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ABSTRACT. In this paper we study the fuzzy adaptive function projective combination
synchronization of a class of fractional-order chaotic and hyperchaotic systems. Based on
T-S fuzzy model, we reconstruct the considered three fractioned-order chaotic and hyper-
chaotic systems into T-S fuzzy systems. Based on the stability theory of fractional-order
systems and tracking control, we propose a fuzzy adaptive function projective combination
controller for the synchronization of two fractional-order drive and one fractional-order
response systems. Finally, we obtain stability criteria for the error dynamic systems.
We present numerical simulation results to illustrate the effectiveness of the developed
synchronization control scheme for the three fractional-order chaotic and hyperchaotic
systems in the presence of parameter uncertainty and external disturbances.
Keywords: Function projective combination synchronization, Adaptive control, Frac-
tional-order chaotic systems, Hyperchaotic systems, T-S fuzzy model

1. Introduction. Since Pecora and Carroll [1] introduced a method to synchronize two
identical chaotic systems with different initial conditions, chaos synchronization has re-
ceived considerable attention among scientists due to its importance in many applications
such as secure communication, chemical systems, biological systems, and human heartbeat
regulation. Since then, a variety of chaotic synchronization methods have been developed,
which include adaptive control [2], nonlinear control [3], finite-time synchronization [4],
sliding mode control [5], neural network-based synchronization [6], and recurrent hierar-
chical type-2 fuzzy neural networks-based synchronization [7]. For integer-order chaotic
systems, projective synchronization was first reported by Mainieri and Rehacek [8] and
then developed by many authors [9,10]. Later, a new synchronization method called mod-
ified projective synchronization was proposed [11], and the concept of function projective
synchronization was introduced [12,13]. Du et al. [14] discussed a new type of synchroniza-
tion, called modified function projective synchronization. Combining the adaptive theory,
an adaptive function projective synchronization for unified chaotic systems is investigated
in [15].

However, in the above and many other references, results are obtained based on tradi-
tional integer-order chaotic systems. Since fractional-order calculus provides more accu-
rate models of systems than integer-order calculus does, recently, synchronization control
schemes for fractional-order chaotic systems have been proposed, see active control [16],
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active sliding mode control [17], adaptive-impulsive control [18], fuzzy adaptive control
[19], generalized projective synchronization [20] and the references therein. Furthermore,
a projective synchronization based on sliding mode control was discussed in [21] for frac-
tional order chaotic systems, and later, a modified projective synchronization for fractional
order hyperchaoric systems was proposed in [22]. Function projective synchronization
scheme was investigated in [23], and a modified function projective synchronization for a
class of partial linear fractional-order chaotic system was studied in [24]. In recent years
in control theory, adaptive control has become an area of several investigations. During
the past two decades, significant progress on adaptive control for various system has been
witnessed. Especially, for fractional-order systems, several results have been obtained
[25,26] and an adaptive function projective synchronization for different fractional-order
chaotic systems was reported in [27,28].

Actually, Takagi-Sugeno (T-S) fuzzy systems which can provide a method of using lo-
cal linear systems combined with fuzzy IF-THEN rules to achieve nonlinearities has been
widely studied by many authors in the past decades, in fact a great number of results
on the stability analysis and controller design problem for integer-order T-S fuzzy sys-
tems have been reported and various approaches have been proposed in [29-31]. While
for fractional-order T-S fuzzy systems, only a few papers studied the stability analysis
and control of it. In [32,33], the stability and stabilization problems were addressed for
fractional-order systems in terms of a T-S fuzzy model, sufficient conditions of asymp-
totic stability for the fractional-order uncertain T-S fuzzy model are given and a state
feedback controller is designed to asymptotically stabilize the model. Based on the the-
ory of fractional-order interval system, fractional-order T-S fuzzy model is applied to a
wide class of fractional-order chaotic systems with uncertain parameters, and the state
feedback controller is developed for fractional-order chaotic systems based on T-S fuzzy
systems in [34]. However, the control and/or synchronization problem for fractional-order
chaotic systems based on T-S fuzzy model still has room for the deeper research inves-
tigation. To the best of our knowledge, there are few results on the adaptive function
projective combination synchronization for fractional-order chaotic systems based on T-S
fuzzy model.

Inspired by the above discussions, based on the T-S fuzzy modelling theory, we recon-
struct the chaotic system to T-S fuzzy model, and then develop a new fuzzy adaptive
function projective combination synchronization scheme for three fractional-order chaotic
systems and three fractional-order hyperchaotic systems with uncertain parameters and
external disturbances. The new scheme has the advantages of function projection syn-
chronization and combination synchronization. To illustrate the effectiveness of the given
synchronization control method, modified fractional-order financial chaotic systems and
modified fractional-order hyperchaotic systems are analyzed by using the proposed syn-
chronization control scheme.

The organization of this paper is as follows. In Section 2, some fundamentals of frac-
tional calculus are briefly reviewed. Section 3 presents the fuzzy adaptive function pro-
jective combination synchronization scheme for fractional-order chaotic systems, and a
stability criterion for fractional-order chaotic systems is introduced. Then the proposed
synchronization scheme is applied to synchronizing three fractional-order hyperchaotic
systems in Section 4. Numerical simulations are carried out in Section 5, and the conclu-
sions are finally drawn in Section 6.

2. Preliminaties. Fractional-order integrations and differentiations are generalizations
of integrations and differentiations of integer-order. There are three commonly used defini-
tions of fractional-order derivatives, namely Grunwald-Letnikov (GL), Riemann-Liouville,
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and Caputo. Among these, the GL derivative provides the most direct numerical methods
to solve fractional differential equations [35]. For this reason, we define our problem below
in terms of GL fractional derivative. This derivative of a function f(¢) of order ¢, ¢ > 0
is given by

k
WwDIf(8) = W7y W f(t = jh) (1)
=0
where to and ¢ are the initial and current times, h is the sampling time, k = = is the
integer part of =2, and
WP = (~1)) ( ) j=0,1,2,...
) - (2)
( q ) _qlg=1)---(g—j+1)
J 4!

Based on the above GL definition for fractional-order derivative, we give the following
synchronization scheme for fractional-order chaotic and hyperchaotic systems.

3. Fuzzy Adaptive Function Projective Combination Synchronization of Three
Fractional-Order Chaotic Systems. To present the synchronization scheme in detail,
first we give the description of the systems and the definition of function projective com-
bination synchronization.

3.1. Problem formulation. Adaptive control has the characteristics of automatic adap-
tation to the uncertainty of the system. Thus, adaptive stability theory can ensure the
stability of the system in the case of unknown system parameters. For the integer-
order system, this theory has been continuously improved. However, its application in
fractional-order nonlinear differential systems is not well established, and the subject is
still being investigated. In this section, the scheme of adaptive function projective com-
bination synchronization between two drive systems and one response system will be
considered. These systems are described as follows.
Drive systems:
D%y = x5 + (x5 — a)my
D%y =1 — bxy — 2% (3)
D%y = —x1 — cx3
and
D =y3 + (y2 — @)y
D%y =1 — by, — y} (4)
D%y = —y1 — cys
Response system:
D% =23+ (20 — a)z
D%y =1—bzy — 2} (5)
D%z = —21 — cz3
where © = (21,72, 23)T and y = (y1,y2, y3)T are the state variables of the drive systems
(3) and (4), 2 = (21, 20, z3)7 is the state variables of the response system (5), and a, b, ¢
are constants. Systems (3), (4) and (5) exhibit chaotic behavior when we choose a = 1,
b=0.1,¢c=1and a = 0.95, and for other parameters if chosen appropriately, systems
(3), (4) and (5) will also exhibit chaotic behavior.
Now, we give a definition of function projective combination synchronization.
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Definition 3.1. For the three systems, if there exist three matrices Y(t), ¥ (t),C(t) €
R3¥3 C(t) # 0, the following inequality holds

lim [C(0)2(2) — Y(B)a(t) — V(e (D) = 0 ©)
where ||-|| represents the matriz norm, and then the two drive systems are said to achieve

function projective combination synchronization with the response system.

Define the synchronization errors as

e(t) = C(t)z(t) = T()x(t) — W(t)y(t) (7)

For the convenience of the ensuing discussions, we assume that C(t) = I, where [ € R**3
is an identify matrix. Hence, we obtain

e(t) = 2(t) = T()x(t) — ¥(t)y(?) (8)
where matrices Y(t), ¥(t), C(t) € R**3 are called the scaling function matrices.

Remark 3.1. If Y(t), ¥ (t),C(t) € R**® are constants, then the function projective com-
bination synchronization reduces to the combination synchronization.

Remark 3.2. If Y(t) = 0 and ¥(t) is constant or ¥(t) = 0 and Y(t) is constant, then the
function projective combination synchronization problem reduces to the modified projective
synchronization problem.

Remark 3.3. If Y(t) = U(t) = 0, the function projective combination synchronization
problem reduces to a chaos control problem.

Next, to design the fuzzy adaptive function projective combination synchronization
scheme, we reconstruct systems (3)-(5) into T-S fuzzy systems, which is suitable for the
synchronization controller design.

3.2. T-S fuzzy systems. Consider the following fractional order chaotic system

D%z (t) = f(x) (9)
We reconstruct it into a T-S fuzzy model based on the T-S fuzzy modelling theory as
follows:
Rule 2:
IF s;(t) is M;; (=1,2,...,p), then

D%x(t) = A;x(t)

where ¢ = 1,2,...,n, n is the number of IF-THEN rules, s,(t),...,s,(t) are the an-
tecedent variables, each M;; is a fuzzy set, and A; € R3*3 are constant matrices, z(t) =
[21(2) 2(t) 23(1)]"

Then, the overall fuzzy system is represented as

Dx(t) = {Z hi(t)Ai} (1) (10)

where h;(t) = %, wi(t) = TT_; M;;(s;(t)) and M;;(s;(t)) is the grade of membership
of s;(t) in M;;. Of course, h;(t) > 0 and > | h;(t) = 1.

Note that system (10) is equivalent to system (9). Therefore, suppose z1 € [My, M,],
for drive system (3), we can set rules as follows:
IF x(t) is My, Then D%*x(t) = Ajx(t) + K
IF x(t) is My, Then D%x(t) = Ayx(t) + K



FUZZY ADAPTIVE FUNCTION PROJECTIVE COMBINATION SYNCHRONIZATION 1321

where
A=\ —M; -b 0 , Ao = | =My —b 0 ,Kz[OlO]
—1 0 —c —1 0 —c

After reconstructing system (3) based on T-S fuzzy model, we obtain the overall fuzzy
system as
2

Dox(t) =Y hy(t) [A(t) + K] (11)
i=1
where
. To — M1 . M2 — X9
hl(t)_ MQ_MI, hQ(t)_ M2_M1

For drive system (4) and response system (5), using the same process, we obtain their
fuzzy systems as:
2

D%(t) = Zhi(t) [Aiy(t) + K] (12)
Doz(t) =Y hilt) [Az(t) + K]+ U = h(2(t) + U (13)

where U = [ Uy U Us ]T are control inputs.

Remark 3.4. We assume that the controller U(x,y, z) consists of two parts: U(x,y, z) =
w(z,y,2) + u(z,y, 2), where @(z,y,2) is a fuzzy controller and u(x,y,z) is an adaptive
function projective combination synchronization controller.

For response system (5), we define a compensation function G(x,y) as:

G(z,y) = D*(Az + By) — h(Az + By) (14)
based on Equation (14), we design
u(z,y,2) = G(z,y) +0(z,y, 2) (15)
where 0(z,y, 2) is a vector-value function which will be designed later.

Using Equations (13) and (14), we obtain

D%(t) = Y hi()[Az + K] =Y hi(t)[Ai(Az + By) + K]

+6(z,y, 2) + iz, y, 2) (16)

- Z hi()[Aie(t)] + 0(z, y, 2) + a(z, y, 2)
= Q(e(t)) + a(l', Y, Z)

where Q(e(t)) = 2?21 hi(t)[Aze(t)] + 0(x, y, 2).

Based on Equation (16), we transform the problem of the synchronization between two
drive systems with one response system into the following problem: find an adaptive con-
trol law u(x, y, z) and a vector-value function 0(x, y, z), so that system (16) asymptotically
converges to zero.
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3.3. Synchronization controller design. The adaptive function projective combina-
tion synchronization controller is designed as follows:

a(l‘, Y, Z) = _ke(t) (17)
where k = diag(ky, ko, k3) and the adaptive update law is given as
D%;(t) = Mes ()|, A >0, i=1,2,3 (18)

Lemma 3.1. [28]. For fractional-order system (16), assume Q(e(t)) is the nonlinear
vector-valued function satisfied local Lipschitz condition, then the following inequality holds

[Q2(e()]l = lI€2(e(?)) = QO < Lle(®]], 1>0 (19)
where e(t) = 0 is the equilibrium points of the system, that is, 2(0) = 0.

Theorem 3.1. For fractional-order error dynamic system (16), if we adopt the adaptive
controller (17), and the parametric update law (18), the following equation holds

0(z,y,2) = ®(z,y, 2)e(?) (20)

where ®(x,y, z) is a vector-valued function to be designed. Then, the synchronization
error dynamic system (16) is asymptotically stable.

Proof: Since 0(z,y, z) = ®(z,y, z)e(t), system (16) can be rewritten as

2

D%(t) = Z hi(t)[Aie(t)] + ®(x,y, 2)e(t) + (z, y, 2)

=1

=Q(e(t)) + a(zx,y, 2)

According to the update law (18), we get k; > 0 (i = 1,2, 3), then the following inequality
can be established

(21)

3

Y D™ (kiles(t)]) > 0 (22)

=1

We construct a Lyapunov function as

V= Z|ez |+ZD (i les(t) Z|(ki—k*)k*| (23)

where £* > max (ki, %) Using the definition of fractional derivative, we get

3
DV = DO‘Z|61 |+D°‘ZD (Ki le:(H)]) + D™D [(ki — k*)k*|

=1

=sgn” (e(t))De(t) + Z ki lei(t)| + ngn[(ki — k" )E*k*Dk;

=sgn’ (e(t))(Qe(t)) — ke(t)) + Z kilei(t)] — k° Z Alei(t)
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=sgn’ (e(t))(e(t))) — Xi;k lei()] + Xi;k lei(t)] = & 2;: Ales(t)]

=sgn’ (e(t))(e(t))) — &’ ;:’A Jei (V)]

<Ille(®)l - kz:,A lea(1)] (24)
Slglei(t)l - k*gAlei(t)l

= (=KX fe)

Since k* > max (ki, %), we obtain

3
DV < (I=kN)> Jes(t)] <0 (25)
i=1
Thus, the synchronization error dynamic system (16) is asymptotically stable. This com-
pletes the proof.
Next, we consider the extension of the proposed method to accomplish the fuzzy
adaptive function projective combination synchronization for three fractional-order hy-
perchaotic systems.

4. Fuzzy Adaptive Function Projective Combination Synchronization of Three
Fractional-Order Hyperchaotic Systems. The mathematical model of a three frac-
tional-order hyperchaotic systems is described as follows.
Drive system:
DafL’l =3+ (1‘2 - CL)l‘l + x4
D%y =1 — bxy — 22

D%xs = —x1 — cx3 (26)
D%xy = —0.05z1253 — nxy
and
D%y = y3 + (y2 — a)y1 + ya
Day2 =1~ by2 - y% (27)
D% = —y1 — cys
D%y = —0.05y1y3 — rya
Response system:
Do‘zl = z3+ (ZQ - 02)21 + 24
D%y =1—bz — 27
D%z3 = —21 — cz3 (28)
D%zy = —0.052123 — 124

where x = (21, 79, 23, 24)T and y = (y1, y2, y3, va)T are the state variables of drive systems
(26) and (27), z = (21, 29, 23, 24) T is the state variables of response system (28), and a,
b, ¢, r are constants. Systems (26)-(28) exhibit chaotic behaviors when a = 1, b = 0.1,
c=1,r=—-0.6.

To design the fuzzy adaptive function projective combination synchronization scheme,
we reconstruct systems (26)-(28) into T-S fuzzy systems. We obtain overall fuzzy system
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using methods similar to those in Section 3 based on T-S fuzzy model. The resulting
equations are
2

Dex(t) =Y hy(t) [A(t) + K] (29)
=1
2
Doy(t) = hi(t) [Aiy(t) + K] (30)
=1
2
Doz(t) =Y hi(t) [Aiz(t) + K] + U (31)
=1
where U = [ Uy Us Ug Uy ]T are control input, K =[0 1 0 0]”, and
—a —M1 1 1 —a —M1 1 1
| =My b 0 0 | =My b 0 0
A= 1 0 —c 0 |’ Ay = 1 0 —c 0
0 0 —0.05%xM, r 0 0 —0.05%xM, r

Based on systems (26)-(28), we get synchronization error dynamic system as follows:
2 2
D%(t) =Y hi(t)[Aiz + K] = hi(t)[Ai(Az + By) + K]
i=1 i=1

+0(z,y,2) + u(x,y, 2) (32)

- Z hi()[Ase(t)] + 0(z, y, 2) + a(z, y, 2)

= Q_(e(t)) + u(zx,y, 2)

where Q(e(t)) = Z?Zl hi(t)[Aze(t)] + 0(x,y, 2).
Using the same process as that in Section 3, the adaptive function projective combina-
tion synchronization controller is designed as follows:

where k = diag(k1, ko, k3, k4) and adaptive update law is given as
D%;(t) = Ae; ()], A>0,i=1,2,3,4 (34)

Then for error dynamic system (32), we have the following theorem.

Theorem 4.1. For fractional-order error dynamic system (32), if we use the adaptive
controller (33), and the parametric update law (34), the following equation holds:

0(z,y,2) = ©(z,y, 2)e(t) (35)
then, the synchronization error dynamic system (32) is asymptotically stable.

Proof: Using the same proof method in Theorem 3.1, we can derive Theorem 4.1
directly and easily. This completes the proof.

5. Simulation Results.

Example 5.1. Fuzzy adaptive function projective combination synchronization of three
fractional-order chaotic system.
To verify the effectiveness of the proposed methods, we choose Y (t), U(t) as follows:

T(t) = diag{n(t), 12(t), 1(t)}, ¥ (t) = diag{n.(t), m(t), n3(t)}.
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Case 1: When Y(t) and ¥(t) are constants, we select parameters as follows:

Yi(t) = 72(t) = 73(t) = 0.5, () = na(t) = ns(t) = 0.2

In our synchronization scheme, based on Equation (16), we choose 0(x,y, z) as

O(z,y,2) = P(z,y,2)e(t) = Z hiB;e(t)

where
—a M1 -1 —a M2 -1
Bl = M1 —b 0 ; BQ = M2 —b 0
1 0 —c 1 0 —c
Then we obtain ||Qe(t))|| <1 |le|| = max {|—2al|,|—20|,|—2¢|} ||e]|-
For simulation purpose, we take initial value as follows:

21(0) = —0.2, 25(0) = 0.2, 23(0) = —0.5,
1(0) = 0.5, 12(0) = 0.5, y3(0) = —0.5, (36)
2(0) =10, 2(0) =5, 23(0) = —10, M; = —20, My = 20

In practical applications, the system uncertainty and external disturbance are unavoidable.
Therefore, we add uncertainty and external disturbance into drive system (11), (12) and
response system (13). New drive systems and response system based on fuzzy model can
be described as follows:

2

D%z (t) = Z hi(t) [Aiz(t) + K] + Af(x) + da(t) (37)
Dy(t) = Z hi(t) [Aiy (1) + K]+ Af(y) + dy (1) (38)
D¥z(t) =Y hi(t) [Az(t) + K]+ Af(2) + do(t) + U (39)

where we assume

0.1sin(0.2¢) + 1.5 sin(0.52»)
Af(z) +d,(t) = 0.1sin(0.2¢) + 0.5sin(0.5x3)
0.1cos(0.2t) + 0.1sin(0.5z1)
0.3sin(2t) + 0.1 sin(0.5y3)
Af(y) +dy(t) = 0.5sin(t) + 0.1 cos(2ys) (40)
0.15cos(0.2¢) + 0.1 sin(yy2)
0.2sin(0.3t) + 0.2 sin(z; 23)
Af(z)+d,(t) = 0.1 cos(0.2t) + 0.1sin(0.5z23)
0.2sin(0.5¢) + 0.2 sin(z3)

Now, for the error system in (16), considering the above proposed uncertainty, distur-
bance and the initial values in (36), we obtain simulation results shown in Figures 1-3.
Figure 1 shows the phase trajectories of Equation (16) without control input. Figure 2
displays the synchronization error e(t) — 0 with t — oo. This implies that the syn-
chronization error dynamic system between two drive systems and one response system is
asymptotically stable. The control inputs u;(t), i = 1,2,3, are shown in Figure 3, which
shows that the proposed method is successful in synchronizing the three systems in the
presence of uncertainties and disturbances.
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FIGURE 1. Phase trajectories of Equation (16)
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FIGURE 3. Control inputs u;(t)

Case 2: When Y (t) and V(t) are time-varying, we select the parameters as:

() = 0.5+ 0.1sin(0.3t) [ m(t) = 0.3 + 0.2sin(0.1¢)
72(t) = 0.5 + 0.2 cos(0.5¢) 1m2(t) = 0.3 + 0.3 cos(0.5%)
v3(t) = 0.3 + 0.3 sin(¢) ns(t) = 0.3 4+ 0.3sin(t)

Considering the proposed system uncertainty and disturbance in (40), and the initial con-
ditions as in (36) for system (16), we get simulation results shown in Figure 4, which
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show that the proposed method is valid in synchronizing the three systems in presence of
the uncertainties and disturbances when the scaling function matrices are time-varying.
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------- method proposed in this paper
—method proposed in [28]

- |
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FIGURE 7. Synchronization error e3(t)

To show the advantages of our proposed method, for the above example of Case 1 with
the proposed uncertainty and disturbance in (40), we use the method proposed in [28] to
design the synchronization controller, and the synchronization errors are shown in Figures
5-7. From the simulation results, we obtain that in comparison with the method proposed
in [28], our proposed method has good control effect, and the errors which are under the
control of our proposed method have better performance.

Example 5.2. Fuzzy adaptive function projective combination synchronization of three
fractional-order hyperchaotic systems.

To verify the effectiveness of the proposed method for hyperchaotic systems, we choose
Y(t), U(t) as follows

Y(t) = diag{71(t), 72(t), (), 7a(t)},
U(t) = diag{m(t), m(t), n3(t), na(t)}-

Case 1: When Y(t) and VU(t) are constants, we select parameters as follows:

Y1 (t) = 72(t) = 13(t) = Ya(t) = 0.1
) =m3(t) =na(t) = 0.2

Adopting the same synchronization scheme, based on Equation (32), we choose 6(x,y, z)
as follows

O(x,y,2) = @(x,y,2)e(t) = Z hiB;e(t)

where
—a M1 1 1 —a Mg 1 1
=M b 0 0 =My b 0 0
Bi=1 _1 —c ol B2=| 1 o —c 0
0 0 0.05«xM; r 0 0 0.05xMy r

Then we obtain ||Qe(t))|| < - ||e]| = max {|-2a|,|—2b|,|—2¢|,0} ||e||. Besides, consid-
ering the uncertainty and disturbance are unavoidable in practical application, following
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Ezxample 5.1, we assume

[ 0.1sin(0.2¢) + 1.5sin(0.27,
0.1sin(0.2¢) 4+ 0.5sin(0.5z3
0.1cos(0.2t) + 0.1 sin(0.224
0.1cos(0.2t) + 0.1 sin(0.524

[ 0.3sin(2t) + 0.1sin(0.5¢2)
0.5sin(t) + 0.1 cos(2ys)

Af(x) +d*(t) =

~— N S

Y(t) =
AfW) + (1) =9 (15c08(0.2¢) + 0.1 sin(y1y5) (41)
[ 0.2c0s(0.5t) + 0.2 cos(y1y4)
[ 0.25in(0.3t) + 0.2 sin(2,23)
pin 0.1 cos(0.2t) + 0.1sin(0.523)
A+ =1 026in(0.5¢) + 0.2sin(zs)
0.1cos(t) + 0.5sin(2224)
and set the initial values as
a=1,b6=03,¢c=1,r=-06, ag =y = a3 =as =0.95
21(0) = 0.2, 22(0) = 0.2, x3(0) = 0.2, 24(0) = —0.2; (42)

y1(0) = 0.5, y2(0) = 0.5, y3(0) = 0.5, y4(0) = —0.5;
21(0) =10, 2(0) = 5, 23(0) =5, 24(0) = —10, M; = —30, M, = 30

The simulation results for this case are shown in Figure 8, which displays the synchro-
nization error e(t) — 0 with t — oo. This implies that the synchronization error dynamic
system between two fractional-order hyperchaotic drive system and one fractional-order hy-
perchaotic response system is asymptotically stable. The control inputs u;(t), 1 =1,2,3,4,
are shown in Figure 9.

Case 2: When Y(t) and ¥(t) are time-varying, we select parameters as

71(t) = 0.2 + sin(0.2t) m(t) = 0.3+ 0.2sin(0.1¢)
Y2(t) = 0.2 + sin(0.5t) n2(t) = 0.3 4 0.5 cos(0.5t)
v3(t) = 0.1 + 0.3 cos(0.2¢) ns(t) = 0.3 4+ 0.1sin(0.2¢)
v4(t) = 0.1 + 0.3 cos(0.5t) n3(t) = 0.3 4 0.3 cos(0.5t)

Considering the uncertainty and disturbance in (41), the initial values in (42), we can
get the simulation results shown in Figure 10, which demonstrates that the proposed method
succeeds in achieving synchronization of the three fractional-order hperchaotic systems.

10 T T T T T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05
5 T T T T T T T T T
= 0F
@
5 | | [ | | | | [ |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
_ 5 T T T T T T T T T
=
-1
0 ! L | ! ! ! L |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5

e,t)
!

l l ! l
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 05
tls

FIGURE 8. Synchronization errors e;(t)
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2000
= ok
2 _zooo/ﬁ | | | | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
—_ ol T T T T T T T T T
T 500f .
-1000 | | | | | | | | |
0 0.05 0.1 0.15 02 0.25 0.3 0.35 04 0.45 05
200 T T T T T T T T T
= or
57 -200 —
400 ! 1 1 [ ! ! 1 ! [
0 0.05 0.1 0.15 02 0.25 0.3 0.35 04 0.45 0.5
_ 400 \ \ T T \ \ T \ \
= 200 —
= \M ! | | | | ! !
00 0.05 0.1 0.15 02 0.25 0.3 0.35 04 0.45 0.5
tis
FIGURE 9. Control inputs u;(t)
10 T T
= ot
1]
10 I [ I I I I I I !
0 0.01 0.02 0.03 0.04 0.05 0.08 0.07 0.08 0.09 0.1
10 T T T T T T T T T
= 0
@
10 ! ! ! ! 1 ! 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.08 0.1
__ 1 T T T T T T T T T
= 0F
@
10 I I I I ! I ! ! !
0 0.01 0.02 0.03 0.04 0.05 0.08 0.07 0.08 0.09 0.1
10 I 1 I I I I 1 I I
= 0F
o 10 i
20 1 [ 1 1 1 1 I 1 !
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
s

FIGURE 10. Synchronization errors e;(t)

6. Conclusions. In this paper, we studied a fuzzy adaptive function projective com-
bination synchronization control scheme for three fractional-order chaotic systems and
three fractional-order hyperchaotic systems in the presence of parameter uncertainties
and external disturbances. Based on T-S fuzzy model, the considered fractional-order
systems are reconstructed into T-S fuzzy systems, and then the stability criteria for fuzzy
adaptive function projective combination synchronization of fractional-order chaotic and
hyperchaotic systems are proposed. Finally, two examples are given to show the effective-
ness of the proposed synchronization control scheme.
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