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ABSTRACT. In metaheuristic algorithms, such as Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO), it is common to deal with a problem known as premature
convergence. It happens when a population or a particle swarm loses diversity and starts
converging too early towards a suboptimal solution. There are many approaches to this
problem. This work proposes a new one based on a concept normally applied in the
recommender systems domain. This concept is known as serendipity. A formalization for
the concepts of serendipity and premature convergence is presented. A Serendipity-Based
PSO algorithm is developed and compared with the PSO and some variant approaches
available in the literature. After experimentation, the results were promising, since they
have showed that the Serendipity-Based PSO outperformed PSO and a variant called
PSO-Scout. The experiments were also performed to compare Serendipity-Based PSO
with some studies in the literature, considering a fixzed number of particles and varying
the problem dimensionality and the number of iterations. In all experiments, Serendipity-
Based PSO has also showed a better convergence behavior, outperforming PSO and some
variants in solution quality, ability to find global optimum, solutions stability and ability
to restart the movement of the swarm after stagnation has been detected.

Keywords: PSO, Serendipity, Scout particles, Premature convergence

1. Introduction. Bio-inspired computing is the use of computers to model the living
phenomena in groups and the study of life to improve the usage of computers [1]. Several
bio-inspired techniques have been applied to real world optimization problems in different
domain areas such as Telecommunications [2, 3], Power Systems [4, 5], Prediction Systems
[6, 7] and Automation [8, 9]. There are three groups representing these bio-inspired
techniques [10]: Evolutionary Computation algorithms, Natural Ecosystems algorithms
and Swarm Intelligence algorithms.

Evolutionary Computation algorithms aim to understand the mechanism of computa-
tional systems and to design highly robust, flexible and efficient algorithms to solve real
world problems [11]. Some examples of Evolutionary Computation algorithms are: Ge-
netic Algorithm, Genetic Programming, Differential Evolution and Evolutionary Strategy.

Natural Ecosystems comprise the living organisms along with the abiotic environment
with which organisms interact such as air, soil, water [12]. There are many interactions
among the ecosystem species such as interspecies or intraspecies. From a computational
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point of view, the ecosystem is an environment that is populated by independent entities
(agents) to represent some level of organization [13].

Swarm Intelligence is a widespread concept in bio-inspired computing and involves a
set of metaheuristics whose emergent behaviors can result in an ability to solve complex
problems [14]. It implements the collective intelligence for groups containing simple agents
that are based on the behavior of natural insect swarms. Particle Swarm Optimization
[15], for example, is one of the swarm intelligence algorithms that has been widely used
in the context of global optimization problems.

Particle Swarm Optimization (PSO) is inspired by the social behavior of birds and
fishes, where individuals of a population are represented by a point (or particle) of the
search space. According to [16], generally the algorithm is not largely affected by the size
and nonlinearity of the problem and, moreover, it converges to optimal solutions, whereas
most analytical methods fail during the convergence process.

PSO has some advantages such as easy implementation and fast convergence, but often
it faces a problem in which its particles are “trapped” in local optimum. This problem
is often known as premature convergence in swarm algorithms. In another area of study,
known as recommender systems, there is a concept that can be used as a strategy to delay
premature convergence. This concept is called serendipity.

In general, serendipity is a term that refers to fortunate findings that apparently were
performed by chance. In an exhaustive study, [17] showed that serendipity has a great
contribution to the progress of science, technology and art. According to [18], in science
and technology, the serendipitous discoveries occur frequently. In the history of science, for
example, there are several cases of serendipity such as: 1) X-ray in 1895; 2) radioactivity in
1896; 3) penicillin in 1928; 4) microwave oven in 1945 and many others. The innovations
can be considered cases of serendipity since, as a rule, they are performed by individuals
who are able to detect patterns whereas others observe randomness.

Recommender systems emerged as a group of approaches to solve the problem of infor-
mation overload. They are special applications, present in our daily lives, that provide
personalized recommendations (for example, products or services) for users that may be
interesting [19, 20]. In recent years, the research in recommender systems has focused on
the recommendations accuracy [21, 22, 23]. However, high accuracy can cause a specific
problem known as over-specialization. Although, this problem occurs when the system
refers only to the items related with the user’s profile, there may be items which are
more appropriate. Serendipity is a strategy that may be used to solve the problem of
over-specialization.

When a recommendation system suggests only items related to the user’s interest, it
converges to recommendations that do not meet the user’s expectations [24]. Thus, it
fails to suggest items that can be the most adequate. Similarly, when a metaheuristic
algorithm converges to a local optimum and does not consider other solutions that are
more appropriate than the solution found, the correlation between over-specialization and
premature convergence is observed.

Many relevant approaches were proposed in literature to accelerate the convergence of
PSO and avoid premature convergence. Operators often used in Genetic Algorithm such
as selection and mutation have been incorporated into standard PSO [25, 26, 27] because
they are efficient to enhance swarm diversity. Other different approaches have also been
proposed [28, 29, 30] such as quantum system and wavelet theory.

These approaches are essentially stochastic, but they can benefit from combinations
with other techniques to decrease the randomness of the search process in order to improve
the performance of the algorithm. For this purpose, an interesting alternative is the
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implementation of the serendipity concept that considers a set of patterns to represent
the behavior of the fitness values.

This paper proposes a PSO variant called Serendipity-Based PSO that combines the
concept of serendipity and scout particles to enhance the exploration within the search
space. The scout particles are employed as a way of introducing new exploratory behaviors
into the swarm. Some strategies, commonly used in the recommender systems domain,
are used to implement two dimensions of serendipity. These dimensions are chance and
sagacity. The first strategy is called “blind luck” which uses the exploratory behavior of
the scout particles to implement the chance dimension. The other strategy that is called
“Pasteur’s principle” implements the sagacity dimension by means of a set of behavior
patterns.

The paper is organized as follows. In Section 2, it provides a brief background in
order to introduce the basic concepts necessary for the reader’s understanding. Section 3
presents the proposed algorithm that combines the concept of serendipity with the use of
scout particles. Section 4 presents the experiments performed and discusses the results
obtained. Finally, in Section 5, the final considerations are presented to conclude the
work.

2. Background. This section presents some basic information necessary to the suitable
understanding of the algorithm presented in Section 3. The concept of serendipity and
three methods to detect premature convergence are presented together with some related
work available in the literature.

2.1. Serendipity. The Cambridge Dictionary defines serendipity as “The fact of finding
interesting or valuable things by chance”. However, unlike many traditional definitions
that just use the term as a synonymous of “random”, serendipity is closer to a mixture
of sagacity and chance [31].

In [32] it expressed the concept of serendipity in a formal way through the identification
of different categories. For this, logic equations were used, called Serendipity Equations, to
present four events that can generate serendipity. These events are associated to different
types of serendipity: a) pseudo-serendipity; b) real serendipity; c) serendipity without a
metaphor inspiration; and d) serendipity with incorrect knowledge.

In recommender systems, serendipity can be implemented through four strategies [33]:
1) Blind luck, 2) Pasteur’s principle (“chance favors the prepared mind”), 3) Anomalies
and exceptions and 4) Reasoning by analogy. The “blind luck” approach aims to pro-
vide recommendations from information randomly generated. “Pasteur’s principle” is
implemented by means of the user’s profile to recommend items that have something to
do with the user’s profile. The “Anomalies and exceptions” approach is partially imple-
mented by low similarities between the user’s profile and the recommended items. Finally,
the implementation of the “Reasoning by analogy” approach is unknown at the moment.

In the metaheuristic context, it is said that the set F is formed by elements that
represent the solutions found during an iteration in a given search space. Thus, we say
that f;; is an element belonging to the set I’ that represents a solution 7 found during the
iteration j. The solution 7, whose fitness value is the best value during the iteration j, is
represented by the element f € F.

S is a set whose elements represent the possible solutions in a search space and F'is a
proper subset of S. So, during the iteration j, when an element of S does not belong to
the set F', this element is considered as an occasional solution. Then, the set containing
the elements that represent occasional solutions during the iteration j is given by the
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relative complement of F' in S:
CHANCE =S - F (1)

When an element chance;; presents a fitness value better than the fitness presented by
the element [, chance;; is called serendipitous. The set SRD is formed by serendipitous
elements that represent occasional solutions with fitness value better than the fitness value
of the element f;, according to Equation (2):

SRD = {srdy]| fitness(chance;;) < fitness(f;)} (2)

The concept of serendipity presented in this paper is adapted to the metaheuristic

context. It consists of two essential aspects: acceptability and occasionality. So, an
element of the set SRD can be used to represent a serendipitous solution because it is a)
acceptable, since it represents a solution whose fitness value is better than fitness value of
the element f; and b) occasional, since it is an element that does not belong to the set
F during the iteration j.
2.2. Methods to detect premature convergence. PSO is a technique capable of
finding good solutions in a fast convergence time, but the algorithm has the risk to
converge prematurely. It is said that the swarm has converged prematurely when the
proposed solution approximates to a local optimum, rather than to the global optimum
for the problem.

Premature convergence occurs due to decreased diversity in the search space and the re-
sult of this process takes the swarm to a state of stagnation. After premature convergence
has initiated, the particles will continue to converge within extremely close proximity of
one another so that the best and all global personal bests are miniscule within one region
of the search space [34].

In [35] it presented three methods for detecting the premature convergence in order to
avoid stagnation of the swarm. They are:

1) Maximum Swarm Radius — it evaluates the greatest Euclidean distance between a
swarm particle and the gBest particle. The stagnation occurs when this Euclidean dis-
tance is less than a threshold called d,4,. This evaluation method is formally presented
by Equation (3):

maX;e(1,...,s) ||fzy - {;” (3)

|,U/max - ,U/min| ’
where || fi; — fi]| is the Euclidean norm between a swarm particle 7 and the gBest
particle during the iteration j. fimax and pimin represent the maximum and minimum
limit for each dimension of the particle 7, respectively.

2) Cluster Analysis — it evaluates the percentage for the number of particles that belong
to a cluster C. A particle belongs to set C'if the distance between it and gBest particle
is less than a threshold 0,,;,. So, when a percentage of the particles in cluster C' reaches
a threshold 0.y, it is assumed that the convergence occurred.

3) Objective Function Slope — it does not take account of the relative positions of the
particles in search space. It is based on the change rate of the fitness function. A
normalized value for the fitness function is obtained by Equation (4):

- f) = @)
fratzo - f(?]]) ) (4)

where f(y;) is the fitness value for the objective function in iteration j and f(y;_1)
in iteration 7 — 1. If f,.q., is less than a defined threshold, a counter is incremented.
When the counter reaches a threshold d.yy,, it is assumed that the swarm converged.

Pj =
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Objective Function Slope method is better than the other ones, but it still has some
issues [35]. An alternative approach to achieving better results is a combination with
Cluster Analysis or Maximum Swarm Radius.

2.3. Related work. Serendipity is defined as finding something good or useful while
not specifically searching for that in a certain occasion. The design of recommendation
engines that considers serendipity is relatively new and it is still an open research problem.

When the concept of serendipity is adapted to the context of metaheuristic algorithms
and their optimization applications, “something good or useful” may be seen as a candi-
date solution that it is better than the current one after a certain number of iterations.

A class of metaheuristic algorithms that has received much attention consists of bio-
inspired algorithms. Bio-inspired computing is the use of computers to model the phe-
nomena of life, and simultaneously studying the life to improve the usage of computers,
in our case, to improve optimization algorithms. Bio-inspired computing is a major sub-
set of natural computation. Swarm intelligence deals with natural and artificial systems
composed of populations. These populations coordinate the swarm using decentralized
control and self-organization [36]. The study of swarm intelligence involves the study of
the behavior of ants, wasps, termites, fishes, birds and bats. In this context, PSO is one
of the well-known algorithms.

PSO has gained much attention from research communities for solving real world opti-
mization problems due to its ease of implementation and good search performance. PSO
is a stochastic approach used to model the social behavior of birds. In this kind of algo-
rithm, the solution is represented by a particle that “flies” over the search space looking
for an optimum solution during a certain number of iterations [37]. The PSO pseudocode
is presented in Algorithm 1.

Algorithm 1 Standard PSO pseudocode
1: for each particle in S do

2:  randomly initialize velocity and position

3: end for

4: while stopping criterion not satisfied do

5. for each particle 7 in S do

6: calculate fitness value

7 if fit(zq) < fit(pBest;) then

8: pBest; < x4

9: end if

10: if fit(pBest;) < fit(gBest) then

11: gBest < pBest;

12: end if

13:  end for

14:

15:  /*Update velocity and position of the particle*/
16: for each particle 7 in S do

17: U§(t1+l) = w - vfy +c1 1 (Pig — Thg) o - Ta(phy — 1)
18wy =l oy

19: end for
20: end while

The movement of the particles is based on two pieces of information: gBest and pBest.
Information gBest influences the motion of the particle towards the best position found
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by the swarm, whereas pBest moves the particle to the best position found by itself. After
finding gBest and pBest, each particle updates its velocity and its position by Equations
(5) and (6), respectively:

UZ%H) = w-vfy+ 1oy (Plg — Tig) + 2012 (pZd — xy) (5)
vy = aly o (6)

In Equation (5), the term w is called inercial factor and represents the particle inertial
velocity. !, and xz!, are the velocity and position of the particle ¢ in the instant ¢,
respectively. pf, and pzd are the best fitness values found by particle 7 and the best fitness
value found among all swarm particles until the instant ¢, respectively. ¢ is a coefficient
that contributes to the auto exploration of the particle, whereas ¢y contributes with the
particle movement towards a swarm global dislocation in the search space. r; and 7 are
random values uniformly distributed in the range [0, 1].

Different variant approaches have emerged to improve the performance and convergence
behavior for Standard PSO algorithm. In [27], it proposed a method that combines the
mutation process with the standard PSO. The presented algorithm is called Hybrid PSO
with Genetic Mutation (HPSOM) and its particles have a probability of mutating at
each iteration. The experiments showed that HPSOM was successful when evaluated on
unimodal and multimodal functions.

In [28] it proposed Quantum-Behaved PSO (QPSO). The variant assumes that the
PSO is a quantum system, and each particle has a quantum behavior with its quantum
state formulated by a wave function. In QPSO, each particle should converge to the local
attractor point in order to guarantee that all the particles converge. One particle cannot
converge to the best global position without considering its colleagues. Experiments with
some benchmark functions showed that QPSO outperformed PSO in most cases.

In [29], an improved QPSO is proposed with weighted mean best position, according to
fitness values of the particles called Weighted QPSO (WQPSO). The proposal was tested
on benchmark functions and it showed satisfactory results in relation to the Standard
PSO and QPSO.

In [30], it proposed a PSO variant that combines mutation operator with wavelet the-
ory. This theory increases the operating space to find the best solutions. Benchmark
functions and three industrial applications were employed to evaluate the performance
and applicability of the proposed method.

In [38] it proposed a combination of the Particle Swarm with concepts from Evolutionary
Algorithms. The method combined the traditional velocity and position update rules
with the ideas of Gaussian Mutation. The experiments were conducted on unimodal and
multimodal functions.

In [39], the Opposition-Based PSO (OPSO) method is presented to accelerate the con-
vergence of PSO and avoid premature convergence. OPSO employs opposition-based
learning and applies dynamic Cauchy Mutation on the best particle of the swarm. The
experiments showed that OPSO could successfully deal with multimodal benchmark func-
tions while maintaining fast search speed on simple unimodal functions.

In [40], it presented a hybridization that combines PSO with a modified method of
Broyden-Fletcher-Goldfarb-Shanno (BFGS) to improve the ability of local searches using
reposition operator and territory of particles.

In [41], a PSO variant called Discrete Particle Swarm Optimization (DPSO) is proposed
to be applied to the domain of academic libraries. The proposed algorithm uses scout
particles and they correspond to a candidate solution to the problem. The scout particles
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are employed to enhance the exploration within the solution space. Several computa-
tional experiments are designed and conducted. The results are statistically analyzed and
demonstrated the effectiveness and efficiency of the algorithm.

In [42], it presented a hybridization that combines PSO with Artificial Bee Colony
Optimization. This combination adds the scout bee phase into PSO to regenerate useless
particles in order to achieve higher diversity. Four datasets of the medical area are used
to validate the proposed algorithm and the results showed good accuracy.

In [43], it proposed a variant that uses scout particles with different roles. The global
performance of the algorithm and the roles of the scouts are evaluated by means of
bechmark functions. The results showed that the addition of scout particles improved
optimization performance and robustness of the algorithm.

3. Serendipity-Based Particle Swarm Optimization Using Scout Particles. In
the previous section, serendipity was presented as a kind of ability to perform fortunate
discoveries by chance and sagacity. The term “chance” should be understood here as a
possibility or probability of anything happening. The term “sagacity”, in turn, should
be understood as the quality of having good judgment or perception about an event or
something related. This concept of serendipity is interesting and useful, since it is the
main hint to define where serendipity could be applied to a Standard PSO algorithm and
which kind of sagacity should be used to improve PSO behavior with serendipity-inspired
decisions.

There are three natural approaches to implement this improvement. The first one
is based on modifications in the random decisions points available in the Standard PSO
algorithm (presented in Subsection 2.3), according to lines 2, 8, 11, 17 and 18. The second
one is based on the inclusion of a complementary method to be used in conjunction with
a Standard PSO algorithm to implement a Serendipity PSO-like algorithm. The third
one is a mix of the other two. All of them consider “fortunate discoveries” as points in
the search space that are useful for an optimization procedure, since they are better than
the best solution available found until the current iteration.

This work adopts a variant for the third approach. It proposes a strategy used in [24]
to generate serendipity based on a perceptive model [44] that combines two strategies
used in the domain of recommender systems [33]. They are: blind luck and Pasteur’s
principle. The blind luck strategy is implemented using scout particles. They complement
exploratory space of the Standard PSO generating additional diversity and implementing
the chance dimension. The Pasteur’s principle is used to recognize potential and seize
the moment in perceptions. It combines a behavior detection with scout particles that
inspect unexplored regions by the swarm in the search space, according to Equations (5)
and (6). This strategy is the implementation of the concept of sagacity or, in other words,
the concept of “prepared mind”.

The new algorithm implemented is called Serendipity-Based Particle Swarm Optimiza-
tion (SBPSO). The behavior detection searches for hill or valley patterns around the
optimal points chosen for each iteration. The scout particles delay the convergence time
by generating additional diversity to the optimization algorithm.

The behavior that the scout particles implement to explore the search space differs
from the typical behavior of the swarm. They may be used to increase the exploration
capacity of the algorithm. Scouts spend minimal extra resources without performing
global modifications to the algorithm.

It is important to ensure that the inclusion of scout particles do not compromise the
habitual behavior of the swarm. In the algorithm proposed, this is transparent because
the scout particles are used to identify the solutions that are better than the best swarm
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particle. The velocity of a scout particle k is given by Equation (7):
Vk(;-H) =w- Vvktd +tc30r3 (le:d - mzest)? (7)

where c3 is the diversity coefficient and r3 is a random number uniformly distributed in
the range [—1,1]. X}, and z}_,, are, respectively, the position of the scout particle k& and
the position of the best swarm particle at instant ¢. The position of a scout particle k is
given by Equation (8):

NV = e+ Vg (®)

The initial steps of the SBPSO algorithm, showed in Algorithm 2, are similar to the
Standard PSO. The velocity and position are randomly initialized for each swarm particle
and the scout particles, too (lines 2-3). Next, for each swarm particle, the fitness value
is calculated to find the best particle (lines 5-11). This also occurs for the scout particles
(lines 12-18). After the best swarm particle and the best scout particle are found, the
best among them will be the new gBest particle (lines 20-26).

The next step is to begin the inspection process near the gBest particle (lines 28-
30). Therefore, the algorithm randomly creates one Adjacent Point (AP), according to
Equation (9):

AP =best+a- R 9)
where best is the gBest current particle, a is a positive real constant, R is a matrix 1 X
dim whose elements are random values uniformly distributed in the range [—1, 1] and dim
is the dimension of the gBest current particle.

Next, for the AP that was created, the algorithm defines one vector d that represents
the oriented segment best AP, according to Equation (10):

d = AP — best (10)

Since best and AP define a single vector d representing a direction, then there are
infinite Inspection Points (IP) whose direction bestI P is the same as bestAP. For the
AP created, two IP can be chosen, according to Equation (11):

IP =best+ \-d, (11)

where ) is a non-zero real constant.

After setting the two IP, a rules set is evaluated (line 31). The implementation of
these rules aims to treat the behavior patterns to define Inspection Points around gBest
current particle. These new solutions can be obtained from the generation of I P or New
Points (N P), according to the rules set showed in Table 1.

Again, the SBPSO steps are similar to Standard PSO. The velocity of the swarm
particles is calculated and the position is updated (lines 33-36). This also occurs for scout
particles (lines 37-40).

Finally, the algorithm evaluates the situation of the swarm related to the stagnation and
premature convergence (lines 42-44). When the following condition is satisfied, SBPSO
restarts the swarm:

(p; < Ostag) N (cont > Ocony), (12)

where ¢; is the swarm radius in the iteration j and d4y4, is a threshold that evaluates the
swarm stagnation, according to Equation (3); cont indicates the number of iterations in
which the swarm does not show significant improvements and d..y, is the threshold that
indicates the swarm convergence, according to Equation (4).

According to Pasteur’s principle, chance favors the prepared mind. The concept of
“prepared mind” is implemented here using a set of behavior patterns shown in Figure
1. These behavior patterns are considered to implement the sagacity dimension. They
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Algorithm 2 SBPSO pseudocode using scout particles

T S e T e T = T o S =y o

Lo D LY W W N NN R NN N NN

W W W w

o
©

B A
@

44:
45:

Do
e

'S
T @

learning procedure of behavior patterns
randomly initialize velocity and position of all swarm particles
randomly initialize velocity and position of all scout particles
while stopping criterion not satisfied do
for each particle 7 in S do
calculate fitness value
if fit(zyq) < fit(pBest;) then
pBest; < x;4
end if
end for
bestswarm < getParticleWithBestFitnessV alue()
for each scout k in S do
calculate fitness value
if fit(scoutyry) < fit(pBesty) then
pBest;, < scoutyy
end if
end for
bestscour <— getScoutWithBest FiitnessV alue()

if fit(bestswarm) < fit(bestseour) and fit(bestsparm) < fit(gBest) then
gBest <+ bestgparm
else
if fit(bestseour) < fit(bestsparm) and fit(bestseour) < fit(gBest) then
gBest < bestseou
end if
end if

create adjacent points to gBest using Equation (9)
define onde direction vector d using Equation (10)
create two inspection points using Equation (11)
execute actions based on rules defined in Table 1

for each particle 7 in S do

(t+1) _ t t t t t
Vig =W+ e (Dl — i) + ez ra(phg — Tig)
(t+1) 4 (t+1)
Tig = Tig T Ui
end for

for ?a(lz)h scout kin S do
t+
Vk&ﬂ) =w- Vi + 03(;+7"1?5 (XFa — Thest)
Xkd = _xiest + de
end for

if (stagnant swarm) and (swarm converged) then
restart swarm
end if
end while
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must be learned in the initialization procedure of the algorithm. These patterns may be
idealized to match fitness behavior along the points in a straight line passing by gBest
(inside the domain of fitness function) during an iteration i. They may consider several
possibilities in matrixes such as N x 3. To simplify, a set of patterns is exemplified
considering just a matrix 3 x 3. For this matrix, there are 27 possibilities (3 x 3 x 3). 14 of
them are redundant and just 13 are enough to represent the behavior patterns considered
to implement the sagacity dimension.

Figure 1 shows each pattern considering relative fitness values for three points in a
straight line that links gBest and AP points. They are I P, gBest and IP,. Figure 2
shows an example of matching for behavior Pattern 1 in a typical optimization problem
in a 2D-space.

Pattern1 Pattern 2 Pattern 3 Pattern 4 Pattern 5
E E S E g
2 2 a @ 2
£ £ 2 < S
= z & = &,
kS g kS b ke
8 T 8 T S
IP, gBest IP, IP, gBest IP, IP, gBest IP, IP, gBest IP, IP, gBest IP,
Pattern 6 Pattern7 Pattern 8 Pattern 9 Pattern 10
v w w vy
E S S S S
& & & &| &
= = = = =
B e 2 N S
IP, gBest IP, IP, gBest IP, IP; gBest IP, IP; gBest IP, IP; gBest IP,
Pattern11 Pattern12 Pattern13
g E g
E E E
2 @ 2
= S =
& & &
8 = S
kS 5 g
N 8 N
IP, gBest IP, IP, gBest IP, IP; gBest IP,

FIGURE 1. Behavior patterns used to implement the sagacity dimension
considering a matrix 3 x 3

Although the example in Figure 2 is in 2D-space, the match can also occur in a multi-
dimensional space. A straight line can implement a cut in the domain of the fitness
function in any space. The direction of the straight line is stochastic, since it is the arrow
that links gBest to a random point AP. In each iteration, this direction changes and
during all the iterations it gives a reasonable perception of the fitness function behavior.

4. Computational Experiments. The proposed algorithm was evaluated on several
benchmark functions which are presented in Subsection 4.1. In Subsection 4.2, the pa-
rameter settings are presented. In the last subsection, the algorithm is compared with
Standard PSO, as well as some variants such as PSO-Scout, HWPSO, WQPSO, QPSO
and HPSOM.
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Pattern 1

matches |

Random Cut in
gBest position

relative fitness values

IP, gBest IP, N R
| Inspection Point 1 (IP;) | ST

| Inspection Point 2 (IP,)

| gBest in iteration i

FiGure 2. Example for Pattern 1 in 2D-space

4.1. Benchmark functions. Four benchmark functions were chosen and associated to
high-dimensional problems on which a minimization process is applied. These funtions
[35] can be used to investigate the stagnation and the convergence of the algorithm. They
have been applied in several studies of PSO such as [27, 29, 30, 40, 45, 46]. The functions
are described below:
e Spherical function — it has no interaction between its variables. It is very simple,
convex and unimodal:

d
_ § : 2
= x;
1=1

e Rosenbrock function — it has interaction between some variables, whose global min-
imum is in a parabolic valley. Although it is easy to find the parabolic valley, the
convergence to the minimum is difficult [47]:

d—1

folw) = 3 [100(201 — ) + (2 — 1Y

i=1
e Griewank function — it has interactions between variables. The function has many
widespread local minima, which are regularly distributed:

(@) 400235 ~TLeos (%) +1

e Rastrigin function — it has several local minima and the locations of the minima are
regularly distributed:

M“‘

(27 — 10 cos(2ma;) + 10]
=1
Table 2 presents the boundaries of the search space, the initialization ranges, the value
that represents the global optimum and the optimal solution.

4.2. Parameter settings. The values assigned to w, ¢; and ¢y, defined in Equation (5),
can vary the performance of the Standard PSO and its variants [39]. In order to have
a fair comparison, parameters in common of Standard PSO and SBPSO were set to the
same value: a) ¢; = ¢o = 2.0, b) the inertia weight w that decreases linearly starting at



TABLE 2. Characteristics of the benchmark functions
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. Initialization Global Optimal
Function Search Space Range Optimum S(ﬁution
fi — Spherical | —100 < x; <100 | 50 < x; <100 | f(z*)=0 |z*=(0,...,0)
f2 — Rosenbrock | —30 < z; < 30 15 < z; <30 f(z*) = z*=(1,...,1)
fs — Griewank | —600 < z; <600 | 300 <z; <600 | f(z*)=0 |z*=(0,...,0)
fis — Rastrigin | =5.12 <2; <512 | 256 <z; <512 | f(z*)=0 |z*=(0,...,0)

0.9 and ending at 0.4 and ¢) the maximum velocity Vi,.x of each particle corresponds to
half of the length of the search space in one dimension [48].

There are some specific parameters of the SBPSO related to a) the number of scout
particles, b) the velocity of the scouts, ¢) the creation of Adjacent and Inspection Points
near the gBest particle and d) the detection of premature convergence.

The parameter that defines the number of scouts was set at 10% of the total of the
swarm particles. Other parameters were also presented in Equations (7), (9) and (11).
Respectively, these parameters were set ¢c3 = 1.3, o was set to be 1% of the length of
the search space in one dimension and A = 0.1. To detect premature convergence, two
thresholds were used: 00y and deony. The threshold g, was set at 107 and don, Was
assigned the value of 5% of the total number of iterations. The threshold d,,,, was used to
define the number of iterations whose fitness value of the gBest particle was not improved
significantly. The values assigned to these parameters were empirically chosen after several
simulations that presented good results for all evaluated functions.

4.3. Experimental results. The concept of serendipity, when combined with the use of
scout particles, shows that the SBPSO behavior is more active than the Standard PSO
and some variants. The performance of the proposed algorithm is evaluated as follows:
first, SBPSO is compared with Standard PSO and PSO-Scout. Next, SBPSO is compared
with other four PSO variants available in the literature such as QPSO [28], WQPSO [29],
HWPSO [30] and HPSOM [27]. The comparison also considers PSO-Scout.

PSO-Scout is a Particle Swarm Optimization variant that we implemented in this work.
This variant improves the Standard PSO performance using the exploratory behavior of
the scout particles. Scouts are used both as general mechanisms to globally improve
the algorithm and also as a simple approach to incorporate specific knowledge to solve
problems. The behavior of such particles can be controlled using Equations (7) and (8),
presented in Section 3. The number of scout particles used in this variant is equivalent
to 10% of the total of the swarm particles.

Figures 3(a), 3(b), 4(a) and 4(b) compare the average behavior of the swarm (5 par-
ticles) on Spherical, Rosenbrock, Griewank and Rastrigin functions in 2000 iteractions,
respectively. The figures show that Standard PSO and PSO-Scout stagnate before itera-
tion 2000, but SBPSO continues its activity.

The scalability of the SBPSO is also investigated. The population size (20, 40 and 80),
the dimension of the functions (10, 20 and 30) and the maximum number of iterations
(1000, 1500 and 2000) are varied for each benchmark function. In these experiments, the
best mean and the standard deviation obtained are recorded.

Figures 5, 6, 7 and 8 show the convergence process averaged on 100 executions. The
process occurs in the search space of the Spherical (Figure 5), Rosenbrock (Figure 6),
Griewank (Figure 7) and Rastrigin (Figure 8) functions using 20 particles, 30 dimensions
and 2000 iterations. Tables 3 and 4 show the population size, the dimensionality of the
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FIGURE 3. Average behavior of the swarm (5 particles) during 2000 it-
erations: (a) for Spherical function, the Standard PSO stagnated next to
iteration 1380 and PSO-Scout stagnated next to iteration 1800 and (b) for
Rosenbrock function, the Standard PSO stagnated next to iteration 1000
and PSO-Scout stagnated next to iteration 1700. In both figures, it is ob-
served that the particle of the SBPSO remains active next to iteraction
2000.
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FIGURE 4. Average behavior of the swarm (5 particles) during 2000 iter-
ations: (a) for Griewank function, the Standard PSO stagnated next to
iteration 1200 and PSO-Scout stagnated next to iteration 1710 and (b) for
Rastrigin function, the Standard PSO stagnated next to iteration 1000 and
PSO-Scout stagnated next to iteration 1580. In both figures, it is observed
that the particle of the SBPSO remains active next to iteraction 2000.

function, the number of iterations, the best mean of the fitness value and the standard
deviation for each benchmark function.

Wilcoxon Test [49] is applied with significance level 0.05 to evaluate the solutions found
by Standard PSO, PSO-Scout and SBPSO. Wilcoxon is a non-parametric statistical test
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FIGURE 5. The average convergence process of the Standard PSO, PSO-
Scout and SBPSO for Spherical function
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FIGURE 6. The average convergence process of the Standard PSO, PSO-
Scout and SBPSO for Rosenbrock function

used to compare two independent samples. The null hypothesis Hy indicates that two
samples come from the same population, whereas the alternative hypothesis H; indicates
that one has higher values than the other. When p-value is less than the significance level,
then it decides to reject Hy, i.e., there is significant difference between the samples.
Table 5 presents p-values obtained by the Wilcoxon Test when the SBPSO is compared
with the Standard PSO and PSO-Scout. The test is used to verify if the SBPSO results are
statistically significant compared with the Standard PSO and PSO-Scout. It is observed
that all experiments present p-values lower than the significance level set at 0.05. In such
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FiGUuRE 7. The average convergence process of the Standard PSO, PSO-
Scout and SBPSO for Griewank function
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FiGurE 8. The average convergence process of the Standard PSO, PSO-
Scout and SBPSO for Rastrigin function

cases, the hypothesis Hy is rejected. This ensures that there is no equality between the
solutions obtained by the methods. This means that SBPSO statistically obtained better
results than the Standard PSO and PSO-Scout.

Table 6 compares the SBPSO results with some available variants in the literature such
as HWPSO, WQPSO, QPSO and HPSOM. For each benchmark function, the dimensions
(10, 20 and 30) and the maximum number of iterations (1000, 1500 and 2000) are varied.
Only the population size is fixed to 20 particles. The mean best fitness and the standard
deviation obtained by the algorithms cited previously are recorded.
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TABLE 3. Comparison between Std. PSO, PSO-Scout and SBPSO for the
unimodal functions: Spherical and Rosenbrock

Part

Dim

Iter

Spherical (f;)

Rosenbrock (f2)

Std. PSO

PSO-Scout

SBPSO

Std. PSO

PSO-Scout

SBPSO

20

10

1000

1.2368E-020
(3.1403E-020)

(5.5127E-022)

1.0056E-022

1.3900E-081
(1.2772E-080)

58.3417
(133.7896)

40.6746
(103.9401)

9.5785E-08
(5.7832E-07)

20

1500

2.9396E-011
(1.8370E-010)

(1.9818E-017)

3.4132E-018

3.1139E-124
(2.6196E-123)

104.9516
(162.9876)

99.4901
(186.9198)

2.9085E-07
(8.6492E-06)

30

2000

4.6804E-008
(1.3386E-007)

(5.0275E-020)

5.0619E-021

2.9522E-156
(2.9520E-155)

151.5238
(239.0893)

104.9869
(151.4036)

2.0347E-05
(7.6421E-04)

40

10

1000

2.2365E-024
(1.3369E-023)

(1.0608E-026)

1.3691E-027

3.1786E-084
(3.1719E-083)

30.80349
(114.8610)

15.6310
(38.1135)

3.7120E08
(8.8402E-07)

20

1500

8.1334E-015
(2.5881E-014)

(2.9840E-027)

2.9916E-028

2.2798E-119
(1.9630E-118)

81.5949
(141.4203)

181244
(60.5719)

6.8410E-07
(6.0376E-06)

30

2000

8.0544E-011
(1.3452E-010)

(2.4924E-033)

5.4840E-034

5.5811E-129
(2.3349E-128)

132.6704
(204.0919)

112.7430
(13.9928)

3.7810E-05
(1.9304E-04)

80

10

1000

1.5394E-028
(4.8125E-028)

(1.0748E-029)

1.5496E-030

9.7470E-081
(9.7469E-080)

20.5744
(43.8337)

13.9724
(34.8846)

1.8522E-08
(4.3964E-07)

20

1500

5.1700E-018
(1.4221E-017)

(1.9487E-025)

2.3584E-026

5.6513E-120
(5.6513E-119)

65.7612
(105.0775)

52.7690
(92.4566)

6.9654E-07
(3.0942E-06)

30

2000

T.4817E-013
(2.9377E-013)

(2.2468E-030)

2.2470E-031

1.1080E-162
(1.1113E-161)

86.87974
(123.5531)

69.8944
(92.4215)

3.8413E-05
(7.7475E-04)

TABLE 4. Comparison between Std. PSO, PSO-Scout and SBPSO for the
multimodal functions: Griewank and Rastrigin

. Griewank (fs3 Rastrigin (f
Part | Dim | Tter o555 PSO—Sco(ut) SBPSO | Std, PSO PSO—Sccht) SBPSO
o 1000|0072 0.0216 0 15782 0.0514 0
(0.0516) | (0.0456) 0 | @1132) | (0.6391) 0)
20 | 30 V1509 00331 | Z2075E-04 | 0 | 228061 | 0.0475 0
(0.0336) | (5.1736E-03)| (0) | (10.0912) | (0.3913) 0)
w0 |2000| 00146 | ZA458E-01 | 0 | 49.7192 |  0.0253 0
(0.0171) | (1.4592E-03)| (0) | (13.7956) | (0.1905) 0)
0 1000 | 0.08% 0.0192 0 3.0224 0.2854 0
(0.0438) |  (0.0396) (0) | (1.5118) | (0.4404) 0)
0 | 20 [1s00] 00206 | 79024E-01 | 0 | 16,1082 | 8.7266E-04 | 0
(0.0201) | (3.7688E-03)| (0) | (1.5722) |(8.7266E-03)| (0)
w0 |2000| 00392 | T7253E-01 | 0 | 386344 | 95142604 | 0
(0.1690) | (1.2263E-03)| (0) | (2.2039) | (9.5142E-03)| (0)
o L1000 00772 0.0188 0 5.9854 01141 0
(0.0396) | (0.0339) 0) | (0.4780) | (0.3123) 0)
w0 | 20 [1sgg| 00357 | B7898E-01 | 0 | 123630 | 35527604 | 0
(0.0325) | (L4178E-03)| (0) | (2.2804) | (6.6714E-03 | (0)
w0 |2000| 00127 | LOI29E-0 | 0 | 31574 | TGII5E04 | 0
(0.0133) | (9.8582E-03)| (0) | (6.2924) |(3.2228E-03)| (0)

The numerical results presented in Table 6 show that SBPSO outperforms other variants
of the Standard PSO when evaluated on benchmark functions presented in Subsection
4.1. In the evaluated unimodal functions, the algorithm obtains good solutions with high
accuracy. The algorithm also shows a good performance for functions with multiple local
minima.

Spherical function is used to test the ability of the SBPSO for local searches. Rosenbrock
is widely used to test the ability of the algorithms in local and global searches. Its global
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TABLE 5. Results of the Wilcoxon Test with significance level 0.05

p-Value (Std. PSO x SBPSO) p-Value (PSO-Scout x SBPSO)

Bit Iz f3 Ja 1 f2 f3 fa

10 | 1000 | 1.5777E-30 | 1.1453E-21 | 1.5777E-30 | 1.4551E-10 | 1.5777E-30 | 1.6713E-17 | 1.0444E-17 | 3.6379E-06
20 20 | 1500 | 1.5777E-30 | 3.9312E-20 | 1.5777E-30 | 1.5777E-30 | 1.5777E-30 | 1.0622E-07 | 5.6843E-15 | 3.3881E-21
30 | 2000 | 1.5777E-30 | 9.3528E-18 | 1.5777E-30 | 1.5777E-30 | 1.5777E-30 | 5.8320E-15 | 7.4505E-13 | 2.5849E-23
10 | 1000 | 1.5777E-30 | 2.3377E-19 | 1.5777E-30 | 1.9073E-12 | 1.5777E-30 | 5.8344E-15 | 5.2939E-23 | 6.1035E-06
40 20 | 1500 | 1.5777E-30 | 9.2688E-17 | 6.3108E-30 | 6.7762E-21 | 1.5777TE-30 | 9.5982E-14 | 5.8207E-11 | 9.5367E-07
30 | 2000 | 1.5777E-30 | 1.5949E-16 | 1.5777E-30 | 1.5777E-30 | 1.5777E-30 | 3.2755E-17 | 1.4901E-08 | 2.2204E-16
10 | 1000 | 1.5777E-30 | 1.1296E-19 | 1.5777E-30 | 4.8828E-10 | 1.5777E-30 | 4.4341E-16 | 6.6174E-24 | 3.1250E-06
80 20 | 1500 | 1.5777E-30 | 6.5128E-18 | 4.0389E-28 | 1.7763E-12 | 1.5777E-30 | 1.6376E-15 | 7.4505E-09 | 1.4210E-06
30 |2000 | 1.5777E-30 | 7.3438E-22 | 1.5777E-30 | 1.5777E-30 | 1.5777E-30 | 1.3199E-17 | 1.9073E-06 | 2.7755E-17

Part | Dim | Iter

minimum is located in a parabolic valley in a region of difficult convergence. Griewank
and Rastrigin are employed to test the ability of the algorithm to perform global searches.

5. Conclusion. This work presented a PSO variant called Serendipity-Based Particle
Swarm Optimization to delay premature convergence in typical metaheuristic optimiza-
tion problems, particularly considering the PSO methods. The algorithm prototype used
an approach that considers two dimensions for the concept of serendipity: chance and
sagacity. Chance dimension was implemented with the use of scout particles to enhance
the exploration within the search space. Sagacity dimension was implemented by the use
of a machine learning technique known as classification.

After the experimentation, the results were promising and showed that SBPSO out-
performed the Standard PSO and the PSO-Scout variant. Two criteria were analyzed
in the comparisons: convergence and stagnation. In convergence criteria, the algorithm
prototype found global optimum solutions before the other algorithms on Griewank and
Rastrigin functions. For Spherical and Rosenbrock functions, none of the algorithms
found optimal solutions, but the SBPSO found a better local optimum than the other
ones. When the stagnation criteria was evaluated for Spherical function, the proposed
algorithm delayed the stagnation in 31% of the number of iterations when compared with
Standard PSO and 10% in comparison with PSO-Scout, approximately. For Rosenbrock
function, it delayed in 50% and 15% in relation to Standard PSO and PSO-Scout, respec-
tively. For Griewank function, SBPSO delayed the stagnation in 40% when compared
with Standard PSO and 14.5% in comparison with PSO-Scout, respectively. For Rast-
rigin function, it delayed in 50% and 21% in relation to Standard PSO and PSO-Scout,
respectively.

The experiments were also performed to compare SBPSO with some studies in the
literature, considering the same size of population (20 particles) and the same number
of variables and iterations. In all experiments, SBPSO also showed a better convergence
behavior, outperforming the Standard PSO and some variants regarding the solution
quality, the ability to find global optimum, the solutions stability and the ability to
restart the movement of the swarm after stagnation has been detected.

In general, the results were promising for the context of metaheuristic algorithms, since
the premature convergence was really delayed in most of the experiments. However, it
was observed that the prototype may need some adjustments to improve its run time,
since there is an increase of time in the use of SBPSO.

Future research may investigate the viability of adapting and implementing other strate-
gies for serendipity. One of them would be an approach based on “Anomalies and excep-
tions”, since it considers an important feature called dissimilarity that could be used to
guide the movement of the scout particles in searching of the opposite direction of the
swarm particles. This feature is an adaptation of the concept of similarity and could be
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combined with the “blind luck” strategy to improve the exploratory behavior of the scout
particles. It would also be interesting to evaluate the performance and the run time of
the algorithm for a large number of inspection points.
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