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Abstract. In the design of reinforced concrete rectangular footings subject to axial load
and flexure in two directions, there are different pressures in the four corners, these are
exercised by soil. In this paper, a mathematical model is developed to take into account
the real pressure of soil acting on the contact surface of the footings, these pressures
are presented in terms of the mechanical elements (axial load, around moment the axis
“X” and around moment the axis “Y”), when applying the load that must support said
structural member. The classical model takes into account only the maximum pressure
of the soil for design of footings and it is considered uniform at all points of contact area
of footing, i.e., that all the contact surface has the same pressure. Also a comparison is
developed between the two models as shown in the results table. The data show that the
classical model is larger than the model proposed. Therefore, normal practice to use the
classic model will not be a recommended solution. Then the proposed model is the most
appropriate, since it is more economic and also is adjusted to real conditions.
Keywords: Rectangular footings, Real pressures, Contact surface, Resultant force, Cen-
ter of gravity, Moments, Shear force by flexure, Shear force by penetration

1. Introduction. The foundation is part of the structure which transmits the loads
to the soil. Each building demands the need to solve a problem of foundation. The
foundations are classified into superficial and deep, which have important differences: in
terms of geometry, the behavior of the soil, its structural functionality and its constructive
systems [1-4].

A superficial foundation is a structural member whose cross section is of large dimen-
sions with respect to height and whose function is to transfer the loads of a building
at depths relatively short, less than 4 m approximately with respect to the level of the
surface of natural ground [1-4].

Superficial foundations, whose constructive systems generally do not present major
difficulties, may be of various types according to their function: isolated footing, combined
footing, strip footing, or mat foundation [1-4].

The structural design of foundations, by itself, represents the union and the frontier of
structural design and soil mechanics [1-7]. As such, shared the hypothesis and models of
both disciplines, which do not always coincide, the high degree of specialization with which
are being designed today makes that structural engineers and engineers of soil mechanics
will have different approaches, which in some way affects the final product that will find
in these two disciplines: foundation design.
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Indeed, for normal working, structural analysis is usually done with the hypothesis that
the building structure is embedment in the ground, i.e., it is supported by an undeformable
material [1-4].
On the other hand, the engineer of soil mechanics, for calculating the conditions of

service by soil settlement, despises the structure, whose model are only forces as resulting
from the reactions.
The reality is that neither the soil is undeformable, neither the structure is as flexible as

for that its effects are not interrelated. After all, the system soil-structure is a continuous
element whose deformations of one depend on the other.
In the design of superficial foundations, the specific case of isolated footings are of three

types in terms of the application of loads: 1) The footings subject to concentric axial load;
2) The footings subject to axial load and moment in one direction (unidirectional flexure);
3) The footings subject to axial load and moment in two directions (bidirectional flexure)
[1,4-8]. The hypothesis used in the classical model is to consider the pressures uniforms
for the design, i.e., the same pressure at all points of contact in the foundation with the
soil, the design pressure is the maximum that occurs of at the four corners the footings
rectangular.
The classical model for dimensioning of footings rectangular is developed by trial and

error, i.e., it is proposed a dimension and using the expression of the bidirectional flexure
to obtain the stresses acting on the four corners of the rectangular footing, which must
meet with the following conditions: 1) The minimum stress should be equal to or greater
than zero, because the soil is not capable of withstand tensile stresses; 2) The maximum
stress must be equal or less than the allowable capacity that can withstand the soil.
A direct method of proportioning a rectangular footing area subjected to biaxial flexure

is proposed as an alternative to the trial and error method of solution. Formulas for the
dimensions of the footing area are derived using the ordinary flexure formula and the
limiting conditions that the maximum and minimum pressures are developed at the critical
corners which are diagonally opposite each other. In addition, the maximum pressure
is equated to the allowable bearing capacity of the soil while the minimum pressure is
equated to zero. The analysis yielded the basic relationship of the footing area dimensions
as 12 times the eccentricities of the total vertical load about the centroidal axes while the
minimum area is controlled by the allowable soil bearing capacity [9].
A comparative study of different integration methods of stresses (both analytical and

numerical) for concrete sections subjected to axial loads and biaxial flexure, such methods
are applied to circular and rectangular sections. The comparison was performed with
regard to the accuracy and the computational speed of each method. The objective of
the paper is to determine which of the integration methods compared is more efficient in
computing the interaction surfaces for rectangular and circular sections [10].
A simple design chart is also provided to determine the minimum dimensions of a rigid

rectangular footing resting on elastic mass subjected to the combination of biaxial flexure
in both axes and vertical column load [11].
Luévanos-Rojas developed a mathematical model to obtain the dimensions most eco-

nomic for rectangular footings subjected to axial load and moment in two directions
(bidirectional flexure), which must meet with the two conditions mentioned previously
[12].
Luévanos-Rojas developed a mathematical model to take into account the real pressure

of soil acting on the contact surface of the rectangular footings when applying the load
that must support said structural member, this model is presented in function of the
pressures, for obtain the moments acting on the rectangular footings [13].
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This paper develops a full mathematical model for design of rectangular footings for
obtain: 1) The around moment of a axis a′-a′ that is parallel to axis “X-X” and around a
axis b′-b′ that is parallel to axis “Y -Y ”; 2) The shear forces by flexure (unidirectional shear
force); 3) The shear forces by penetration (bidirectional shear force) for footings that are
supporting to a rectangular column or a circular column, for footings subject to axial
load and moment in two directions (bidirectional flexure), where pressures are different in
the four corners, these pressures are presented in terms of the mechanical elements (axial
load, around moment the axis “X-X” and around moment the axis “Y -Y ”), when the
load is applied to said structural member, having a along linear variation all its contact
area, which is as it presents the really pressure. Also, a comparison is developed in terms
of materials that are used (steel and concrete) between the traditional model and the
proposed model to observe the differences.

2. Mathematical Development of Model New. The general equation for any type
of footings subjected to bidirectional flexure [12-14]:

σ =
P

A
± MxCy

Ix
± MyCx

Iy
(1)

where σ is the stress exerted by the soil on the footing (soil pressure), A is the contact
area of the footing, P is the axial load applied at the center of gravity of the footing,
Mx is the around moment the axis “X”, My is the around moment the axis “Y ”, Cx is
the distance in the direction “X” measured from the axis “Y ” up the farthest end, Cy is
the distance in direction “Y ” measured from the axis “X” up the farthest end, Iy is the
moment of around inertia the axis “Y ” and Ix is the moment of around inertia the axis
“X”.

Figure 1 shows the pressures diagram for rectangular footings subject to axial load and
moment in two directions (bidirectional flexure), where pressures are presented differently
in the four corners and along linearly varying the entire contact surface.

Figure 2 are presented the stresses in any point of the contact surface of a rectangular
footing due to the pressure exerted by the soil.

Figure 1. Pressures soil on the foundation
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Figure 2. Typical rectangular footing

The stresses are found by Equation (1) at any point on a rectangular footing subjected
bidirectional flexure, it shows:

σ(x, y) =
P

bh
+

12Mxy

bh3
+

12Myx

hb3
(2)

where h is the side of the parallel footing to axis “Y ”, b is the side of the parallel footing
to the axis “X”.
Equation (2) is used to find the stresses in each corner of the footing as follows:

σ1 =
P

bh
+

6Mx

bh2
+

6My

hb2
(3)

σ2 =
P

bh
+

6Mx

bh2
− 6My

hb2
(4)

σ3 =
P

bh
− 6Mx

bh2
+

6My

hb2
(5)

σ4 =
P

bh
− 6Mx

bh2
− 6My

hb2
(6)

where σ1 is the maximum stress and σ4 is the minimum stress.

2.1. Model to obtain the moments. Critical sections for moments are presented in
section a′-a′ and b′-b′, as shown in Figure 3.
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Figure 3. Critical sections for moments

2.1.1. Around moment of axis a′-a′. The resultant force “FR1” is obtained through the
volume of pressure of the area formed by the axis a′-a′ and the corners 1 and 2 of the
footing, it is presented [15-17]:

FR1 =

∫ h/2

c1/2

∫ b/2

−b/2

σ(x, y)dxdy (7)

Equation (2) is substituted into Equation (7), we obtain:

FR1 =

∫ h/2

c1/2

∫ b/2

−b/2

[
P

bh
+

12Mxy

bh3
+

12Myx

hb3

]
dxdy (8)

where c1 is the dimension of the parallel column to the axis “Y ”, c2 is the dimension of
the parallel column to the axis “X”.

From Equation (8) is developed the integration double and boundary conditions are
substituted; it is shown:

FR1 =
P (h− c1)

2h
+

3Mx(h
2 − c21)

2h3
(9)

Now, the integral is developed to obtain the center of gravity “yc” of the soil pressures:

yc =

∫ h/2

c1/2

∫ b/2

−b/2
yσ(x, y)dydx∫ h/2

c1/2

∫ b/2

−b/2
σ(x, y)dydx

(10)
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Equation (2) is substituted into Equation (10), we obtain:

yc =

∫ h/2

c1/2

∫ b/2

−b/2

[
P
bh

+ 12Mxy
bh3 + 12Myx

hb3

]
ydxdy∫ h/2

c1/2

∫ b/2

−b/2

[
P
bh

+ 12Mxy
bh3 + 12Myx

hb3

]
dxdy

(11)

From Equation (11) is developed the integration double and boundary conditions are
substituted; it is shown:

yc =
Ph2(h2 − c21) + 4Mx(h

3 − c31)

4Ph2(h− c1) + 12Mx(h2 − c21)
(12)

The around moment the axis a′-a′ is found by the equation shown as follows:

Ma′-a′ = FR1(yc − c1/2) (13)

Equations (9) and (12) are substituted into Equation (13), we obtain:

Ma′-a′ =

[
P (h− c1)

2h
+

3Mx(h
2 − c21)

2h3

] [
Ph2(h2 − c21) + 4Mx(h

3 − c31)

4Ph2(h− c1) + 12Mx(h2 − c21)
− c1

2

]
(14)

2.1.2. Around moment of axis b′-b′. The resultant force “FR2” is obtained through the
volume of pressure of the area formed by the axis b′-b′ and corners 1 and 4 of the footing,
it is presented [15-17]:

FR2 =

∫ h/2

−h/2

∫ b/2

c2/2

σ(x, y)dxdy (15)

Equation (2) is substituted into Equation (15), we obtain:

FR2 =

∫ h/2

−h/2

∫ b/2

c2/2

[
P

bh
+

12Mxy

bh3
+

12Myx

hb3

]
dxdy (16)

From Equation (16) is developed the integration double and boundary conditions are
substituted; it is shown:

FR2 =
P (b− c2)

2b
+

3My(b
2 − c22)

2b3
(17)

Now, the integral is developed to obtain the center of gravity “xc” of the soil pressures:

xc =

∫ h/2

−h/2

∫ b/2

c2/2
xσ(x, y)dydx∫ h/2

−h/2

∫ b/2

c2/2
σ(x, y)dydx

(18)

Equation (2) is substituted into Equation (18), we obtain:

xc =

∫ h/2

−h/2

∫ b/2

c2/2

[
P
bh

+ 12Mxy
bh3 + 12Myx

hb3

]
xdxdy∫ h/2

−h/2

∫ b/2

c2/2

[
P
bh

+ 12Mxy
bh3 + 12Myx

hb3

]
dxdy

(19)

From Equation (19) is developed the integration double and boundary conditions are
substituted; it is shown:

xc =
Pb2(b2 − c22) + 4My(b

3 − c32)

4Pb2(b− c2) + 12My(b2 − c22)
(20)

The around moment the axis b′-b′ is found by the equation following:

Mb′-b′ = FR2(xc − c2/2) (21)
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Equations (17) and (20) are substituted into Equation (21), we obtain:

Mb′-b′ =

[
P (b− c2)

2b
+

3My(b
2 − c22)

2b3

] [
Pb2(b2 − c22) + 4My(b

3 − c32)

4Pb2(b− c2) + 12My(b2 − c22)
− c2

2

]
(22)

2.2. Model to obtain shear force by flexure (unidirectional shear force). The
critical section for shear force by flexure is obtained at a distance “d” to from the junction
of the column with the footing as shown in Figure 4, it is presented in section c′-c′.

Shear force by flexure acting on the footing “Vf” is obtained through the volume of
pressure of the area formed by the axis c′-c′ and corners 1 and 2 of the footing, it is
presented as follows [15-17]:

Vf =

∫ h/2

c1/2+d

∫ b/2

−b/2

σ(x, y)dxdy (23)

where “d” is the distance measured vertically from extreme compression fiber to the
centroid of the longitudinal reinforcement steel of the footing.

Equation (2) is substituted into Equation (23), we obtain:

Vf =

∫ h/2

c1/2+d

∫ b/2

−b/2

[
P

bh
+

12Mxy

bh3
+

12Myx

hb3

]
dxdy (24)

From Equation (24) is developed the integration double and boundary conditions are
substituted; it is shown:

Vf =
P (h− c1 − 2d)

2h
+

3Mx(h
2 − c21 − 4c1d− 4d2)

2h3
(25)

Figure 4. Critical sections for shear force by flexure
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2.3. Model to obtain shear force by penetration (bidirectional shear force).
The critical section for shear force by penetration appears at a distance “d/2” to from
the junction of the column with the footing in the two directions.

2.3.1. Shear force by penetration that supports a rectangular column. The critical section
for shear force by penetration occurs in the rectangular section formed by points 5, 6, 7
and 8, as shown in Figure 5.
Shear force by penetration acting on the footing “Vp” is obtained through the volume

of pressure of the rectangular area formed by points 1, 2, 3 and 4 less than the rectangular
area formed by points 5, 6, 7 and 8.
The force generated on rectangular area formed by points 1, 2, 3 and 4 “F1234” of the

footing is as follows [15-17]:

F1234 =

∫ h/2

−h/2

∫ b/2

−b/2

σ(x, y)dxdy (26)

Equation (2) is substituted into Equation (26), we obtain:

F1234 =

∫ h/2

−h/2

∫ b/2

−b/2

[
P

bh
+

12Mxy

bh3
+

12Myx

hb3

]
dxdy (27)

From Equation (27) is developed the integration double and boundary conditions are
substituted; it is shown:

F1234 = P (28)

Figure 5. Critical sections for shear force by penetration that supports a
rectangular column
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The force generated on rectangular area formed by points 5, 6, 7 and 8 “F5678” of the
footing is as follows [15-17]:

F5678 =

∫ c1+d/2

−c1−d/2

∫ c2+d/2

−c2−d/2

σ(x, y)dxdy (29)

Equation (2) is substituted into Equation (29), we obtain:

F5678 =

∫ c1/2+d/2

−c1/2−d/2

∫ c2/2+d/2

−c2/2−d/2

[
P

bh
+

12Mxy

bh3
+

12Myx

hb3

]
dxdy (30)

From Equation (30) is developed the integration double and boundary conditions are
substituted; it is shown:

F5678 =
P (c1 + d)(c2 + d)

bh
(31)

Now, shear force by penetration “Vp” is as follows:

Vp = F1234 − F5678 (32)

Equations (28) and (31) are substituted into Equation (32), we obtain:

Vp = P − P (c1 + d)(c2 + d)

bh
(33)

2.3.2. Shear force by penetration that supports a circular column. The critical section for
shear force by penetration occurs in the circular section formed by points 5, 6, 7 and 8,
as shown in Figure 6.

Shear force by penetration acting on the footing “Vp” is obtained through the volume
of pressure of the rectangular area formed by points 1, 2, 3 and 4 less the circular area
formed by points 5, 6, 7 and 8.

The force generated on rectangular area formed by points 1, 2, 3 and 4 “F1234” of the
footing is as follows [15-17]:

F1234 =

∫ h/2

−h/2

∫ b/2

−b/2

σ(x, y)dxdy (34)

Equation (2) is substituted into Equation (34), we obtain:

F1234 =

∫ h/2

−h/2

∫ b/2

−b/2

[
P

bh
+

12Mxy

bh3
+

12Myx

hb3

]
dxdy (35)

From Equation (35) is developed double integration and boundary conditions are sub-
stituted; it is shown:

F1234 = P (36)

The force generated on circular area formed by points 5, 6, 7 and 8 “F5678” of the
footing is as follows [15-17]:

F5678 =

∫ r+d/2

−r−d/2

∫ √
(r+d/2)2−y2

−
√

(r+d/2)2−y2
σ(x, y)dxdy (37)

where r is radius of the circular column.
Equation (2) is substituted into Equation (37), we obtain:

F5678 =

∫ r+d/2

−r−d/2

∫ √
(r+d/2)2−y2

−
√

(r+d/2)2−y2

[
P

bh
+

12Mxy

bh3
+

12Myx

hb3

]
dxdy (38)
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Figure 6. Critical sections for shear force by penetration that supports a
circular column

From Equation (38) is developed the integration double and boundary conditions are
substituted; it is shown:

F5678 =
Pπ(r + d/2)2

bh
(39)

Now, shear force by penetration “Vp” is as follows:

Vp = F1234 − F5678 (40)

Equations (36) and (39) are substituted into Equation (40), we obtain:

Vp = P − Pπ(r + d/2)2

bh
(41)

2.4. Procedure of design.
Step 1: The mechanical elements (P,Mx,My) acting on the footing is obtained by the

sum of: the dead loads, live loads and accidental loads (wind or earthquake) from each of
these effects [18-23].
Step 2: The available load capacity of the soil “σmax” is [18-23]:

σmax = qa − γppz − γpps (42)

where qa is the allowable load capacity of the soil, γppz is the self weight of the footing,
γpps is the self weight of soil fill.
Step 3: The value of “h” is selected according to the following equations [12]:

h =
2Mx

P
(43)

σmaxMyh
3 − PMxh− 12M2

x = 0 (44)
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where the value of “h” obtained from Equation (43) is when the soil pressure is zero and
the value of “h” found in Equation (44) is when the pressure of the soil is load capacity
available “σmax”, of these two values is taken the greater to meet the two conditions,
because the pressure generated by footing must greater than zero and less than the load
capacity available of the soil [12]. Note: if the combinations are included the wind and/or
the earthquake, the load capacity of the soil can be increased by 33% [24].

Step 4: The value of “b” is found through the following equation [12]:

b =
Myh

Mx

(45)

Step 5: The mechanical elements (P,Mx,My) acting on the footing are factored [24].
Step 6: The maximum moment acting on the footing is obtained from Equations (14)

and (22), said critical section is located in the junction of the column with the footing as
shown in Figure 3.

Step 7: The effective cant “d” for the maximum moment is found by means of the
following expression [24]:

d =

√√√√ Mu

∅fbwρfy

[
1− 0.59ρfy

f ′
c

] , (46)

where Mu is the factored maximum moment at section acting on the footing, ∅f is
the strength reduction factor by flexure and its value is 0.90, bw is width of analysis
in structural member, ρ is ratio of “As” to “bwd”, fy is the specified yield strength of
reinforcement of steel, f ′

c is the specified compressive strength of concrete at 28 days.
Step 8: Shear force by flexure (unidirectional shear force), which resists the concrete

“Vcf”, it is given [24]:

∅vVcf = 0.53∅v

√
f ′
cbwd (47)

Shear force by flexure acting on the footing (Vf ) is compared with shear force by flexure
resisting by concrete (Vcf ) and must comply with the following expression [23]:

Vf ≤ ∅vVcf (48)

where ∅v is the strength reduction factor by shear and its value is 0.85.
Step 9: Shear force by penetration (shear force bidirectional), which resists the concrete

“Vcp” is given [24]:

∅vVcp = 0.53∅v

(
1 +

2

βc

)√
f ′
cb0d (49a)

where βc is the ratio of long side to short side of the column and b0 is the perimeter of
the critical section.

∅vVcp = 0.27∅v

(
αsd

b0
+ 2

)√
f ′
cb0d (49b)

where αs is 40 for interior columns, 30 for edge columns, and 20 for corner columns.

∅vVcp = ∅v

√
f ′
cb0d (49c)

where ∅vVcp must be the smallest value of Equations (49a), (49b) and (49c).
Shear force by penetration acting on the footing (Vp) is compared with shear force by

penetration resisting by concrete (Vcp) and must comply with the following expression
[24]:

Vp ≤ ∅vVcp (50)
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Step 10: The main reinforcement steel (parallel reinforcement steel to the direction of
the long side of the footing) “Asp” is calculated with the following expression [24]:

Asp = wbwd−

√
(wbwd)2 −

2Muwbw
∅ffy

(51)

where w is 0.85f ′
c/fy.

The minimum steel “Asmin” by rule is [24]:

Asmin = ρminbwd (52)

where ρmin is the minimum percentage of reinforcement steel which is obtained [24]:

ρmin =
14

fy
(53)

The parallel reinforcement steel in the short direction a portion of the total reinforce-
ment steel, “γsAs”, is distributed uniformly on a band (centered with respect to the axis
of the column or pedestal) whose width is equal to the length of the short side of the
footing. The rest of reinforcement steel in the short direction required, “(1 − γs)As”,
should be uniformly distributed in the areas which are outside the central band of the
footing. “γs” is obtained from [24]:

γs =
2

β + 1
(54)

where β is the ratio of long side to short side of the footing.
Later the spacing of the bars “s” is obtained:

s =
bwas
As

(55)

where as is the rod area used.
Step 11: The development length for deformed bars “ld” is expressed [24]:

ld =
fyψtψe

6.6
√
f ′
c

db (56)

where ld is the minimum length that should have a deformed bar to prevent slippage, ψt is
the traditional factor of location of the reinforcing steel which reflects the adverse effects
of the position of the bars of the upper part of the section with respect to the height of
fresh concrete located beneath them, ψe is a coating factor which reflects the effects of
the epoxy coating, and db is the diameter of the bars.
The development length for deformed bars “ld” is compared with the available length

of the footing “la” and must comply with the following expression [24]:

ld ≤ la (57)

3. Application. The design of an isolated footing of rectangular form that supports a
square column is presented in Figure 7, with the basic information following:
c1 = 40 cm
c2 = 40 cm
H = 1.5 m
PD = 70 ton
PL = 50 ton
MDx = 14 ton-m
MLx = 10 ton-m
MDy = 12 ton-m
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Figure 7. Isolated footing of rectangular form

MLy = 8 ton-m
f ′
c = 210 kg/cm2

fy = 4200 kg/cm2

qa = 22 ton/m2

γppz = 2400 kg/m3

γpps = 1500 kg/m3

where H is the depth of the footing, PD is the dead load, PL is the live load, MDx is
the moment of around dead load of axis “X-X”, MLx is the moment of around live load
of axis “X-X”, MDy is the moment of around dead load of axis “Y -Y ”, and MLy is the
moment of around live load of axis “Y -Y ”.

3.1. Traditional model.
Step 1: The loads and moments acting on soil:

P = PD + PL = 70 + 50 = 120 ton

Mx =MDx +MLx = 14 + 10 = 24 ton-m

My =MDy +MLy = 12 + 8 = 20 ton-m

Step 2: The available load capacity of the soil:
The thickness “t” of the footing is proposed, and the first proposal is the minimum

thickness of 25 cm marking regulations, subsequently the thickness is revised to meet the
following conditions: moment, shear force by flexure and shear force by penetration. If
such conditions are not satisfied a greater thickness is proposed until it fulfills the three
conditions mentioned.

The thickness of the footing that fulfills the three conditions listed above is 65 cm.

σmax = qa − γppz − γpps = 22− 2.4(0.65)− 1.5(1.5− 0.65) = 19.165 ton/m2

Step 3: The value of “h” is:
First condition:

h =
12Mx

P
=

12(24)

120
= 2.4 m

Second condition:
σmaxMyh

3 − PMxh− 12M2
x = 0

(19.165)(20)h3 − (120)(24)h− 12(24)2 = 0

383.3h3 − 2880h− 6912 = 0
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h = 3.549 m

Then, the greater value of “h” considered to meet the two mentioned conditions is 3.549
cm.
Step 4: The value of “b” is:

b =
Myh

Mx

=
(20)(3.549)

24
= 2.958 m

Therefore, the dimension of the footing is:

h = 3.55 m; b = 3.00 m

Step 5: The mechanical elements (P,Mx,My) acting on the footing is factored:

Pu = 1.2PD + 1.6PL = 1.2(70) + 1.6(50) = 164 ton

Mux = 1.2MDx + 1.6MLx = 1.2(14) + 1.6(10) = 32.8 ton-m

Muy = 1.2MDy + 1.6MLy = 1.2(12) + 1.6(8) = 27.2 ton-m

Step 6: The maximum moment acting on the footing is:
The maximum pressure is obtained:

σumax =
Pu

bh
+
6Mux

bh2
+
6Muy

hb2
=

164

(3.00)(3.55)
+

6(32.8)

(3.00)(3.55)2
+

6(27.2)

(3.55)(3.00)2
= 25.71 ton/m2

The maximum moment acting on the footing according to Figure 3 is presented:

Ma′-a′ =
σumaxb(h− c1)

2

8
=

(25.71)(3.00)(3.55− 0.40)2

8
= 95.67 ton-m

Step 7: The effective cant for the maximum moment is found:
where Ma′-a′ =Mu

d =

√√√√ Mu

∅fbwρfy

[
1− 0.59ρfy

f ′
c

] =

√√√√ 9567000

0.90(300)(0.016)(4200)
[
1− 0.59(0.016)(4200)

210

]
d = 25.50 cm

Then, we are proposed the final dimensions of footing after performing different pro-
posals:

d = 57 cm; r1 = 8 cm; t = 65 cm

where r1 is the coating.
Step 8: Shear force by flexure (unidirectional shear force) is:

∅vVcf = 0.53∅v

√
f ′
cbwd = 0.53(0.85)

√
210(300)(57) = 111635.05 kg

Vf = σumaxb

(
h− c1

2
− d

)
= (25.71)(3.00)

(
3.55− 0.40

2
− 0.57

)
= 71.52 ton

Vf ≤ ∅vVcf , cumple

Step 9: Shear force by penetration (bidirectional shear force) is:

∅vVcp =0.53∅v

(
1 +

2

βc

)√
f ′
cb0d

=0.53(0.85)

(
1 +

2

1

)√
210[4(40 + 57)](57) = 433143.98 kg
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∅vVcp =0.27∅v

(
αsd

b0
+ 2

)√
f ′
cb0d

=0.27(0.85)

[
(40)(57)

4(40 + 57)
+ 2

]√
210[4(40 + 57)](57) = 579322.70 kg

∅vVcp =∅v

√
f ′
cb0d = (0.85)

√
210[4(40 + 57)](57) = 272417.59 kg

Vp =σumax[bh− (c1 + d)(c2 + d)]

= (25.71)[(3.00)(3.55)− (0.40 + 0.57)(0.40 + 0.57)] = 249.62 ton

Vp ≤ ∅vVcp, cumple

Step 10: The reinforcement steel is:
* The parallel reinforcement steel to the direction of the long side of the footing is:

w =
0.85f ′

c

fy
=

0.85(210)

4200
= 0.0425

Asp =wbwd−

√
(wbwd)2 −

2Muwbw
∅ffy

=0.0425(300)(57)−

√
[0.0425(300)(57)]2 − 2(9567000)(0.0425)(300)

0.90(4200)

= 45.85 cm2

ρmin =
14

fy
=

14

4200
= 0.00333; Asmin = ρminbwd = 0.00333(300)(57) = 56.43 cm2

Therefore, minimum steel is proposed “Asmin”.
Rod “3/4” diameter is used:

s =
bwas
As

=
300(2.85)

56.43
= 15.15 cm ≈ 15 cm

* The parallel reinforcement steel to the direction of the short side of the footing is:
The around maximum moment of axis b′-b′ acting on the footing according to Figure 3

is presented:

Mb′-b′ =
σumaxh(b− c2)

2

8
=

(25.71)(3.55)(3.00− 0.40)2

8
= 77.12 ton-m

where Mb′-b′ =Mu

As =wbwd−

√
(wbwd)2 −

2Muwbw
∅ffy

=0.0425(355)(57)−

√
[0.0425(355)(57)]2 − 2(7712000)(0.0425)(355)

0.90(4200)
= 36.57 cm2

Asmin = ρminbwd = 0.00333(355)(57) = 67.38 cm2

therefore, minimum steel is proposed “Asmin”.
The reinforcing steel in the central band is:

where β = 355/300 = 1.183

γs =
2

β + 1
=

2

1.183 + 1
= 0.916; γsAs = 0.916(67.38) = 61.72 cm2
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Rod “3/4” diameter is used:

s =
bwas
γsAs

=
300(2.85)

61.72
= 13.85 cm ≈ 13 cm

The reinforcing steel in the lateral bands is:

(1− γs)As = (1− 0.916)(67.38) = 5.66 cm2

Rod “3/4” diameter is used:

s =
bwas

(1− γs)As

=
(355− 300)(2.85)

5.66
= 27.69 cm ≈ 27 cm

Step 11: The minimum development length for deformed bars is:
where ψt = 1 and ψe = 1.

ld =
fyψtψe

6.6
√
f ′
c

db =
(4200)(1)(1)

6.6
√
210

(2.85) = 125.15 cm

The available length of the rod in the direction of short side of the footing is

(300− 40)/2 = 130 cm.

The available length of the rod in the direction of long side of the footing is

(355− 40)/2 = 157 cm.

The minimum development length is less than the available length. Therefore, not
requires hook.

3.2. Proposed model.
Steps 1 to 5: Those are the same as the traditional model.
Step 6: The maximum moment acting on the footing is:
The maximum moment acting on the footing through Equation (14) according to Figure

3 is presented:

Ma′-a′ =

[
P (h− c1)

2h
+

3Mx(h
2 − c21)

2h3

] [
Ph2(h2 − c21) + 4Mx(h

3 − c31)

4Ph2(h− c1) + 12Mx(h2 − c21)
− c1

2

]
=

[
164(3.55− 0.40)

2(3.55)
+

3(32.8)[(3.55)2 − (0.40)2]

2(3.55)3

]
[
164(3.55)2[(3.55)2 − (0.40)2] + 4(32.8)[(3.55)3 − (0.40)3]

4(164)(3.55)2(3.55− 0.40) + 12(32.8)[(3.55)2 − (0.40)2]
− 0.40

2

]
=70.94 ton-m

Step 7: The effective cant for the maximum moment is found:
where Ma′-a′ =Mu

d =

√√√√ Mu

∅fbwρfy

[
1− 0.59ρfy

f ′
c

] =

√√√√ 7094000

0.90(300)(0.016)(4200)
[
1− 0.59(0.016)(4200)

210

]
d = 21.95 cm

Then, we are proposed the final dimensions of footing after performing different pro-
posals:

d = 42 cm; r1 = 8 cm; t = 50 cm

Step 8: Shear force by flexure (shear force unidirectional) is:

∅vVcf = 0.53∅v

√
f ′
cbwd = 0.53(0.85)

√
210(300)(42) = 82257.40 kg
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Vf =
P (h− c1 − 2d)

2h
+

3Mx(h
2 − c21 − 4c1d− 4d2)

2h3

=
164[3.55− 0.40− 2(0.42)]

2(3.55)
+

3(32.8)[(3.55)2 − (0.40)2 − 4(0.40)(0.42)− 4(0.42)2]

2(3.55)2

=63.53 ton

Vf ≤ ∅vVcf , cumple

Step 9: Shear force by penetration (shear force bidirectional) is:

∅vVcp =0.53∅v

(
1 +

2

βc

)√
f ′
cb0d

=0.53(0.85)

(
1 +

2

1

)√
210[4(40 + 42)](42) = 269804.28 kg

∅vVcp =0.27∅v

(
αsd

b0
+ 2

)√
f ′
cb0d

=0.27(0.85)

[
(40)(42)

4(40 + 42)
+ 2

]√
210[4(40 + 42)](42) = 326298.04 kg

∅vVcp = ∅v

√
f ′
cb0d = (0.85)

√
210[4(40 + 42)](42) = 169688.23 kg

Vp = P − P (c1 + d)(c2 + d)

bh
= 164− 164(0.4 + 0.42)(0.4 + 0.42)

(3.00)(3.55)
= 153.65 ton

Vp ≤ ∅vVcp, cumple

Step 10: The reinforcement steel is:
* The parallel reinforcement steel to the direction of the long side of the footing is:

w =
0.85f ′

c

fy
=

0.85(210)

4200
= 0.0425

Asp =wbwd−

√
(wbwd)2 −

2Muwbw
∅ffy

=0.0425(300)(42)−

√
[0.0425(300)(42)]2 − 2(7094000)(0.0425)(300)

0.90(4200)

= 46.72 cm2

ρmin =
14

fy
=

14

4200
= 0.00333; Asmin = ρminbwd = 0.00333(300)(42) = 41.58 cm2

Thus, main reinforcement steel is proposed “Asp”.
Rod “3/4” diameter is used:

s =
bwas
As

=
300(2.85)

46.72
= 18.30 cm ≈ 18 cm

* The parallel reinforcement steel to the direction of the short side of the footing is:
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The around maximum moment of axis b′-b′ acting on the footing according to Figure 3
is presented:

Mb′-b′ =

[
P (b− c2)

2b
+

3My(b
2 − c22)

2b3

] [
Pb2(b2 − c22) + 4My(b

3 − c32)

4Pb2(b− c2) + 12My(b2 − c22)
− c2

2

]
=

[
164(3.00− 0.40)

2(3.00)
+

3(27.2)[(3.00)2 − (0.40)2]

2(3.00)3

]
[
164(3.00)2[(3.00)2 − (0.40)2] + 4(27.2)[(3.00)3 − (0.40)3]

4(164)(3.00)2(3.00− 0.40) + 12(27.2)[(3.00)2 − (0.40)2]
− 0.40

2

]
=57.09 ton-m

where Mb′−b′ =Mu

As =wbwd−

√
(wbwd)2 −

2Muwbw
∅ffy

=0.0425(355)(42)−

√
[0.0425(355)(42)]2 − 2(5709000)(0.0425)(355)

0.90(4200)
= 37.04 cm2

Asmin = ρminbwd = 0.00333(355)(42) = 49.65 cm2

therefore, minimum steel is proposed “Asmin”.
The reinforcing steel in the central band is:

γs =
2

β + 1
=

2

1.183 + 1
= 0.916; γsAs = 0.916(49.65) = 45.48 cm2

where β = 355/300 = 1.183.
Rod “3/4” diameter is used:

s =
bwas
γsAs

=
300(2.85)

45.48
= 18.80 cm ≈ 18 cm

The reinforcing steel in the lateral bands is:

(1− γs)As = (1− 0.916)(49.65) = 4.17 cm2

Rod “3/4” diameter is used:

s =
bwas

(1− γs)As

=
(355− 300)(2.85)

4.17
= 37.59 cm ≈ 37 cm

Step 11: This is the same as the traditional model.

4. Results and Discussion. Table 1 shows the differences between the two models and
Figure 8 presents the concrete dimensions and reinforcement steel of the two footings.
In all cases the proposed model is less with respect to the traditional model.
Effects that govern the design for isolated footings are: moments, shear force by flexure

and shear force by penetration.
a) The maximum moments acting on the footing in the two directions are increased in

a 35% the traditional model with respect to proposed model.
b) The shear force by flexure acting on the footing has an increase of 9% in traditional

model with respect to the proposed model.
c) According to shear force by penetration acting on the footing, in this concept is

presented the greater increase that is of 62% in traditional model with respect to the
proposed model.
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Table 1. Comparison of results

Concept
Traditional model Proposed model

TM/PM
TM PM

Maximum moment acting
95.67 70.94 1.35

Ma′-a′ (ton-m)
Maximum moment acting

77.12 57.09 1.35
Mb′-b′ (ton-m)

More economic effective cant
57 42 1.36

d (cm)
Coating

8 8 1.00
r1 (cm)

Total thickness
65 50 1.30

t (cm)
Volume of concrete

6.92 5.32 1.30
(m3)

Shear force by flexure acting
71.52 65.53 1.09

Vf (ton)
Shear force by penetration acting

249.62 153.65 1.62
Vp (ton)

Parallel reinforcement steel in direction

56.43 46.72 1.21of the long side of the footing
As (cm

2)
Parallel reinforcement steel in direction

67.38 49.65 1.36of the short side of the footing
As (cm

2)

Materials used for the construction of an isolated footing are: concrete and reinforce-
ment steel.

a) In terms of concrete it has a saving of 30% in the proposed model with respect to
the traditional model.

b) For reinforcement steel in the parallel direction to the long side of the footing it has
a saving of 21% in the proposed model with respect to the traditional model and in the
parallel direction to the short side of the footing it has a saving of 36 % in the proposed
model with respect to the traditional model.

5. Conclusions. The results of the problem considered, through the application of two
different models, are possible to conclude as the following.

• According to the maximum moments acting on the isolated footing, it is observed
that it is greater in traditional model with respect to the proposed model. This is
a logical situation, because in traditional model, the design pressure is the same in
all the contact area of the footing on soil, being this the maximum pressure that
is presented in said structural member, but the pressure in the proposed model
is reduced, which has a linear variation along all its contact area that goes from a
maximum pressure up the minimum pressure, which is as it presents the real pressure,
consequently the effective cant is less; therefore, the thickness of the footing is more
slender.
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Figure 8. Isolated footing in plan and elevation: (a) traditional model,
(b) proposed model

• In terms of the dimensions in the isolated footing it is shown that long side “h” and
the short side “b” are equal in the two models, but the thickness of the footing “t” is
different, being less than the proposed model with respect to the traditional model.

• With respect to parallel reinforcement steel in direction of the long side of the footing,
the traditional model is greater with respect to the proposed model, because the
design in the traditional model is governed by the minimum steel, and because it
presents a much greater thickness and in the proposed model is governed by the
design is the maximum moment acting on the isolated footing.

• We examine the parallel reinforcement steel in direction of the short side of the
footing, the traditional model is greater with respect to the proposed model, in both
models the design is governed by minimum steel.

This means that it can have great savings in terms of materials used (reinforcing steel
and concrete) for the fabrication of footings isolated under conditions mentioned above.
Since the principle in civil engineering, in terms of structural conditions is safe and eco-
nomical, and the latter is not met in traditional model.
Therefore, the practice of using the traditional model is not a recommended solution,

because are very exceeded the materials in some cases, with regard to the design of these
structural members.
Then, we propose using the model developed in this paper for the structural design of

isolated footings subject to axial load and moment in two directions (bidirectional flexure),
also, it can be applied to the other cases: 1) The footings subject to concentric axial load;
2) The footings subject to axial load and moment in one direction (unidirectional flexure).
Moreover, the proposed model is the most appropriate, since it is more economic and also
is adjusted to real conditions.
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The mathematical model developed in this paper applies only to rigid soils that meet
expression of the bidirectional flexion, i.e., the variation of pressure is linear. The sugges-
tions for future research, when presented by other types of soil; for example, in cohesive
soils and granular soils, the pressures diagram is not linear and should be treated differ-
ently.
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