propose the concept of the core samples set for the knowledge
description of the decision information system. Second, we give an attribute correlation
metric method, by using the change of the core samples set as a strategy of measuring the
importance of condition attributes sets. Third, we establish a fuzzy synthetic evaluation
model which can deal with correlation indexes (BIS-FSEM), combining with Choquet
fuzzy integrals. Finally, we analyze the characteristics and effectiveness of this method
and BIS-FSEM through a case-based example.

2. Preliminaries. Fuzzy measure essentially widens the classic metric, and it made up
for the deficiencies in dealing with the non-additive phenomenon. In 1974, Sugeno first
proposed the concept of fuzzy measure. Thereafter, many researchers discussed its struc-
ture characteristic, and the theoretical system was formed.

Definition 2.1. ([16]) Let X be a nonempty set, B be a nonempty class of subsets of X,
µ : B → [0,∞] and satisfies: 1) When Ø ∈ B, µ(Ø) = 0; 2) For A,B ∈ B, and A ⊂ B
imply µ(A) ≤ µ(B); 3) For {An}∞n=1 ⊂ B, A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · , and

∪∞
n=1An ∈ B,

lim
n→∞

µ(An) = µ(
∪∞

n=1An); 4) For {An}∞n=1 ⊂ B, A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · , and∩∞
n=1An ∈ B, lim

n→∞
µ(An) = µ(

∩∞
n=1An). Then µ is called a fuzzy measure on (X,B),

and (X,B, µ) is called a fuzzy measure space. Especially, when µ(x) = 1, µ is said a
normalized fuzzy measure.

The continuity is naturally satisfied if X is finite universe, so we only need to consider
monotonicity when constructing a fuzzy measure on finite domain.

The non-additivity of the fuzzy measures can be intuitively explained as the correlation
among elements, and subadditive (superadditive) means that the union of two sup-parts
plays a negative (positive) role. Hence, fuzzy measures and fuzzy integrals theories lay
a theoretical basis for different information fusion problem. Now we give the concept of
Choquet fuzzy integrals.

Definition 2.2. ([16]) Let (X,B, µ) be a fuzzy measure space, f(x) be a non-negative
measurable function on (X,B) (that is Nα(f) = {x|x ∈ X, f(x) > α} ∈ B for any
α ∈ [0,+∞)), B ∈ B. Then

(c)

∫
B

fdµ =

∫ +∞

0

µ(Nα(f) ∩B)dα

is called the Choquet fuzzy integral of f(x) on B.

According to the definition above, it is easy to see, when X = {x1, x2, · · · , xn}, if we
rearrange f(x1), f(x2), · · · , f(xn) to f(x∗

1), f(x
∗
2), · · · , f(x∗

n), then

(c)

∫
X

fdµ =
n∑

k=1

[f(x∗
k)− f(x∗

k−1)] · µ(Ak).

Here, f(x∗
0) = 0, Ak = {x∗

k, x
∗
k+1, · · · , x∗

n}, k = 1, 2, · · · , n. Fuzzy integrals have many
good properties (see details in [16]).
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3. An Attribute Importance Metric Method Based on the Core Samples Set.
Multi-attribute decision making is a part of many fields such as resources allocation, per-
formance evaluation, production process control, expert system. Many decision attributes
do not have definite extension. Decision attribute often interacts with each other, and the
interaction degree varies with the time and region. Constructing the correlation metric
of attributes under special environment is the key for multi-attribute decision making.
With the rapid development of information technology (i.e., computer, network, commu-
nication), a large amount of data have been accumulated, and many effective knowledge
discovery and information processing methods also have been formed. i.e., decision tree-
based machine learning methods, support vector machine-based statistics learning meth-
ods. If we regard the accumulated information and the relative knowledge as the data
describing the feature of attributes, and through the change of which we further establish
the correlation metric and importance metric, then we can get a new way to solve complex
decision making problems. In this section, we mainly discuss the importance metric of at-
tributes in decision information system. For convenience, in the following, let (U,C, d, FC)
be a decision information system, where i) U is a nonempty finite set of all samples, ii)
C = {C1, C2, · · · , Cs} is the condition attributes set, V (Ci) = {ci1, ci2, · · · , cim} is the
range of Ci, iii) d is the decision attribute and V (d) = {d1, d2, · · · , dn} is the range of d,
iv) FC = {f1, f2, · · · , fs, fd} is the information function (fd is a mapping from U to V (d)
and fi is a mapping from U to V (Ci), i = 1, 2, · · · , s). In the following:
1) when B ⊂ C, FB = {fd, fk|Ck ∈ B}, we call that (U,C, d, FB) is a subsystem of

(U,C, d, FC);
2) let (C1 = c1i1 , C2 = c2i2 , · · · , Cs = csis) = {u ∈ U |f1(u) = c1i1 , f2(u) = c2i2 , · · · ,

fs(u) = csis} be the RC-equivalence class when the value of Ck is ckik , k = 1, 2, · · · , s;
3) let (d = dj) = {u ∈ U |fd(u) = dj} be the Rd-equivalence class when the value of d

is dj;
4) let [u]R be the R-equivalence class of u for the equivalence relation R on U , and

U/R = {[u]R|u ∈ U}.

Definition 3.1. For the decision information system (U,C, d, FC), B ⊂ C, B 6= Ø.
1) If there exists a (d = dj) such that {u ∈ U |fk(u) = ckik , Ck ∈ B} 6= Ø and {u ∈

U |fk(u) = ckik , Ck ∈ B} ⊂ (d = dj), then we call

If Ck = ckik , Ck ∈ B, Then d = dj (1)

an “IF-THEN” knowledge of (U,C, d, FC);
2) If (C1 = c1i1 , C2 = c2i2 , · · · , Cs = csis) 6= Ø and there exists a (d = dj) such that

(C1 = c1i1 , C2 = c2i2 , · · · , Cs = csis) ⊂ (d = dj), (2)

then (C1 = c1i1 , C2 = c2i2 , · · · , Cs = csis ; d = dj) is called an elementary knowledge factor
of (U,C, d, FC), (C1 = c1i1 , C2 = c2i2 , · · · , Cs = csis) is called the support samples set of
(C1 = c1i1 , C2 = c2i2 , · · · , Cs = csis ; d = dj), and

UC =
∪

(C1=c1i1 ,C2=c2i2 ,··· ,Cs=csis ; d=dj)∈K

(C1 = c1i1 , C2 = c2i2 , · · · , Cs = csis) (3)

is called the core samples set of (U,C, d, FC), and the samples in UC are called the core
samples, where K is the family of all elementary knowledge factors.

To find “IF-THEN” knowledge from the information system is the core of data mining.
It is the most common knowledge of the management and decision-making process. It
is easy to see, if (U,C, d, FC) is regarded as a knowledge system, then UC is the core of
supporting “IF-THEN” knowledge of (U,C, d, FC). And it also corresponds to the low
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Figure 1. The geometry paraphrase of the core samples set

approximation set of decision class in rough set theory. Its intuitive explanation is shown
as Figure 1: (a) means the decision attribute class; (b) means the conditional attribute
class; the black area in (c) means the core samples set.

Theorem 3.1. Suppose UC be the core samples set of (U,C, d, FC), then: 1) UC = U
if and only if (U,C, d, FC) is a consistent decision information system; (For any given
condition attribute class (C1 = c1i1 , C2 = c2i2 , · · · , Cs = csis), there exists a decision
attribute class d = dj such that (C1 = c1i1 , C2 = c2i2 , · · · , Cs = csis) ⊂ (d = dj)). 2)
UC = Ø if and only if there does not exist “IF-THEN” knowledge in (U,C, d, FC).

Theorem 3.2. Let (U,C, d, FB) be the subsystem of (U,C, d, FC), then UB ⊂ UC. Here,
UB and UC are the core samples sets of (U,C, d, FB) and (U,C, d, FC) separately.

The core samples set is the supporting body of knowledge in information system, and
it reflects the influence on information system of each attribute. So the core samples set
can be used as the metric basis of attribute importance. Let (U,C, d, FC) be a decision
information system, P(C) be the power set of C,B ∈ P(C),

µ(B) =

 |UB|/|UC |, |UC | 6= 0,
1, |UC | = 0, B 6= Ø,
0, B = Ø,

(4)

here, |A| is the number of elements in A, UB and UC are the core samples sets of
(U,C, d, FB) and (U,C, d, FC) respectively. Then we have the following conclusions by
Theorem 3.2:

1) 0 ≤ µ(B) ≤ 1 for any B ∈ P(C), and µ(Ø) = 0, µ(C) = 1;
2) µ(A) ≤ µ(B) for any A,B ∈ P(C) with A ⊂ B.
Combined with the discussions in Section 2, we know that (3) is a normalized fuzzy mea-

sure on (C,P (C)), and we call it the attribute correlation metric based on knowledge
in (U,C, d, F ), and denoted as (C,P (C), µ) ∈ (U,C, d, FC).

It is easy to see, (4) is a metric describing the support degree to (U,C, d, FC) by con-
dition attributes set B. It reflects the synthetic importance of attributes of B, and it
can embody the mutual support among attributes to some degree. It can be used in
many issues such as synthetic evaluation, information fusion, pattern recognition and
multi-attribute decision making.

Remark 3.1. It is worth noting that metric model (4) has some limitations. If there
does not exist “IF-THEN” knowledge in (U,C, d, FC), (4) cannot effectively reflect the
interdependence among attributes. There are many reasons for causing no “IF-THEN”
knowledge such as noise, inconsistence information system, incomplete data. Therefore,
when conditional attributes set B is small, it is possible to get that µ(B) = 0. That is,
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µ(B) has worse discrimination ability. And the fact µ(B) = 0 cannot be easily interpreted
as that B is not important, it is only a proof that we may not be able to make decision by the
attributes value of B. For this problem, we can perfect (4) through the following strategies:
1) weaken the requirement for the knowledge precision by some threshold, and based on
this, enlarge the knowledge carriers; 2) take |B|/|C|, |UB|/|UC | as the secondary index,
principal index of importance metric of B, respectively, and construct the importance
metric model µ(B) = S(|B|/|C|, |UB|/|UC |) through a synthesis operator S(u, v) (i.e.,
S(u, v) = au+ bv, a, b ∈ [0, 1], a+ b = 1). We will further discuss it in future.

4. A Fuzzy Synthetic Evaluation Model Based on the Knowledge System.
Synthetic evaluation is the key focus in many fields such as resource management, complex
system optimization. Because the connotation of the evaluation factors often cannot
be precisely defined, the fuzzy synthetic evaluation is a common used method, and its
implementation steps are as follows:
Step 1: Build the factors set X = {u1, u2, · · ·, us}.
Step 2: Build the evaluation set Y = {v1, v2, · · ·, vm}.
Step 3: Determine the single factor evaluation matrix R by fuzzy statistics method,

expert scoring method, etc. Here rij ∈ [0, 1] means the degree of the evaluation objects
to each vj on each ui, i = 1, 2, · · · , s, j = 1, 2, · · · ,m.

R =


r11 r12 · · · r1m
r21 r22 · · · r2m

...
...
...
...

rs1 rs2 · · · rsm

 , (R1, R2, · · ·, Rm).

Step 4: Choose a suitable fuzzy synthetic function S(x1, x2, · · · , xs) satisfying the
following conditions: 1) S(x1, x2, · · · , xs) : [0, 1]

s → [0, 1]; 2) S(x, x, · · · , x) = x; 3) It is
monotone nondecreasing on each variable xi; 4) It is continuous on each variable xi.
Step 5: Synthesize each column of R for a value bj = S(Rj) = S(rj1, rj2, · · · , rjs) by

synthetic function, then we get the fuzzy synthetic evaluation results B = (b1, b2, · · · , bm),
where bj means the degree of the evaluation objects to each evaluation set vj in synthetic
sense, j = 1, 2, · · · ,m. That is

B = S ◦R = (S(R1), S(R2), · · · , S(Rm)). (5)

It is easy to see, the selection of a fuzzy synthetic function is very important for fuzzy
synthetic evaluation. At present, the commonly used synthetic modes include the weighted
average type (6), the geometric average type (7), the single factors determining type (8),
the main factors determining type (9).

S(x1, x2, · · · , xs) =
s∑

i=1

ωixi, 0 ≤ ωi ≤ 1 and
s∑

i=1

ωi = 1, (6)

S(x1, x2, · · · , xs) =
s∏

i=1

(xi)
ωi , 0 ≤ ωi ≤ 1 and

s∑
i=1

ωi = 1, (7)

S(x1, x2, · · · , xs) = max
1≤i≤s

min(ωi, xi), 0 ≤ ωi ≤ 1 and max
1≤i≤s

ωi = 1, (8)

S(x1, x2, · · · , xs) = max
1≤i≤s

T (ωi, xi), 0 ≤ ωi ≤ 1 and max
1≤i≤s

ωi = 1. (9)
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Here, T is a mapping (we call it a t-norm) from [0, 1]2 to [0, 1] and satisfies: 1) T (a, b) =
T (b, a); 2) T (T (a, b), c) = T (a, T (b, c)); 3) T (a, c) ≤ T (b, d) for a ≤ b, c ≤ d; 4) T (1, a) =
a.

However, it is worth noting that (6) and (7) are only suitable for the case when the
evaluation factor is independent with each other, (8) and (9) cannot make full use of
information from various aspects. These disadvantages exist in other synthetic modes
based on the weight system. Therefore, how to construct an operational fuzzy synthetic
model is very important in theory and practice. Considering that the factors set of the
fuzzy synthetic evaluation and the condition attribute set of decision-making information
system have the same meaning, so if factors set X of the fuzzy synthetic evaluation
is interpreted as the condition attributes set C of the decision information system, the
evaluation set V is the value of decision attribute set d, then we can construct fuzzy
synthetic functions by the existing decision-making information system. In the following,
combined with attribute importance metric in Section 3 and Choquet fuzzy integrals, we
give a fuzzy synthetic function which can deal with the correlation.

Theorem 4.1. Suppose (C,P(C), µ) be the attribute correlation metric based on the
knowledge of (U,C, d, FC), and C = {C1, C2, · · · , Cs}. For any given xi ∈ [0, 1], i =
1, 2, · · · , s, let −→x = (x1, x2, · · · , xs), f−→x (Ci) = xi, then

S(x1, x2, · · · , xs) =

∫ +∞

0

µ(Nα(f−→x ))dα (10)

is a fuzzy synthetic function.

Proof: 1) For any given x = (x1, x2, · · · , xs) ∈ [0, 1]s, since fx(Ci) = xi, i = 1, 2, · · · , s,
we know Nα(f−→x ) = {Ci|Ci ∈ C, f−→x (Ci) ≥ α} = Ø for α > 1. From this and the regularity
of (C,P(C), µ), we know µ(Nα(f−→x )) = 0 is constant for any α > 1, 0 < µ(Nα(f−→x )) ≤ 1
is constant for any 0 ≤ α ≤ 1, that is, S(x1, x2, · · · , xs) ∈ [0, 1].

2) If x1 = x2 = · · · = xs = x ∈ [0, 1], then µ(Nα(f−→x )) = 1 is constant for any 0 ≤ α ≤ x,
µ(Nα(f−→x )) = 0 is constant for any α > x, that is, S(x, x, · · · , x) =

∫ x

0
1dα = x.

3) If satisfying x = (x1, x2, · · · , xs), y = (y1, y2, · · · , ys), satisfying 0 ≤ x1 < y1 ≤
1, xi = yi ∈ [0, 1], i = 2, 3, · · · , s, then we have Nα(f−→x ) ⊂ Nα(f−→y ), µ(Nα(f−→x )) ≤
µ(Nα(f−→y )) for any 0 < α < 1. From this and the properties of the integrals, we have
S(x1, x2, · · · , xs) ≤ S(y1, y2, · · · , ys). We also can prove S(x1, x2, · · · , xs) is monotone
nondecreasing on other variables similarly.

4) We can prove S(x1, x2, · · · , xs) is continuous on each variable by the properties of
the integrals.

It is easy to see by the proof process of Theorem 4.1, (10) is essentially a Choquet fuzzy
integral on fuzzy measure space (C,P(C), µ). If the ranking result of x1, x2, · · · , xs by
increasing order is x∗

1, x
∗
2, · · · , x∗

s, then we have,

S(x1, x2, · · · , xs) =
s∑

k=1

(x∗
k − x∗

k−1) · µ(Bk) (11)

where x∗
0 = 0, Bk = {C∗

k , C
∗
k+1, · · · , C∗

s}, C∗
k is the corresponding attribute of x∗

k, k =
1, 2, · · · , s.

For convenience, we call (10) a fuzzy synthetic evaluation model based on the knowledge
system (BIS-FSEM), and denoted as

B = S ◦R,

S(x1, x2, · · · , xs) =
∫ +∞
0

µ(Nα(f−→x ))dα,
(C,P(C), µ) ∈ (U,C, d, FC).

(12)
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where (U,C, d, FC) is a decision information system relevant to the synthetic evaluation.

5. Example Analysis. A school has the mission to cultivate technology and manage-
ment professionals for the society. The education level reflects the economic level of a
nation or region to some degree. As the core, the teaching quality of the teacher deter-
mines the social status of a school. Therefore, strengthening the construction of teaching
staff and improving the teaching quality are always the eternal topics of school and the
relative department.
Evaluation of teaching quality is an important link of teaching administrative depart-

ment, and it can guarantee teaching quality. Evaluation involves many subjective factors
and objective factors, i.e., the basic condition of students, teaching aims, teaching facil-
ities, teaching sessions. Therefore, using an exact numeral to describe teaching quality
often cannot objectively reflect the actual condition of a teacher. Fuzzy synthetic evalua-
tion is a common model for teaching quality evaluation. To highly arouse the enthusiasm
of the teachers, find and solve the problems existing in teaching process in time, a high
school has established its own fuzzy synthetic evaluation system for the evaluation of
teaching quality. In this system, professional level (C1), teaching attitude (C2), teaching
method (C3) and teaching effect (C4) is evaluation indexes set, very good, good, com-
mon, poor is remarks set, weighted average synthesis function is synthesis operator, and
weighted system is W = (0.25, 0.25, 0.2, 0.3). In this system, both teachers and admin-
istrative departments find that there exists different correlation among four evaluation
indexes. And weighted average synthesis method cannot effectively deal with the interac-
tion between indexes. To better play the role of evaluation and enhance the teacher team,
this school decides to perfect the existing teaching quality evaluation system, and the ba-
sic guiding ideas are: 1) consider the mutual support and correlation between evaluation
indexes as much as possible, and provide basis for the construction of teaching staff; 2)
consider the scientific nature and operability of established model, avoid the subjectivity
as much as possible.
It is easy to see that the determination of importance metric of each index, which can

embody the correlation between indexes, is the key to this problem. Because the teaching
quality is a long-term problem concerned by education department and school, there
accumulated much related information. Table 1 shows 20 pieces of information extracted
at random from the database of the teaching quality evaluation of the school, d is the
synthetic evaluation result. Therefore, we can use the fuzzy synthetic evaluation model
(11) based on the knowledge system given in Section 4 as the evaluation pattern of the
teaching quality. Its implementation steps are stated as follows:
Step 1: Determine attribute importance metric of the evaluation indexes according to

(4) (Table 2 is the result of Table 1);
Step 2: Let (10) be a synthetic function, combined with a concrete single factor

evaluation matrix R. Then, we can get the fuzzy synthetic evaluation results (5).
From Table 2, the importance of single attribute has a certain relationship with that

of attribute group (i.e., monotone non-decreasing), but the relationship is not a simple
superposition. For example, the separate importance of C2, C3, C1, C4 is 0, 0, 0.2, 0.55
respectively, the synthetic importance 0.75 of C2, C3 is higher than 0.65 of C1, C4, the
synthetic importance 0.9 of C2, C3, C4 is higher than 0.8 of C1, C2, C4. The above situation
demonstrates that the interaction between attributes is a complex relation, which can be
obtained by model (4).
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Table 1. Evaluation information system of 20 teachers’ teaching quality

Samples C1 C2 C3 C4 d
1 very good very good very good very good very good
2 good very good very good very good very good
3 common very good common good common
4 common common poor poor poor
5 poor good good common common
6 very good common poor common common
7 good common good good good
8 good poor good good good
9 very good good common good good
10 good poor poor poor poor
11 good good common common common
12 poor very good very good good common
13 common very good very good good good
14 good common good common common
15 good good good good good
16 poor good very good common common
17 poor very good good common common
18 good common common good common
19 common good good good good
20 very good common poor poor poor

Table 2. Attribute importance metric of the evaluation indices

(U,B, d, FB) UB |UB| µ(B)
B = {C1} {5, 12, 16, 17} 4 0.2
B = {C2} Ø 0 0
B = {C3} Ø 0 0
B = {C4} {1, 2, 4, 5, 6, 10, 11, 14, 16, 17, 20} 11 0.55

B = {C1, C2} {1, 2, 4, 5, 9, 12, 16, 17, 19} 9 0.45
B = {C1, C3} {1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 16, 17, 18, 19} 14 0.7
B = {C1, C4} {1, 2, 4, 5, 6, 9, 10, 11, 12, 14, 16, 17, 20} 13 0.65
B = {C2, C3} {3, 8, 10, 16, 17, 18} 6 0.3
B = {C2, C4} {1, 2, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 17, 19, 20} 15 0.75
B = {C3, C4} {1, 2, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 17, 19, 20} 15 0.75

B = {C1, C2, C3} {1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19} 16 0.8
B = {C1, C2, C4} {1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20} 16 0.8
B = {C1, C3, C4} U 20 1
B = {C2, C3, C4} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20} 18 0.9

B = {C1, C2, C3, C4} U 20 1

According to the discussion above, if one teacher’s single factor evaluation matrix is

R =


0.70 0.20 0.10 0.00
0.35 0.55 0.10 0.00
0.15 0.65 0.10 0.10
0.40 0.40 0.10 0.10

 , (R1, R2, R3, R4), (13)
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then by using (11) in Section 4 we can get the following:
S(R1) = S(0.70, 0.35, 0.15, 0.40) = (0.15−0.00)×µ(C)+(0.35−0.15)×µ({C1, C2, C4})+

(0.40 − 0.35) × µ({C1, C4}) + (0.70 − 0.40) × µ({C1}) = 0.15 × 1 + 0.20 × 0.8 + 0.05 ×
0.65 + 0.30× 0.20 = 0.4025;
S(R2) = S(0.20, 0.55, 0.65, 0.40) = (0.20−0.00)×µ(C)+(0.40−0.20)×µ({C2, C3, C4})+

(0.55 − 0.40) × µ({C2, C3}) + (0.65 − 0.55) × µ({C3}) = 0.20 × 1 + 0.20 × 0.9 + 0.15 ×
0.3 + 0.10× 0 = 0.4250;
S(R3) = S(0.10, 0.10, 0.10, 0.10) = (0.10− 0.00)× µ(C) = 0.10× 1 = 0.1000;
S(R4) = S(0.00, 0.00, 0.10, 0.10) = (0.10− 0.00)× µ({C2, C3}) = 0.10× 0.75 = 0.0750,

that is, the teacher’s teaching quality evaluation is B = S((R1), S(R2), S(R3), S(R4)) =
(0.0425, 0.4250, 0.1000, 0.0750), i.e., the degrees of the teacher’s teaching quality corre-
sponding to very good, good, common and poor are 0.4025, 0.4250, 0.1000 and 0.0750.
In order to further analyze the characteristics and effectiveness of (12), for 6 differ-

ent evaluation objects, we use the original model (i.e., (6) is fuzzy synthetic function,
W = (0.25.0.25, 0.2, 0.3) is weighted system) and model (12) to obtain evaluation results,
respectively. And the results are listed in Table 3.
From Table 3, we can see the results of the two models have obvious differences, and

they are presented in the following. 1) The results of two models are similar (i.e., No.1,
No.2, No.3), and also they have obvious differences (i.e., No.4, No.5, No.6). 2) When
the corresponding evaluation value of each attribute has no big difference, the results of
two models are similar (i.e., the 2th component of No.2, the 3th component of No.3).
3) Results for the weighted average type closely depend on weight system (see Table 4),

Table 3. Evaluation results of original model and model (12)

No. R
Evaluation results

Original model Model (12)

1


0.70 0.20 0.10 0.00

0.35 0.55 0.10 0.00

0.15 0.65 0.10 0.10

0.40 0.40 0.10 0.10

 (0.4125, 0.4375, 0.1000, 0.0500) (0.4025, 0.4250, 0.1000, 0.0750)

2


0.10 0.65 0.25 0.00

0.15 0.70 0.10 0.05

0.10 0.55 0.25 0.10

0.10 0.60 0.20 0.10

 (0.1125, 0.6275, 0.1975, 0.0625) (0.1000, 0.6125, 0.2350, 0.0825)

3


0.70 0.20 0.05 0.00

0.55 0.35 0.10 0.00

0.20 0.65 0.15 0.00

0.55 0.25 0.10 0.00

 (0.5600, 0.3425, 0.0975, 0.0000) (0.4850, 0.2750, 0.0950, 0.0000)

4


0.00 0.15 0.75 0.10

0.75 0.15 0.10 0.00

0.65 0.30 0.10 0.00

0.00 0.10 0.70 0.20

 (0.3175, 0.1650, 0.4425, 0.0850) (0.1950, 0.1400, 0.5000, 0.0200)

5


0.00 0.00 0.30 0.70

0.75 0.25 0.00 0.00

0.45 0.55 0.00 0.00

0.00 0.10 0.20 0.70

 (0.2775, 0.2025, 0.1350, 0.3850) (0.1350, 0.1350, 0.1500, 0.4550)

6


0.00 0.00 0.60 0.40

0.05 0.35 0.15 0.00

0.00 0.25 0.65 0.10

0.00 0.05 0.20 0.75

 (0.1250, 0.1525, 0.3775, 0.3450) (0.0000, 0.1050, 0.4800, 0.4875)
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Table 4. Results of different weighted average synthetic evaluation

No. R
Weight systems

(0.25.0.25, 0.2, 0.3) (0.15. 0.25, 0.30, 0.30) (0.35.0.15, 0.25, 0.25)

1


0.70 0.20 0.10 0.00

0.35 0.55 0.10 0.00

0.15 0.65 0.10 0.10

0.40 0.40 0.10 0.10

 (0.4125, 0.4375,

0.1000, 0.0500)

(0.3575, 0.4825,

0.1000, 0.0600)

(0.4350, 0.4150,

0.1000, 0.0500)

2


0.10 0.65 0.25 0.00

0.15 0.70 0.10 0.05

0.10 0.55 0.25 0.10

0.10 0.60 0.20 0.10

 (0.1125, 0.6275,

0.1975, 0.0625)

(0.1125, 0.6175,

0.1975, 0.0725)

(0.1075, 0.6200,

0.2150, 0.5750)

3


0.70 0.20 0.05 0.00

0.55 0.35 0.10 0.00

0.20 0.65 0.15 0.00

0.55 0.25 0.10 0.00

 (0.5600, 0.3425,

0.0975, 0.0000)

(0.5050, 0.3875,

0.1075, 0.0000)

(0.5575, 0.3475,

0.0950, 0.0000)

4


0.00 0.15 0.75 0.10

0.75 0.15 0.10 0.00

0.65 0.30 0.10 0.00

0.00 0.10 0.70 0.20

 (0.3175, 0.1650,

0.4425, 0.0850)

(0.3825, 0.1800,

0.3775, 0.0750)

(0.2750, 0.1750,

04775, 0.0850)

5


0.00 0.00 0.30 0.70

0.75 0.25 0.00 0.00

0.45 0.55 0.00 0.00

0.00 0.10 0.20 0.70

 (0.2775, 0.2025,

0.1350, 0.3850)

(0.3225, 0.2575,

0.1050, 0.3150)

(0.2250, 0.2000,

0.1550, 0.4200)

6


0.00 0.00 0.60 0.40

0.05 0.35 0.15 0.00

0.00 0.25 0.65 0.10

0.00 0.05 0.20 0.75

 (0.1250, 0.1525,

0.3775, 0.3450)

(0.1250, 0.1775,

0.3825, 0.3150)

(0.0750, 0.1275,

0.4450, 0.3525)

but the results under any weight system are not as the same as those of model (12).
It shows that the weighted average synthetic evaluation does not have objectivity. 4)
The results of model (12) closely depend on the importance of attributes group with
interaction. Only when the evaluation values of attributes group with big importance are
all big, the corresponding synthesis value is big (i.e., the 3th component of No.6). Single
or a small amount of evaluation value of attribute does not decide the synthesis value
(the 1th component of No.6, the 1th component of No.4). 5) Model (12) just depends
on the past data information. Although these data may have various kinds of noise,
we can construct the importance metric of attributes group by some measures, such as,
weakening the knowledge precision, adjusting the representation of knowledge carrier.
Therefore, model (12) has a certain generality and objectivity. It not only has dynamic
self-organizing characteristic, but also can solve the theory deficiencies and subjectivity of
weighted system evaluation model. Also model (12) conforms to the basic requirements
for the teaching evaluation system.

6. Conclusion. In this paper, we analyze the characteristic of knowledge of the decision
information system, and propose the concept of the core samples set, further establish an
attribute importance metric method. Furthermore, combined with Choquet fuzzy inte-
grals, we establish a fuzzy synthetic evaluation model (BIS-FSEM) which can deal with
correlation indexes. Then we analyze the effectiveness of this model through a cased-based
example. Theoretical analysis and computation results show that the attribute impor-
tance metric method has strong interpretability. It can effectively induce the correlation
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among attributes from the existing knowledge. Hence, these discussions enrich the fuzzy
measure theory to a certain degree and make up for the existing fuzzy evaluation methods.
So it can be applied in many problems such as information fusion, synthetic evaluation,
fuzzy decision. It is worth noting that the attribute correlation metric method in this
paper is only suitable for the information system with discrete attribute value. This de-
ficiency restricts the application of BIS-FSEM to a certain extent. We will construct a
general BIS-FSEM by using decision information system with multiple decision attribute
values or continuous attribute value in the future work.
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