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Abstract. We consider a strictly regular random (k, s)-SAT problem and propose a
GSRR model for generating its instances. By applying the first moment method and the
asymptotic approximation of the γth coefficient for generating function f(z)λ, where λ
and γ are growing at a fixed rate, we obtain a new upper bound 2k log 2−(k+1) log 2/2+
ϵk for this problem, which is below the best current known upper bound 2k log 2 + ϵk.
Furthermore, it is also below the asymptotic bound of the uniform k-SAT problem, which
is known as 2k log 2−(log 2+1)/2+ok(1) for large k. Thus, it illustrates that the strictly
regular random (k, s)-SAT instances are computationally harder than the uniform one
in general and it coincides with the experimental observations. Experiment results also
indicate that the threshold for strictly regular random (k, s)-SAT problem is very close to
our theoretical upper bound, and the regular random (k, s)-SAT instances generated by
model GSRR are far more difficult to solve than the uniform one in each threshold point.
Keywords: Strictly regular random (k, s)-SAT problem, Hard instances generation
model, Upper bound, Phase transition, Asymptotic approximation

1. Introduction. Numerous computational problems encountered in science and indus-
try can be viewed as Constraint Satisfaction Problems (CSPs), which have been inten-
sively studied in theoretical computer science and combinatorics. In general, CSP tasks
are computationally intractable [1]. A particular problem in the class of CSPs is the
so-called Satisfiability (SAT) problem. Given a Boolean formula F in conjunctive normal
form (CNF), the SAT problem consists in answering the question whether an assignment
of Boolean values to the variables exists, such that the formula F evaluates to true. When
F has exactly k literals in each clause, it is known as k-SAT problem and it was the first
constraint satisfaction problem shown to be NP-complete for k ≥ 3 by Cook in [2]. This
NP-completeness property entails that every problem from the complexity class NP can
be efficiently transformed into a SAT problem. Therefore, SAT is a fundamental problem
in combinatorial discrete optimization and it is the root problem in complexity theory [3].

Cook’s work, as well as most of the work on CSPs that followed, focuses on the worst-
case complexity of the problems; however, experimental studies illustrate that many in-
stances in SAT problem are invariably surprisingly easy, even for naive heuristic algo-
rithms. Thus, the introduction of new methods for generating random hard instances
in SAT problem is crucial both for understanding the complexity of the SAT problem
and for providing challenging benchmarks for experimental evaluation of algorithms [4].
Particularly, a clear connection has been established between so-called phase transition
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phenomena and the computational hardness of NP-complete problems [5-7]. A great
amount of experimental and theoretical studies indicate that a phase transition in solv-
ability is a very paramount feature to many decision problems. More interestingly, the
hardest instances are concentrated at the sharp transition region. Moreover, it is widely
believed that the ensemble of random k-SAT problem with N variables where each for-
mula is generated by randomly choosing M = αN clauses of k literals has the phase
transition phenomenon, and it has been the focus of intensive theoretical studies by com-
puter scientists and statistical physicists in the last twenty years [8-17]. Specifically, as the
constraint density α (the ration of clauses to variables) increases, the number of satisfying
assignments decreases. More precisely, in the limits of N → ∞, the system is known to
have a sharp threshold in constraint density αs(k), for α < αs(k) the probability that a
randomly generated k-SAT instance is satisfiable goes to 1 and for α > αs(k) it vanishes
[18]. This phenomenon is particularly interesting because it turns out the really difficult
instances, from the algorithmic point of view, are those where α is close to αs(k).

Using discrete Fourier analysis, a slightly weaker statement was proved by Friedgut and
Bourgain in [12]. They showed that there exists a sharp threshold sequence αk(N) in the
random k-SAT problem such that when the number of clauses M is around αk(N)N , the
probability of the formula having a satisfying assignment drops abruptly from near 1 to
near 0 as N → ∞. Friedgut and Bourgain demonstrated that there is a function αk(N)
for which it is true, but we still cannot obtain the exact location of the phase transition
point from this approach. There is a multitude of work devoted to the study of the exact
threshold where the formula becomes unsatisfiable; however, except in the case of k = 2
[19-21], the exact threshold of the random k-SAT problem is currently unknown.

Recently, using a heuristic method called the ‘one step replica symmetry breaking’
(1RSB) cavity method [9, 10, 15], the threshold has been conjectured to be 2k log 2 −
(log 2 + 1)/2 + ok(1) for large k and αs ≃ 4.2667 for k = 3 [10]. In addition, it has been
very recently proved in [16, 17] that for k is large enough, the SAT-UNSAT threshold
αs(k) exists and the threshold coincides with the prediction from the cavity method in
[10]. A widely accepted conjecture is that the SAT-UNSAT threshold αs(k) exists for
any value of k; however, it seems to be very difficult to obtain the exact location of the
transition point for the random k-SAT problem. Thus, several k-SAT variations problems
by restricting the formula structure have been considered, and the critical thresholds have
been obtained for some of these problems, such as 2-SAT problem [19-21], k-NAESAT
problem [22], Regular 2-SAT problem [23] and Regular k-NAE-SAT problem [24].

Moreover, experimental results state that the balanced instances of random combinato-
rial problems are often much more difficult to solve than the uniformly random instances.
Thus, a regular random k-SAT problem, in which each literal occurs approximately the
same number of times in the formula clauses was proposed in [23] for the first time, where
the authors experimentally observed that the regular random 3-SAT formulas are com-
putationally harder than the uniform random 3-SAT instances. In [23], the authors also
derived the sharp threshold for the regular random 2-SAT problem and an upper bound
threshold where α < 3.78 for the strictly regular random 3-SAT problem by using the stan-
dard Lagrange maximization method. Then they analyzed a greedy algorithm on regular
random 3-SAT formulas and showed that for α < 2.46 the algorithm can find a satisfying
assignment with positive probability. Furthermore, a strictly regular random (k, s)-SAT
problem, in which each literal occurs either ⌊s/2⌋ times or ⌊s/2⌋+1 in the formula clauses
was proposed in [25]. Based on counting the number of satisfying assignments and the
saddle point method to the approximation of generating function coefficients, the authors
derived upper and lower bounds for the strictly regular random (k, s)-SAT formulas, which
are 2k log 2 − (k + 1) log 2/2 − 1 − δk ≤ α∗

reg ≤ 2k log 2 + ϵk for k ≥ 3, where δk and ϵk
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hide a term that tends to 0 in the limit of large k. Bapst and Coja-Oghlan [26] proposed
a non-rigorous approach from physics for harnessing Belief Propagation, and obtained a
rigorous proof for the existence and location of a condensation phase transition in the
strictly regular random (k, s)-SAT problem.

2. Technical Definitions.

2.1. Basic notations. A CNF formula over the variables v1, . . . , vN is a conjunction of
clauses C1 ∧C2 ∧ . . .∧CM where each clause Ci is a disjunction of literals ℓ1 ∨ ℓ2 ∨ . . .∨ ℓk.
Each literal ℓi is either a variable vi or its negation ¬vi. A formula is said to be in k-CNF
form if every clause contains exactly k literals. A CNF formula is satisfiable if there is
a Boolean assignment σ = {0, 1}N to the variables v1, . . . , vN , such that every clause
contains at least one literal which evaluates to true. A random k-CNF formula consists
of M clauses chosen uniformly at random from the set of all Ck

N possible ones. A regular
k-SAT formula [23] is denoted on N Boolean variables and M clauses, in which each of
the 2N literals {v1,¬v1, . . . , vN ,¬vN} occurs approximately the same number of times
and each clause has exactly k distinct literals.

Suppose each literal occurs precisely r (r ∈ Z+) times, i.e., each variable occurs precisely
s = 2r times, then in any regular k-SAT formula, it implies that 2Nr = kM and α =
2r/k = s/k; thus, s must be an even number. To circumvent this, a strictly regular random
(k, s)-SAT problem was introduced in [25]. In this problem, the authors allowed each
literal to take two possible occurrence times. Specifically, for a given s (s ∈ Z+), let r =
kM/(2N), if s is an even number, then each literal occurs precisely ⌊r⌋ = s/2 times; else
each literal occurs either ⌊r⌋ or ⌊r⌋+ 1 times. Thus, a strictly regular random (k, s)-SAT
formula is denoted on N Boolean variables and M clauses, in which each of the N variables
{v1, . . . , vN} occurs precisely s times, each of the 2N literals {v1,¬v1, . . . , vN ,¬vN} occurs
either ⌊s/2⌋ times or ⌊s/2⌋ + 1 times, chosen at random among all such formulas with
uniform probability.

A strictly regular (k, s)-SAT formula F can be represented as a (k, s)-regular bipartite
graph [27] I(F). The incidence graph I(F) is defined as follows: V1(I(F)) (circles in the
graphical representation) consists of the variables v1, . . . , vN of F and V2(I(F)) (squares
in the graphical representation) consists of the clauses C1, C2, . . . , CM of F , a variable v
and a clause C are adjacent if and only if v occurs (positively or negatively) in C. In
general, we use a full line between v and C whenever the variable v appearing in the
clause is v, a dashed line whenever the variable v appearing in the clause is ¬v. As an
example, Figure 1 exhibits the bipartite graph representation of the strictly regular (3,6)-
SAT formula F = (v1 ∨ ¬v2 ∨ v3)∧(¬v1 ∨ ¬v2 ∨ ¬v3)∧(v1 ∨ v2 ∨ ¬v3)∧(¬v1 ∨ ¬v2 ∨ v3)∧
(v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ v2 ∨ ¬v3).

Figure 1. Bipartite graph representation of the strictly regular (3, 6)-SAT
formula F , in which each of the 6 literals {v1,¬v1, v2,¬v2, v3,¬v3} occurs
precisely 3 times and each clause has exactly 3 distinct literals
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To generate a regular random (k, s)-SAT formula, Rathi et al. [25] assigned the labels
from a set E where E = {1, 2, . . . , sN} to edges on both sides of the bipartite graph,
and then generated a random permutation Π on E, connected each edge i on the variable
node side to each edge Π(i) on the clause node side. Thus, they got a regular random
(k, s)-SAT formula F . However, it was shown in [23] that the number of illegal or repeated
clauses is o(N) with high probability by this method.

2.2. Generating strictly regular random (k, s)-SAT instances. In order to avoid
the appearances of the illegal or repeated clauses, here we propose a new type of instances
generating model for the strictly regular random (k, s)-SAT problem, called model GSRR.
This model contains three control parameters, the clause length k, the variable size N
and the same occurrence times s for every variable. We denote ri1 as the number of
occurrences for variable vi positively and ri2 as the number of occurrences for variable
vi negatively in a formula. The generation of an instance Fk (N,αregN) for the strictly
regular random (k, s)-SAT problem in model GSRR is done in the following five steps:

• Step 1 Set j := 0, C := Φ.

• Step 2 For each variable vi, i ∈ {1, 2, . . . , N}, if s is an even number, then set
ri1 = ri2 := s/2; else set ri1 := ⌊s/2⌋ or ri1 := ⌊s/2⌋ + 1 with equal probability, and
set ri2 := s − ri1 .

• Step 3 Put ri1 copies of variable vi and ri2 copies of its negation ¬vi into box A.

• Step 4 Randomly selected k literatures ℓj1 , ℓj2 , . . . , ℓjk
from box A:

(1) If these k literatures ℓj1 , ℓj2 , . . . , ℓjk
can constitute a correct clause (without

repetition for the corresponding variables of the k literatures and without repetition
clauses in clauses Cq where q = 1, 2, . . . , j), then we set Cj = {ℓj1 ∨ ℓj2 ∨ . . . ∨ ℓjk

}
and connect the clause Cj into C with conjunction norm form; else put back these k
literatures ℓj1 , ℓj2 , . . . , ℓjk

into the box A, and go to Step 4.

(2) Set A := A \ {ℓj1 , ℓj2 , . . . , ℓjk
}, j = j + 1.

• Step 5 If j < Ns/k, then go to Step 4; else output formula C and we stop.

Hence, it is easy to see, in each strictly regular random formula Fk(N,αregN) generated
by model GSRR, each clause has exactly k different literatures, each variable occurs
exactly s times and each literal occurs either ⌊s/2⌋ times or ⌊s/2⌋ + 1 times.

3. Main Results. In this paper, we propose a GSRR model to generate the strictly
regular random (k, s)-SAT formulas. By applying the first moment method and the
asymptotic approximation of the coefficient of order γ for a generating function f(z)λ,
where λ and γ are growing at a fixed rate, we derive a new upper bound on the satisfiability
threshold for the strictly regular random (k, s)-SAT formulas for k ≥ 3. We show that
our upper bound is 2k log 2 − (k + 1) log 2/2 + ϵk, which is below the current best known
upper bound 2k log 2 + ϵk in [25]. Our new upper bound is also below the asymptotic
threshold of the uniform k-SAT model obtained very recently in [16, 17], which is 2k log 2−
(log 2 + 1)/2 + ok(1) for large k. Thus, we give a theoretical explanation why the regular
random (k, s)-SAT formulas instances are computationally harder than the uniform k-
SAT instances in general, which coincides with the experimentally observed in [23] and our
paper. Together with the lower bound of [25], we establish the following sharp satisfiability
threshold in Theorem 3.1. Therefore, we just left an additive gap of a constant 1 in the
regular random (k, s)-SAT problem.
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Theorem 3.1. For each k ≥ 3, the satisfiability threshold of strictly regular random
(k, s)-SAT formula satisfies

2k log 2 − (k + 1) log 2/2 − 1 − δk ≤ α∗
reg ≤ 2k log 2 − (k + 1) log 2/2 + ϵk, (1)

where ϵk hides a term that tends to 0 in the limit of large k.

4. Upper Bound on Threshold.

4.1. Asymptotic approximation of coefficients. The generating functions with the
type G(z) = f(z)λ often appear in several combinatorial enumeration problems, where
f(z) is a given function with positive coefficients and λ is a parameter that tends to
infinity. We often need to estimate the γth coefficient of f(z)λ, which we denote by
[zγ]{f(z)λ} for large γ and λ.

First, we define two operators on a generating function f(z) as the following.

∆f(z) = z
d

dz
log(f(z)) = z

f ′(z)

f(z)
; δf(z) =

f ′′(z)

f(z)
− f ′(z)2

f(z)2
+

f ′(z)

zf(z)
. (2)

For any analytic function G with positive coefficients, its coefficient of order γ can be
given by the Cauchy’s formula, where the integration contour is a closed curve around
the origin of the complex plane, inside the domain of its convergence, note that

[zγ] {G(z)} =
1

2πi

∮
G(z)

dz

zγ+1
. (3)

Thus, we get an upper bound |[zγ]{G(z)}| ≤ 1
2π

∮
|G(z) 1

zγ+1 |dz from (3). Therefore,
while integrating on a circle of radius ρ, which is smaller than the radius of convergence
of G, we have

[zγ] {G(z)} ≤ G(ρ)ρ−γ, (4)

and when ρ satisfies ρG′(ρ)/G(ρ) = γ, the smallest upper bound is obtained. Asusume
that X is a random varible for the generating function G. Setting ρ = exp(t) and using
the fact that G (exp(t)) = E [exp(tX)], by Chernoff’s bound, we have

Pr(X = (1 + δ)µ) ≤ E [exp(tX)]

exp(t(1 + δ)µ)
. (5)

In addition, if we assume that the random variable X is obtained by summing λ inde-
pendent random variables with distribution G(z) = f(z)λ, then we have Pr(X = γ) ≤
f(ρ)λρ−γ, and the upper bound (4) can be refined to give an approximation of [zγ] {G(z)}.

Instead of bounding G on the integration circle, Gardy [28] looked closely at the points
that give the main contribution to the integral. He showed that it is the basis of the saddle
point method for applications to the approximation of generating function coefficients.
Therefore, if we can choose the point ρ defined by the equation ρG′(ρ)/G(ρ) = γ for radius
of the integration circle, the majority of the integral often comes from the proximity of ρ.
Indeed, it is a saddle point. Define h(z) = log(G(z)) − (γ + 1) log(z), then

[zγ] {G(z)} =
1

2iπ

∮
eh(z)dz =

eh(ρ)√
2πh′′(ρ)

(1 + o(1)) =
G(ρ)

ργ+1
√

2πh′′(ρ)
(1 + o(1)). (6)

For a larger class of functions this result is actually valid, such as functions defined on
an open disk or entire functions.

In this paper, we consider the asymptotic approximation of [zγ] {f(z)λ} for large γ
and λ growing at a fixed rate. Moreover, it can be improved to give further terms of an
asymptotic development. We give the main result in [29] as follows:
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Theorem 4.1. Let f(z) = f0 + f1x + f2x
2 + . . . be a generating function which has real

positive coefficients with f0 ̸= 0, f1 ̸= 0, and its radius of convergence R is strictly positive.
Assume that γ/λ belongs to an interval [a, b], 0 < a < b, and γ, λ → +∞. Define ρ and
δ2 by ∆f(ρ) = γ/λ and σ2 = ρ2δf(ρ). If ρ < R, then

[zγ] {f(z)λ} =
f(ρ)λ

σργ
√

2πλ
(1 + o(1)). (7)

Thus, note that for suitable constants A = f(ρ0)ρ0
−κ, B = σ

√
2π, and with ρ0 being the

solution (independent of γ and λ) of ∆f(z) = κ. Indeed, σ is a constant as σ2 = ρ0
2δf(ρ0).

If γ = κλ, we can get the following corollary immediately.

Corollary 4.1. Under the assumptions of Theorem 4.1, if there exists a strictly positive
real constant κ such that γ = κλ, then we have

[zγ] {f(z)λ} =
Aλ

B
√

λ
(1 + o(1)). (8)

4.2. Upper bound on threshold via first moment. Let Z be a non-negative integer-
valued random variable with expected value of E[Z]. Using one of the most popular
techniques in the probabilistic method, namely the first moment method, we have Pr(Z ≥
1) ≤ E[Z]. The implementation of the first moment method makes use of Markov’s
inequality. Consequently, by estimating the expected number of solutions we can obtain
an upper bound on the threshold beyond which no solution exists with high probability.

Let N (k) be the number of satisfying assignments for a randomly generated strictly
regular formula Fk (N, αregN) by model GSRR. For any assignment ξ ∈ {0, 1}N to the
variables v1, v2, . . . , vN for formula Fk(N,αregN), let D denote the event that an assign-
ment ξ satisfies Fk(N, αregN), let H denote the event that the assignment σ = {1, 1, . . . , 1}
satisfies Fk(N,αregN), and let Iξ be an indicator variable that ξ is a satisfying assignment
for formula Fk(N,αregN). Due to the symmetry of the strictly regular random (k, s)-SAT
formula generation by model GSSR, the occurrence of each literal has the same distri-
bution. That is to say, any assignment of variables has the same probability of being a
solution. Thus, it implies that the probability

Pr[D] = Pr[H]. (9)

Therefore, we obtain

E[N (k)] =
∑

ξ∈{0,1}N
E [Iξ] = 2N × Pr[H]. (10)

In any strictly regular random formula Fk(N, αregN), there are rN positive literals and
the same amount of negative literals from the clauses. Thus, the total number of formulas
is (2rN)!. Note that the total numbers of positive literals and negative literals are equal,
so all the permuting among positive literals and negative literals is (rN)!× (rN)!. Thus,
the total number of formulas for which {1, 1, . . . , 1} is a solution is given by

(rN)! × (rN)! × the total ways of satisfying M clauses. (11)

We denote g(z) to be the generating function to satisfy a clause. It corresponds to
placing at least one positive literal in a clause. Hence, we have,

g(z) = C1
kz

1 + C2
kz

2 + . . . + Ck
kzk = (1 + z)k − 1, z ∈ (0, 1). (12)

Therefore, the generating function to satisfy M clauses is g(z)M , the total way of
satisfying M clauses is

[
zrN

] {
g(z)M

}
, where [zrN ]

{
g(z)M

}
denotes the coefficient of zrN
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in the expansion of g(z)M . Thus, by (10), (11) and (12), we have

E [N (k)] = 2N × ((rN)!)2

(2rN)!
×

(
[zrN ]

{
g(z)M

})
. (13)

We now use the asymptotic approximate of the coefficients in Section 4.1 to solve[
zrN

] {
g(z)M

}
, and then compute the expectation of the total number of solutions. By

Theorem 4.1, the generating function should have real positive coefficients with f0 ̸= 0
and f1 ̸= 0. Note that if we let

f(z) =
g(z)

z
=

(1 + z)k − 1

z
, (14)

then Function f(z) satisfies the assumptions of Theorem 4.1. By (13), (14) and M/N =
2s/k = αreg, we have

E[N (k)] = 2N × ((rN)!)2

(2rN)!
×

([
zrN−M

] {
[g(z)/z]M

})
= 2N × ((rN)!)2

(2rN)!
×

([
z(k/2−1)αregN

] {
f(z)αregN

})
. (15)

Set γ = (k/2 − 1) αregN , λ = αregN , we have κ = γ/λ = k/2 − 1; thus the coefficient
term coincides with the situation of Corollary 4.1 in (8). Thus, by the definition of the
∆f(z) and δf(z) in (3), we have

∆f(z) = z
f ′(z)

f(z)
=

1 + kz(1 + z)k−1 − (1 + z)k

(1 + z)k − 1
, (16)

δf(z) =
∆f ′(z)

z
=

k(1 + z)k−2
[
(1 + z)k − kz − 1

]
z
[
(1 + z)k − 1

]2 . (17)

Set ρk to be the solution of the equation ∆f(z) = γ/λ, i.e., ρk is the solution of the
following equation

1 + kz(1 + z)k−1 − (1 + z)k

(1 + z)k − 1
=

k

2
− 1. (18)

Simplifying the equation of (18), we obtain

(1 + ρk)
k−1(1 − ρk) − 1 = 0, ρk ∈ (0, 1). (19)

Lemma 4.1. Let N (k) denote the total number of satisfying assignments of a strictly
regular random (k, s)-SAT formula, then,

E [N (k)] = 2N−kαregN−1

[
(1 + ρk)

k − 1
]αregN+1

√
(1 + ρk)

k−2
[
(1 + ρk)

k − kρk − 1
]
ρk

kαregN+1

(1 + o(1)), (20)

where ρk is the positive solution of (19).
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Proof: According to the (8) in Corollary 4.1 and σ = ρk ·
√

δf(ρk), we have[
ρk

(k−2)αregN

2

] {
f(ρk)

αregN
}

=
[f(ρk)]

αregNρk
− k−2

2
αregN

σ
√

2π ·
√

αregN
(1 + o(1))

=
[f(ρk)]

αregN

σ · ρk
(k−2)αregN/2

√
2παregN

(1 + o(1)) (21)

=
[f(ρk)]

αregN

ρk ·
√

δf(ρk) · ρk
(k−2)αregN/2

√
2παregN

(1 + o(1))

∼

(
(1 + ρk)

k − 1
)αregN+1

√
2πkαregN

√
(1+ρk)

k−2
[
(1+ρk)

k−kρk−1
]
ρk

kαregN+2

.

Now using the Stirling’s approximation [30] of N ! ∼
√

2Nπ
(

N
e

)N
when N → ∞, it

implies that

((rN)!)2 ∼ 2rNπ

(
rN

e

)2rN

, (2rN)! ∼
√

4rNπ

(
2rN

e

)2rN

. (22)

Finally, with αreg = M/N = 2s/k, using direct simplification, Lemma 4.1 holds from
the equations of (22), (15) and (21). �

Next, we will derive the upper bound to the satisfiability threshold for the strictly
regular random (k, s)-SAT formulas.

Lemma 4.2. Let α∗
reg be the satisfiability threshold for the strictly regular random (k, s)-

SAT formulas. Let αu
reg be the upper bound on α∗

reg obtained by the first moment method.
Then we have,

α∗
reg ≤ αu

reg = 2k log 2 − (k + 1) log 2/2 + ϵk. (23)

Proof: Note that ρk is the solution of Equation (19), together with (20), we have

log (E [N (k)]) = log

2N−kαN−1 [(1 + ρk)
k − 1]

αregN+1√
(1 + ρk)

k−2[(1 + ρk)
k − kρk − 1]ρk

kαregN+2

(1 + o(1))

 .

Observe that

lim
N→∞

log(E [N (k)])

N
= (1 − kαreg) log 2 + αreg log((1 + ρk)

k − 1) − kαreg

2
log(ρk), (24)

where ρk satisfies the equation of (19).
Therefore, via the first moment method, we know that if E [N (k)] < 1, a randomly

generated strictly regular random formula Fk(N, αregN) is unsatisfiable with high prob-
ability. This implies that if lim

N→∞
(log (E [N (k)])/N) < 0, a randomly generated strictly

regular random formula Fk(N, αregN) is unsatisfiable with high probability. Thus, set
lim

N→∞
(log (E [N (k)])/N) ≥ 0, and then we can get the upper bound of the satisfiability

for the strictly regular random (k, s)-SAT problem from Equation (24). Furthermore,
from Equation (24), using the approximate solution of ρk ∼ 1− 1/2k in (19) to substitute
the equation of (24), we obtain the following upper bound on the satisfiability threshold
of strictly regular random (k, s)-SAT problem, which is

α∗
reg ≤ αu

reg = 2k log 2 − (k + 1) log 2/2 + ϵk. (25)

�
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Consequently, by the result of Lemma 4.2 and the lower bound in [25], we have finished
the proof of Theorem 3.1. �

5. Numerical Analysis. In order to illustrate the reliability of the approximate solution
for the upper bound on the satisfiability threshold in (25) via ρk ∼ 1− 1/2k, we calculate
the numerical solutions of ρk in (19) for 3 ≤ k ≤ 18, and get the numerical upper bounds
of the αu

reg from Equation (24). In Table 1, the upper bound αu
reg = 2k log 2−(k+1) log 2/2

is obtained by our method, the term 2k log 2−α∗
u means the gap between the upper bound

in [25] and our result. We can observe that the numerical results fit the upper bound
2k log 2− (k + 1) log 2/2 well. Furthermore, Figure 2 shows the numerical analysis results
fit the curve of our upper bound function 2k log 2 − (k + 1) log 2/2 fairly well.

Table 1. The numerical analysis results about the upper bound on the
satisfiability threshold of strictly regular random (k, s)-SAT problem

k numerical result αu
reg−numerical result 2k log 2 [25] 2k log 2−αu

reg

3 3.78 0.38 5.558 1.39
4 9.11 0.25 11.09 1.73
5 19.93 0.17 22.18 2.08
6 41.83 0.11 44.36 2.43
7 85.88 0.07 88.72 2.77
8 174.28 0.05 177.45 3.12
9 351.40 0.03 354.89 3.47
10 705.95 0.02 709.78 3.81
11 1415.40 0.01 1419.57 4.16
12 2834.62 0.01 2839.13 4.51
13 5673.41 0.00 5678.26 4.85
14 11351.30 0.00 11356.50 5.20
15 22707.50 0.00 22713.00 5.55
16 45420.20 0.00 45426.10 5.90
17 90845.90 0.00 90852.20 6.30
18 181698.00 0.00 181704.37 6.37

6. Experimental Results. In this section, we present numerical experiments to demon-
strate the correctness of our theoretical upper bound on the satisfiability threshold of the
strictly regular random (k, s)-SAT problem, and verify that the random (k, s)-SAT in-
stances generated by model GSRR are much more difficult to solve than the uniform
random k-SAT instances generated by the uniform random k-SAT model in each phase
transition region. Furthermore, as Zchaff algorithm [31] is currently the best complete
algorithm for solving the SAT problem, in our experiment, we choose Zchaff algorithm to
solve these two kinds of random k-SAT instances. To simplify the experiment, we chose
k = 3.

(1) In strictly regular random (3, s)-SAT problem, for variables size N = 60, 90, . . . , 210,
firstly we generate 100 random instances for each s ∈ {6, 7, . . . , 18} by model GSSR (the
total number of instances is 6 × 13 × 100 = 7800). Then for each N ∈ {60, 90, . . . , 210},
we compute each 100 random instances for each s by Zchaff algorithm, record the corre-
sponding computation time and whether it is satisfiable for each formula.

(2) In general uniform random 3-SAT problem, for variables size N = 60, 90, . . . , 210, we
generate 100 random instances for each α with αstart = 2, △α = 0.1, αend = 6 by uniform



486 J. ZHOU AND D. XU

Figure 2. The numerical analysis results versus the approximate upper
bound of 2k log 2 − (k + 1) log 2/2 for k = 3, 4, . . . , 18

random k-SAT model (the total number of instances is 6×100× [1+(αend−αstart)/∆α] =
24600). Then for each N ∈ {60, 90, . . . , 210}, we compute 100 random generated instances
for each α by Zchaff algorithms, record the corresponding computation time and whether
it is satisfiable for each formula.

Experimental results show that, for the strictly regular random 3-SAT instances gener-
ated by model GSRR, with variables size N ≥ 150 and s > 11, all the (3, s)-SAT instances
are unsatisfied; however, with s < 11, all the (3, s)-SAT instances are satisfied, that is, the
threshold point of the strictly regular random (3, s)-SAT instances is located at s = 11
(i.e., α∗

reg = 11/3 ≃ 3.6667), which is very close to the theoretical upper bound 3.78 in our
paper. Since αreg can only take values from a discrete set of possible values, it indicates
that our upper bound is very close to the real phase transition point in this problem.

Figure 3 illustrates the empirical phase transitions results for uniform random 3-SAT
instances and strictly regular random (3, s)-SAT instances with different-sized variables.
It is easy to see that the empirical threshold point for the uniform random 3-SAT instances
is very close to 4.2667, which coincides with the conjecture in [10] and the threshold point
of the strictly regular random (3, s)-SAT problem is close to 11/3, which is smaller than
the uniform 3-SAT problem. It implies that the regular SAT problem is harder to satisfy
than the uniform one.

Table 2. The average solution time for αreg ≃ 3.6667 in strictly regular
random (3, s)-SAT problem and αs ≃ 4.2667 in uniform 3-SAT problem in
every 100 random instances with different-sized variables. T1 is the average
solution time for strictly regular random (3, s)-SAT instances and T2 is the
average solution time for uniform random 3-SAT instances.

N 60 90 120 150 180 210

T1 0.0292 0.4384 4.8541 109.4090 1760.3780 57679.60
T2 0.0015 0.1030 0.6521 1.3417 8.2935 76.859
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Figure 3. Empirical phase transitions for uniform random 3-SAT in-
stances and strictly regular random (3, s)-SAT instances with different-sized
variables. The figure shows the probability that a random formula is sat-
isfiable for different N , computed over 100 instances with s = 6, 7, . . . , 18
(i.e., αreg = 6/3, 7/3, . . . , 18/3) for the strictly regular random (3, s)-SAT
problem, and over 100 instances with αstart = 2, △α = 0.1, αend = 6 for
the uniform random 3-SAT problem.

Figure 4. The logarithm scale of the average solution time for a strictly
regular random (3, s)-SAT instance and a uniform random 3-SAT instance
with different-sized variables in each phase transition region
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Table 2 illustrates that, compared to the uniform random 3-SAT instances around its
phase transition point αs ≃ 4.2667, the strictly regular random (3, s)-SAT instances are
much more difficult to solve at the location α∗

reg ≃ 3.6667.
In Figure 4, the two curves respectively represent the logarithm scale of the average

solution time for a strictly regular random (3, s)-SAT instance and a uniform random
3-SAT instance with different-sized variables in each phase transition region. Thus, both
the strictly regular random (3, s)-SAT hardest instances and the uniform random 3-SAT
hardest instances generated in its corresponding threshold point where αreg ≃ 3.6667 and
αs ≃ 4.2667, the difficulty grows exponentially with N (note the use of a log scale), and
clearly, the strictly regular random (3, s)-SAT problem instances in its threshold point
generated by model GSRR are far more difficult to solve than the uniform 3-SAT problem
instances in its threshold point.

7. Conclusions. In this paper, we considered a strictly regular random (k, s)-SAT prob-
lem and we proposed an instances generating model, named GSRR model for this problem.
Based on the asymptotic approximation of [zγ]{f(z)λ} for large γ and λ growing at a fixed
rate, we calculated the upper bound αu

reg on the satisfiability threshold for the regular ran-
dom (k, s)-SAT formulas for k ≥ 3 by counting the number of the solutions. We showed
that with the clause density αu

reg > 2k log 2 − (k + 1) log 2/2 + ϵk, there is no satisfying
assignments with high probability. This bound is also blow the asymptotic bound of the
uniform k-SAT problem, which is known as 2k log 2 − (log 2 + 1)/2 + ok(1) in [16, 17] for
large k. Thus, it is also shown why the regular random (k, s)-SAT formulas instances
are computationally harder than the uniform k-SAT instances theoretically, which coin-
cides with the observation in our experiment. Together with the lower bound of [25], we
just left an additive gap of a constant 1 for strictly regular random (k, s)-SAT problem.
Moreover, it is quite easy to generate hard random k-SAT instances by our GSRR model.
We believe that the GSRR model should be useful both for experimental evaluation of
algorithms and theoretical research.

In addition, in the uniform random k-SAT problem, literal occurrences range from 0
to log(N), in N variable instances. This is a rather significant range and heuristics for
variable selection exploit these differences quite successfully. However, in the strictly
regular random (k, s)-SAT problem, each literal occurs either ⌊s/2⌋ times or ⌊s/2⌋ + 1
times. Due to the lack of variation between literal occurrences, one cannot exploit obvious
differences in the frequency of literal occurrences to design more efficient algorithms.
Therefore, how to develop new algorithms with new branching heuristics to this problem
will be our future research direction.
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[9] M. Mézard, G. Parisi and R. Zecchina, Analytic and algorithmic solution of random satisfiability
problems, Science, vol.297, no.5582, pp.812-815, 2002.

[10] S. Mertens, M. Mézard and R. Zecchina, Threshold values of random K-SAT from the cavity method,
Random Structures & Algorithms, vol.28, no.3, pp.340-373, 2006.

[11] M. Alava, J. Ardelius, E. Aurell et al., Circumspect descent prevails in solving random constraint
satisfaction problems, Proc. of the National Academy of Sciences, vol.105, no.40, pp.15253-15257,
2008.

[12] E. Friedgut and J. Bourgain, Sharp thresholds of graph properties, and the k-sat problem, J. of the
American mathematical Society, vol.12, no.4, pp.1017-1054, 1999.

[13] D. Achlioptas and F. Ricci-Tersenghi, On the solution-space geometry of random constraint satisfac-
tion problems, Proc. of the 38th ACM Symp. on Theory of Comput., Seattle, Washington, pp.130-139,
2006.

[14] D. Achlioptas and F. Ricci-Tersenghi, Random formulas have frozen variables, SIAM J. Comput.,
vol.39, no.1, pp.260-280, 2009.
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