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ABSTRACT. In this paper, a new co-simulation, co-emulation, and real-time control
toolkit for the investigation of the influence of network induced time delays and packet loss
in a typical Networked Control System (NCS) is introduced. The architecture and func-
tionality of the developed toolkit are described. The name of the toolkit is LabNS2 which
is derived from co-simulation and co-emulation capabilities based on LabVIEW™M and
Network Simulator version 2 (NS-2). The toolkit is developed based on Windows Oper-
ating System environment; however, NS-2 is developed based on UNIX environment and
as a result Cygwin software is used to emulate UNIX environment within the Windows
environment. Hardware and Software parts of the toolkit are described and discussed.
Finally, to demonstrate the functionality of the toolkit a DC motor control system as
used in the Radio Astronomy dish telescopes and satellite systems is considered in the
conditions of a communication network. The tookilt is used to measure and analyze the
network induced delay. The toolkit is a simple, scalable and effective for investigation of
network induced time delay and packet loss in NCSs using LabVIEW™™ and NS-2. The
toolkit is useful for educational and research purposes and can be applied in NCSs for
control of distributed plants.

Keywords: Networked induced time delay, Packet loss, Time delay between the con-
troller and the actuator, Time delay between the sensor and the controller

1. Introduction. Networked control systems overlap between two areas of study that
are Information Systems and Feedback Control Systems as shown in Figure 1.

The above two fields have been co-existing in isolation for decades and as a result
both fields have had their own simulation and emulation tools used during design and
implementation of applications used in these fields. As it is well known, Networked Control
Systems are control systems where the plant and the controller exchange information via
a shared communication network and the network is considered as part of the closed loop
control system [1,23-26]. Unfortunately the communication network introduces random
varying time delays and data packet loss.

These network imperfections degrade the performance of the closed loop control sys-
tem and result in closed loop system instability [22]. The complexity of measuring the
communication network imperfections in the networked control systems makes it difficult
for the control engineers to develop methods for design of controllers that can incorporate
and compensate these imperfections in order to improve the performance of the networked
control systems [16]. The network delays and packet loss are considered to be between
the controller and the actuator and between the sensor and the controller and are mostly
assumed to be either constant [16] appearing in a singular or a simple form or time vary-
ing [4]. In the real environment the case of constant delays does not exist as the delays
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FIGURE 1. Simulators and emulators used in the information systems, con-
trol systems, and networked control systems

vary depending on the network dynamics. In some cases probabilistic Markov chain and
Independent Identical Distribution (iid) Bernoulli process are used to represent the time
varying delays and the packet loss [17-21]. For the case of the packet loss if the network
breaks the independent Bernoulli process parameter is zero; otherwise it is one [21]. In
NCS a purely analytical approach is often not possible when analysis and design of the
system is performed. Instead of representing the delays in a singular form, Nilsson [17,18]
modeled the delays as independent random delays and used an empirical approach to
determine the model for the network induced delays using CAN bus as a protocol. These
simulations are performed using Matlab and Simulink.

Due to the complexity of measuring network imperfections some control engineers
have developed co-simulation tools that leverage from the existing simulators and em-
ulators used in information systems and control systems; co-simulation tool based on
Matlab/Simulink and NS-2 (PiccSIM) [3], co-simulation tool based on Modelica and NS-
2 (Modellica/ns2) [9], and co-simulation tool based on RealTime and NS-2 (RealTimeNS)
[11] are proposed. The choice of using NS-2 is because it is widely applied as a simulator
and emulator in the information systems field [8]. Another approach used by control
engineers is to develop custom-built discrete-event simulators inside Matlab/Simulink as
the TrueTime [10] and NCsimulator Toolkit [16].

The drawbacks of these simulators are that they cannot be incorporated in the real-time
environment, because they use only the simulation module of NS-2 and not the real-time
schedule module that allows for injection of live network data into the co-emulator to
measure network induced time delays and packet loss. The code developed in these
simulators cannot be compiled to generate a standalone executable code for real-time
implementation.

The paper describes solution of the problem for real-time measurement of the network
induced delays and packet loss and the use of these measurements in generating the closed
loop control. The main functions of the toolkit are:

1. Simulation and emulation of the plant and controller in the NCS;
2. Simulation and emulation of the network, implementing TCP and UDP protocols;
3. Real-time measurement of random delays.

The main contributions in this paper can be summarised as follows:
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1. Based on real-time scheduler within NS-2, a real-time co-emulator, co-simulator
based on the LabVIEW and NS-2 (LabNS2) is developed;

2. Based on LabVIEW, general functions called virtual instruments (vi) that represent
the plant and the controller are developed;

3. Based on Tool Command Language (Tcl) and Gawk, scripts that measure in real-
time the network induced time delay and packet loss are developed.

The paper presents LabNS2, a simple, scalable, and effective tool for simulation and
emulation of NCS using LabVIEW ™ and NS-2. The architecture of the LabNS2 toolkit is
described and discussed in Section 2. The simulation and emulation engine used to realise
the interface between LabVIEW and NS2 is described and discussed in Section 3. The
developed Tool Command Language (Tcl) and Gawk scripts are described in Section 4.
LabVIEW code that is developed is discussed in Section 5 and Section 6. Implementation
of the LabNS2 for the case of a dish antenna NCS is illustrated in Section 7. Operation
procedure and the results of LabNS2 are outlined in Section 8 followed by the conclusion
in Section 9.

2. Architecture of the LabNS2 Toolkit. The architecture of the LabNS2 is based
on LabVIEW, NS-2, Tecl, Gawk, and Cygwin software environments. LabVIEW™ is
a graphical programming language where icons representing different functions are con-
nected to define functionality of a given system. LabVIEW functions are called Virtual
Instruments (vi). In this paper LabVIEW is used to develop software modules that im-
plement the plant, the controller, and the reference trajectory on the basis of an example
of a dish antenna network control system. The software modules communicate with each
other by using UDP data sockets.

Network Simulator version 2 (NS-2) is a discrete event network simulator designed for
network related research, with focus on wired and wireless networks, devices and protocols

[3].

NS-2 is developed in C++ and Object Tool Command Language (OTcl) to manage,
control and implement data paths in communication networks [7]. The simulator supports
a class compiled hierarchy in C++ and the corresponding interpreted hierarchy within the
OTecl. C++ is used for protocol implementation and for all the implementations where
every packet journey has to be processed. OTcl is used for setup and configuration. NS-2
supports the following traffic protocols FTP, CBR, TCP, HTTP, Real-Time Ethernet data,
and the drop tail queuing management system [2]. UDP traffic is considered encapsulated
within the TCP stack to form sockets. NS-2 Emulator engine is used for the real-time
Ethernet implementation. In this paper both the simulation and the emulation capabilities
of NS-2 are used to analyze network dynamics in an NCS.

Tcl scripts are developed to access the OTcl using Tcl syntax, e.g., assigning of variables
(set a 3), procedures (proc sum {a b}{expr $a + $b}). Using Tcl scripting, scripts have
been developed to measure network induced time delays and packet loss.

Cygwin emulates UNIX environment within the Windows environment. The toolkit is
built for a network control system as shown in Figure 2(a). The proposed architecture of
the toolkit is shown in Figure 2(b). The architecture is based on a node approach where
the plant, controller, and supervisory computer are considered as nodes of the closed loop
control system in Figure 2(a). Each node has a built in Ethernet module which allows
for sending and receiving of Ethernet datagram. Ethernet module supports UDP traffic
protocol. There is scope to extend the modules to support other protocols like TCP.

To measure packet loss and time delays between the nodes the Trace Queuing Method
within the NS-2 software package [8] is used where all the network events are recorded in
a trace file. The trace file format is shown in Table 1. The script that allows for recording



4 N. S. MKONDWENI AND R. TZONEVA

Reference Controller x ;o; e é = Outﬁt
Computer Computer « g = é -
Reference
Trajectory
! !
™ ! !
LabVIEW i LAN NS-2
! !
SEND . o U —
N ; D | Tap RX N
PLANT ; o i n A
1 ; - ap TX
RECEIVER [ i
1 1
i P i
SEND L 0 !
N ' R P TapRx
CONTROLER ; T ;
2 «— N le— TapTX | °
RECEIVER ] «—
' u !
1 1
L ol M i
SEND T s
: B ; ™1 TapRX N
N|  REFERENCE E i
3 : < I TapTx | ©
RECEVER  [# R i
1 S |
i 1
(b)

FIGURE 2. (a) Network control structure. TX — send data, RX — receive
data, 77/ — delay between the reference computer and the controller, 7¢
— delay between the controller and the actuator, 7°¢ — delay between the
sensor and the controller. (b) Toolkit structure. Note that “N1” means
node 1.

of the network events is written here using Tcl software. The recorded file is analyzed
and processed using specially developed Gawk scripts.

Note that the measuring scripts run at the same time as the nodes; however, the Gawk
scripts are executed based on the recorded output files of the Tcl scripts. LabVIEW ™
and NS-2 are used to form the real-time Network Control System environment. Plant,
controller and reference trajectory generating computer programs are all implemented in
LabVIEW™ . Network simulation and emulation is implemented using NS-2. Measure-
ment of network induced time delay and packet loss is implemented using Tcl scripts.
Processing of the recorded network event trace file is implemented in Gawk.

Nodes may be implemented on a single or multiple computers. It is recommended that
each node be implemented on a separate computer.

3. NS-2 Simulation and Emulation Engine. The ability of the toolkit to measure
live network traffic is based on the NS-2 emulation facility which exposes the simulator
to the live network traffic [7]. The emulator has built in network object which allows
for simulator to receive live network traffic and to inject live network traffic into the
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network [12]. The network object is based on a tap interface. A tap interface is a virtual
Ethernet interface that looks like network hardware to the Operating System (OS) [13].
Instead of writing bits to the Ethernet interface, the tap interface writes the bits to a user
space. The network object has an associated Tap Agent class. The tap agent sends and
receives packets between network objects as described in Figure 3. The tap agent handles
the setting of the common header packet size field and the field type. The simulator
environment can now be exposed to the network and be accessed as a node within the
network. The network object allows access to the protocol layer, e.g., link layer, raw IP,
and UDP by particular access mode (read-only, write-only, or read-write). LabNS2 toolkit
uses this feature as a core for interfacing LabVIEW™ and NS-2. The main advantage of
LabNS2 is the ability to interact with the real time system, continuous or discrete and be
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TABLE 1. NS2 trace file format

Event | Abbreviation | Type Value
r: Receive double Time
d: Drop int (Link-layer) Source Node
Normal | . pppop int (Link-layer) Destination Node
Event +: Enqueue | string Packet Name
— Dequeue int Packet Size
string Flags
int Flow ID
int (Network-layer) Source Address
int Source Port
int | (Network-layer) Destination Address
int Destination Port
int Sequence Number
int Unique Packet ID




6 N. S. MKONDWENI AND R. TZONEVA

able to measure the network induced time delays and packet loss. The feature makes it
possible to design the controller or to change the parameters of the controller in real-time
based on actual measurement of the network imperfections.

4. Tcl and Gawk Scripts Development. The Tcl and Gawk are scripts developed to
measure network induced time delays and packet losses within the NCS. The functions,
output parameters and names of the scripts are shown in Table 1. Gawk scripts parse
and process the trace file that is generated by NS-2 Tcl scripts during simulation and
emulation. Using the scripts various modifications can be made to the network param-
eters, e.g., varying the channel bandwidth and channel drop tail. The developed scripts
are listed in Table 2.

TABLE 2. List of the developed scripts in Tcl and Gawk software

Script Input Output Function
measure-tdpl-rc- | Channel band | Recorded Measures time delay and packet
aN.tcl width  (cbw) | trace file loss between reference computer
<cbw> and execution and the controller.
<ex_time> time.
measure-tdpl-ca- | Channel band | Recorded Measures the time delay and
aN.tcl width  (cbw) | trace file packet loss between the con-
<cbw> and execution troller and the actuator.
<ex_time> time.
measure-tdpl-sc- | Channel band | Recorded Measures the time delay and the
aN.tcl width  (cbw) | trace file packet loss between the sensor

<cbw> and execution and the controller.
<ex_time> time.
calculate_packet | NS-2 Trace file | Packet sent, | Calculates packet loss from the
_loss.awk lost and trace file.
received
Calculate- NS-2 Trace file | Excel file Calculates time delays from the

time_delay.awk trace file.
cbw = Channel Bandwidth, ex_time = Execution time

5. Development of the LabVIEW™ Software. LabVIEW is used to implement the
plant, the controller and the reference generating trajectory computer programs. Lab-
VIEW uses virtual instruments (vis) as functions within the graphical programming envi-
ronment. These vis allow for modularity of the code as it is possible for different modules
to be implemented. Table 3 shows the block library of sub-vi developed for LabNS2 and
their respective functions for the case of position control of the dish control.

6. Development of the Socket Parser. LabVIEW software is developed for the im-
plementation of sockets which are used to communicate with NS-2. Socket is a software
endpoint that establishes bidirectional communication between a server program and one
or more client programs. Sockets use standard protocol, like IP, UDP and TCP. A socket
binds an IP (Internet Protocol) address and a UDP port. IP is a best effort protocol, it
is connectionless, and there is no guarantee of packet delivery because IP packages the
datagram and sends it without verifying that the connection exists. There is also no
acknowledgement from the recipient that the packet has been delivered. The fact that
there is no acknowledgment on the IP protocol brings another dimension to the Network
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TABLE 3. List of the developed LabVIEW subvi

Node Sub-vi Inbut parameters Output parameters Funct;
Vi Name put parameters file type unction
1t2ut.vi LT UT Convert LT to UT.
(String format) (Y:M:D:H:M:S)

Juliandate.vi

v

ctory

uT
(Y:M:D:H:M:S)

JD and GST

Convert UT to GST

hms2dd.vi

Hours, Minutes,
Seconds (HMS)

Decimal degrees

Convert from
Hour: Minutes : Seconds
format to Decimal degrees

dms2deg.vi

reference traje

Degrees, Minute,
Seconds (DMS)

Decimal degrees

Convert from DMS to
Decimal degrees

Azel.vi

Node 1
Coordinates systems and a

RA, DEC, GST,
Observer  Long,
Observer Lat

Decimal degrees

Convert from RA, DEC to
Alt Az wusing Ephemeris
(Almanac) equations

Node 2
Controller

A, B,Cand H

signal caleulations
(double)

udp tx aN.vi | (Az, Alt) (String) | UDP datagram Receive and send
v g datagram via the network
g g udp parser.vi | UDP datagram | Control Parse data from
5 £ (String) values (double) udp_tx_aN.vi and sends
“ 3 control values to the plant.
PID.vi Kp, K1, Kd Control Implement the PID
signal calculations | controller.
(double)
§S COMVi Matrices Control Implement state space

controller for Proportional
and Proportional and
Integral control.

Node 3
Plant

dish n tfvi Numerator and | Desired set Implement the plant model
Denominator point (double) in transfer function form,
where n is the dish number.
dish n ss.vi Matrices Dish Implement the plant
A,Band C position (double) | model in state space form,

where n 1s the dish number.

where LT = Local Time, UT = Universal Time, JD = Julian Date, GST = Greenwich
Sidereal Time, RA = Right Ascension, DEC = Declination, Az = Azimuth, Alt = Altitude,
Controller Kp = Proportional constant, Controller Ki = Integral constant, Controller Kd =
Derivative constant, A, B, C are matrices of the state space model equation and
measurement equations with appropriate dimensions and H is the state space controller gain

feedback matrix.

Control System as the acknowledgement is critical in feedback control systems. The IP
addresses and UDP port allocation for considered network control system are given in
Table 4.
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TABLE 4. UDP port allocation table

Internal | Port | Remote | Port
Description LabNS2 Tap IP IN PCIP |OUT
address | (RX) | address |(TX)
RC - UDP TX ™ 192.168.1.4
Antenna 1 LabVIEW 192.168.1.2 | 4490 (127’ 0. 01) 4420
RC - UDP TX ™ 192.168.1.3
Antenna 2 LabVIEW N/A 4490 (12,7. 0.0. 1) 4400
192.168.1.4
ns-measure-rc-al NS-2 224.1.127.2 | 4420 (?2,7 280 1) 4430
Antenna 1 v | 192.168.1.4
(Controller + Plant) LabVIEW (127.0.0.1) 4430 N/A N/A
192.168.1.
ns-measure-rc-a2 NS-2 224.1.127.2 | 4400 (?2,7 280 13 4410
Antenna 2 v | 192.168.1.5
(Controller + Plant) | LAPVIEWTS | o5 9.9.7) | 4410 | N/A ) N/A
DOl EohRaE = B l UDP TX a2.vi Block Diagram = ®
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FIGURE 4. Front panel and block diagram subvi of sockets implementation

The glue between LLabNS2 code and NS-2 is through Ethernet interface. NS-2 real-time
scheduler is used to interface with real live network. It allows for sending and receiving
of raw UDP data back and forth thereby creating an environment for measurement of
network induced time delay and packet loss. The LabVIEW subvi that implements the
sockets is shown in Figure 4.

7. Implementation of the LabNS2 Emulator for the Case of a Dish Antenna
NCS. To illustrate how the emulator operates a typical NCS framework is used whereby
a DC motor model is considered as used in Radio Telescope dishes and satellite systems.
The control structure of the typical Radio Telescope dish is shown in Figure 5. This
control structure has four sub-elements that are Coordinate Transformer, Model of the
DC Motor (Plant), Controller, and NS-2 Emulation Engine with added the developed Tecl
and Gawk scripts. Typically the reference trajectory is considered to be the object in
the sky identified with the Right Ascension (RA) and Declination (DEC) coordinates. A
coordinate transformer is required to convert from RA, DEC to Altitude and Azimuth
[Alt, Az] coordinates. The [Alt, Az] becomes the reference point that is sent to the
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respective controllers. The controllers are typically PID or Pole Placement state space
ones. The emulation structure of the NCS for the case of a Radio Telescope or Satellite
system for the case of Azimuth control is shown in Figure 6. Computer 1 of Figure
6 implements the reference trajectory software and the controller software developed in
LabVIEW. The controller and the plant are connected via the network using NS-2 to
measure the time delay and packet loss between the controller and the actuator and
between the sensor and the controller as shown in Figure 6. Computer 3 in Figure 6
executes the Tcl scripts to measure time delay and packet loss. Computer 2 of Figure
6 executes the plant model, sends and receives delayed control action values, and sends
sensor measurement values to the NS-2 computer that further sends the data to the
controller’s computer. The emulator diagram for the Altitude NCS is the same as this in
Figure 6.
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FIGURE 6. Emulation block diagram for the Azimuth angle NCS, where
p*¢ is the packet loss between the sensor and the controller and p® is the
packet loss between the controller and the actuator
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7.1. Coordinate transformer — Reference trajectory generator. Earth coordi-
nates are different to the coordinates of the object being observed by the telescope. The
coordinates of the object are called celestial equatorial coordinates. Similarly to earth
coordinates, the analogue for the longitude is Right Ascension and the analogue for the
latitude is declination in equatorial coordinates.

Right ascension of a star is the angular distance between the meridians through the
first point in Ares and the considered star. Ares is a zero point chosen on the celestial
sphere at which the Sun crosses the equator, on March 21. This is the northern Vernal
(spring) Equinox, and the southern hemisphere autumnal Equinox.

Declination of a star is the angular distance measured in degrees between the celestial
equator (0°) and the star. The north celestial pole is at positive ninety degrees and the
south celestial pole is at negative ninety degrees. Horizontal coordinates also called alt-az
system are used to convert from earth coordinate system (latitude/longitude) to celestial
equatorial coordinate system (right ascension/declination) using observer’s local horizon
as the fundamental plane.

Using equation adapted from the Ephemeris Almanac [14] the RA and DEC are con-
verted to Alt and Az coordinates using Equations (1)-(3).

h=LST —« (1)

z = arctan —(sin(h) cos(4))
8 ' <COS(<p) sin(d) — sin(¢) cos(d) cos(h)) (2)

Alt = arcsin(sin(p) sin(d) + cos(g) cos(d) cos(h)) (3)
where h = Object’s hour angle defined as an angular distance measured east or west of
the observer’s zenith meridian, & = Object’s right ascension, § = Object’s declination,
¢ = Object’s latitude, A = Object’s longitude, Az = Object’s azimuth, Alt = Object’s
altitude, LST is the Local Sidereal Time.

The equations described above are implemented in LabVIEW using the sub-vi’s de-
scribed in Table 3. The altitude and the azimuth are used as reference for the position
controller. Figure 7(a) and Figure 7(b) show the block diagram and the LabVIEW front
panel of the developed subvi (Azel.vi) that implements Equations (1)-(3). The results are
verified by using Radio Eyes [15] a commercial of the shelf software used by astronomers
to look at objects in the sky.

The output of the reference trajectory is sent to the controller. The controller and the
reference trajectory are implemented on computer Number 1, see Figure 6.

The LabVIEW subvi’s that implement reference trajectory node is shown in Figure 8.
The results are discussed in Section 8.

7.2. Plant model. The modeling of the two motors for azimuth and altitude is consid-
ered separately as each motor has its own set point and dynamics. The motor models are
developed using Kirchhoff and Newton’s laws based on the electro-mechanical structure
of the DC motor as shown in Figure 9.

Using Kirchhoff laws and considering Figure 9,

di

V—-e,—L—-=1iR 4
o= Lo =i (4)
Using Newton’s law and considering Figure 9,

Considering Laplace transform of Equations (4) and (5) both equations are expressed
in terms of current. Based on the two equations the transfer function of each motor is
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represented by Equation (6).

bu(s) MRy,
V(s) s (s + 7’{3%?’(”)

(6)

where T,,, = Toque of a motor; w,, = angular velocity; #,, = position of the shaft; J =
Moment of inertia; R = Armature Resistance, V = Input voltage; L ~ 0 = Armature

Inductance; B = Damping Ratio.
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It is assumed that K; and K}, are equal and k2 is used to represent the two constants.
Equation (6) is transformed to state space form:

]

{0 1 ]'X1'+[ 0
= 2
Ul v il I C3 B
v
O =11 0] X,

(7)

(8)

and implemented in LabVIEW using the subvis shown in Table 3. The block diagram of

the subvi that implements the plant model is shown in Figure 10.

The control structure that is used to illustrate the functionality of LabNS2 is shown
in Figure 6. The LabVIEW subvi that implements the plant node is shown in Figure 11.
The results are discussed in Section 8.

7.3. Controller subvi. The PID Controller used for the illustration of the emulator is
designed for the plant described above using its transfer function model. The parame-
ters for the Proportional, Integral and Derivative Gains are calculated using the Second

Method of Ziegler Nichols.
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The PID controller output is

u(t) = t) + k; / e(t)dt + kg d(tt) 9)

0
where k£, is the Proportional gain, k; is the integral gain, k4 is the Derivative gain and
e(t) is the error.
The transfer function of the PID controller is:
kys? + k k;
Gels) = 2 (10)

S

Equation (10) is implemented in LabVIEW using PID.vi subvi, and is shown in Figure
12.

The control structure that is used to illustrate the functionality of LabNS2 is shown in
Figure 6. The LabVIEW subvi that implements the controller node is shown in Figure
13. The results are discussed in Section 8.

8. Operation Procedure and Results. The high level flow chart of the operation of
LabNS2 is shown in Figure 14. The flow chart is developed based on a typical networked
control system shown in Figure 6.
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The reference computer generates the reference trajectory and connects to the controller
via NS-2 time delay and packet loss measuring tool. The measured data is stored in the
NS2 trace file. Using Cygwin, Tcl scripts are executed in the NS2 environment to generate
NS2 trace files. The files are processed using the Tcl and Gawk scripts to calculate network
induced time delays and packet loss.

To run LabNS2 start the following vi in LabVIEW™:

Dish N_tf.vi (Antennal.vi) — Plant and controller
Trajectory_rc_DM.vi

To run LabNS2 start the following scripts from the home directory in Cygwin:

cd tel-scripts-cput/
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FI1GURE 16. LabNS2 emulation results calculated by the developed Gawk scripts

nse measure-tdpl-rc-al.tcl <cbw> <ex_time> %Script to measure time delay and
packet loss
To process the trace file, execute the Gawk script by using these commands:
gawk —f <calculate_packet_loss.awk> <tracefile.tr>
gawk —f <calculate_time_delay.awk> <tracefile.tr > <excelfile.xls>
The snapshot of the results of the Plant model output connected through NS2 and via
the communication network is shown in Figure 15. In the figure the two lines indicate
the reference trajectory (white line) and the measurement output (red line). If one of
the nodes is disconnected the error grows and the measurement output cannot track the
reference trajectory as shown in Figure 15 (circled point). Note that as soon as the
network is restored the measurement output tracks the reference trajectory.
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The time delay and packet loss can be measured and calculated using LabNS2. The
following experiment is performed to illustrate these measurements.

In the experiment LabNS2 is used to measure time delay between the controller and the
actuator. The measured time delays based on the output trace file are shown in Figure
16. This figure shows how LabNS2 is used to investigate the relationship between the
channel bandwidth and the network induced time delay in the NCS. The results show
that time delay drops as the channel bandwidth increases, as shown in Figures 17(a) and
17(b).

The results of the packet loss counter are shown on the command prompt see Figure
16 row 3 from the top where 250 packets were sent, 0 packets were lost and 249 packets
were received.

The values of the measured delays can further be used for calculation in real-time of
the control action in some form of predicting time delays controllers.

9. Conclusion. The paper presents a simple, scalable, and effective tool for simulation,
emulation and real time implementation of NCS using LabVIEW™  and NS-2 (LabNS2).
The architecture of LabNS2 is described and discussed. Tool Command Language (Tcl)
and Gawk scripts are developed, presented and discussed. LabVIEW codes are developed,
presented and discussed. Radio Telescope is presented as typical closed loop NCS. The
implementation and operation procedure of the LabNS2 are described.

LabNS2 has four software modules that have to be executed to emulate the NCS envi-
ronment. The modules are:

e Reference generating trajectory module implemented in LabVIEW. This module uses
the developed software libraries described in Table 3 and it generates the desired
positions for altitude and azimuth mounts of the dish antenna.

e Plant model and controller software implemented in LabVIEW. This module uses
the developed software libraries described in Table 3. It receives desired reference
positions via the network through NS-2 as shown in Figure 2. It realizes the controller
and displays actual vs desired positions for both altitude and azimuth coordinates
as shown in Figure 14.

e Network induced time delays and packet loss are measured using Tcl scripts. The
scripts are listed in Table 2.
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e Network induced time delays and packet loss are processed offline from the recorded
output trace file using the developed script file in Gawk software. These scripts are
listed in Table 2.

The complexity of measuring the communication network imperfection in a networked
control system, including network induced time delays and packet loss makes it difficult
for the control engineers to develop methods that can compensate or incorporate these
imperfections in order to develop new control design methods for networked control sys-
tems. These network imperfections degrade the performance of the closed loop control
system and result in a closed loop system instability. LabNS2 addresses this problem by
providing an ideal environment that can be used to investigate the influence of network
imperfections especially the network induced time delay and packet loss. It is done in a
real-time environment by using tools that have been used for decades in their respective
knowledge areas that are the information systems in the case of NS2 and the feedback
control systems in the case of LabVIEW.

The LabNS2 toolkit has more capabilities than the existing till now tools for the NCS.
For the case of the Modelica/NS2 the co-simulation is designed based on the simulation
engine of NS-2 without using the emulation engine of NS-2 which uses the real-time
scheduler to inject live data into the network [9].

In the paper both simulation and emulation engines are used to simulate and emulate
the network using simulated data traffic and real-time data from the Ethernet via the
sockets into the emulation environment of NS-2 thereby allowing for better understanding
of influence of network induced time delays and packet loss effects on the NCS.

LabNS2 toolkit can be used successfully for simulation, emulation of hardware in the
feedback control systems, and for real time system implementation. LabNS2 can also be
used for educational purposes and research work in control systems, signal processing,
communication systems, network systems, verification of mathematical models for com-
munication networks (e.g., TCP models), and in the implementation of Lab experiments.
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