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ABSTRACT. Multiple-valued logic is a promising choice for future computer technologies
which provides a set of advantages compared to binary circuits. We have developed an
adaptive genetic algorithm for ternary reversible circuits using Muthukrishnan-Stroud
gates. The method for chromosomes coding, as well as a reasonable choice of algorithm
parameters, allowed obtaining circuits for ternary arithmetic logic unit which are better
than other known methods in terms of quantum cost, delay time and amount of input
ancillary and output garbage quirits. On the basis of designed ternary full-adder, we have
synthesized reversible ternary parallel adder/subtractor which has better parameters over
the previously reported devices.
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1. Introduction. Significant development of new methods for quantum computing and
quantum information has led to the emergence of new quantum devices and circuits for
their implementation, both theoretical and experimental [1-4]. Various physical mech-
anisms have been proposed for their implementation that allowed the development of
quantum network to check fundamentally new quantum algorithms [4]. These circuits (or
gates) have a number of features that are due to their reversibility, i.e., bijective map-
ping of the input states onto the set of output states. In such circuits the power is not
dissipated [5] and gates can be described by the permutation matrices. In addition, the
quantum mechanical nature of such systems also requires that circuits are acyclic and
gates fan out equals unity. Reversible computing is a good alternative of classical com-
puting when a logical operation does not cause information loss. Reversible circuits are
used already in low power CMOS devices, quantum and optical computing, digital signal
processing and cryptography [6]. Most approaches for the synthesis of such reversible
circuits have been based so far on the binary representation of the information and work
only for small circuits. However, the recent progress in the study of reversible networks
ternary logic shows a number of advantages [7-12]. Therefore, the synthesis of reversible
ternary logic devices is one of the challenging problems of modern computer circuitry in
recent years. It includes the cascades of ternary reversible gates, such as Feynman and
Toffoli ones, used to implement ternary logic functions [12]. Performance of ternary logic
for quantum /reversible computing with the use of liquid ion-trap quantum technology
[13] led to the proposal of the Muthukrishnan and Stroud (M-S) gates. The following
section provides a brief description of these gates, as well as the one-input permutative
ternary gates that are the complete basis for the synthesis of the combinational reversible
circuits.
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The problem of reversible arithmetic logic unit (ALU) design in multiple-valued logic
today is not solved. ALU is a major part of the CPU and is designed to perform some
arithmetic and logic operations. The design of the ALU used arithmetic and logic de-
vices and multiplexers not yet been developed for reversible ternary logic. The paper is
an attempt to synthesize these devices, as well as the overall structure of the proposed
construction of a reversible ternary ALU. In contrast to the binary logic, CAD tools for
the automated synthesis of ternary logic devices have not yet been created. To solve the
problems associated with an unidentified structure, many researchers lately increasingly
use the soft computing methods [11,15-19]. Among them there are genetic algorithms
(GAs), which are based on the principles of natural selection and evolution [20,21]. In
this paper we use an adaptive genetic algorithm to find the optimal design of the re-
versible devices. This algorithm gives a possibility to implement main ternary arithmetic
and logic operations on the basis of one- and two-qutrits M-S gates. Since these oper-
ations are the main components of ALU, their quantum cost should be minimal. The
quantum cost of a ternary reversible circuit is defined as the number of primitive gates
required in its implementation. The multiple-valued reversible logic circuit with minimal
number of garbage outputs, minimal quantum cost, minimal number of ancillary qutrits
and time delay is considered as an efficient design. The presented adaptive algorithm
extends the genetic algorithm described in [19]. This algorithm is tested for the synthesis
of the ternary reversible full adder.

The structure of the paper is as follows: Section 2 explains the ternary Galois field
and basic ternary reversible gates; Section 3 presents the details of the used adaptive
genetic algorithm; Section 4 shows the proposed design of the ternary adder and parallel
adder/subtractor; Section 5 describes the design of ternary logic unit. The main structure
of reversible ternary ALU as well as 3 x 1 ternary multiplexer are shown in Section 6;
Section 7 provides the conclusions.

2. Ternary Galois Field and Basic Gates. The unit of information in ternary quan-
tum logic is quantum ternary unit (qutrit). Qutrit states can be described with the
ternary Galois field GF (3) which is an algebraic structure on the set {0, 1,2} with two
binary operations — addition and multiplication by modulo 3. These operations satisfy
the following axioms: commutative and associative laws for addition and multiplication.
Besides, multiplication is distributive over addition. Quantum gates manipulate quantum
information. The output quantum state of the gate is determined by multiplying the in-
put qutrit state to the unitary 3 x 3 matrix which specifies a 1-qutrit ternary gate. Qutrit
states in quantum ternary logic can be presented as

1 0 0
O=10]), = 1], 2=]0]. (1)
0 0 1

In this article we use 1-qutrit gates that match permutative unitary 3 x 3 matrices as
shown in Table 1. The elements Z3(+1) and Z3(+2) shift the input state of qutrit by 1
and 2, respectively. The elements Z3(01), Z3(02), and Z3(12) permutate the corresponding
input states (|0) and |1); |0) and |2); |1) and |2), respectively) of single qutrit. We assign
the gate costs of these 1-qutrit gates to be 1, using the reasoning similar to [3,8,11]. The
1-qutrit gate B is said to be the inverse gate of a 1-qutrit gate A if gates A and B in
cascade have the resultant effect that the input signal to gate A is restored at the output
of gate B. In particular, for the gates Z3(+1), Z3(+2), Z5(01), Z3(02), and Z3(12) the
inverse elements are Z3(+42), Z3(+1), Z3(01), Z5(02), and Z3(12), respectively.
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TABLE 1. Ternary permutative transforms and its symbolic representation

1-qutrite 1-qutrite 2-qutrite
gates transformations M-S gates
[0 0 1]
—= zZeun=|100
|01 0 | H—r—h
(01 0] x,—Zr
Zo(+2)= |0 0 1
|10 0 |
01 0] | =N
—v— zon=|100 YF{XZ, if X, =0,1
00 1 Z, ifX; =2
(0 0 1]
—I02 Z02)= 1|0 1 0 Z € {+1,+2,01,02,12}
|10 0
(1.0 0]
2 Z12)=]0 0 1
|01 0

Important gates for designing ternary quantum circuits are the ternary M-S gates. The
diagram of a ternary M-S gate is shown in Table 1. Here, input X; is controlling, and
input X, is controlled. The output Y; is equal to the input X;. If X; = 2, the other
output Y5 is the Z-transform of the input X, otherwise Y5 = X5. The M-S gates are
similar to the controlled 2-qutrit De Vos gates [3] and their extensions used by Miller et
al. [7,9], namely the CC1, CN, CC2, CD, and CFE gates. The only exception is that in the
M-S gates the controlling value is 2 and in the De Vos gates (including the extensions)
the controlling value is 1. In [7,9], the controlled 2-qutrit gates CC1, CN, and CC2 are
considered as elementary gates and their cost is assumed to be 1. Using similar reasoning,
we assign the gate cost of M-S gates to be one.

3. Proposed Adaptive Genetic Algorithm. An improved approach to synthesis of
reversible/quantum ternary devices which is based on adaptive genetic algorithm has
been used. Such approach to reversible logic synthesis is designed to take into account
several additional conditions, namely, forbidding the fan-out (no-cloning theorem [4]),
and no feedback. We consider that the desired circuit can be represented by a sequence
of described above controlled and uncontrolled logic primitives placed in parallel and/or
in series. We placed not more than one gate in each column (Figure 1). Information
inputs (controlling and controlled) are placed in the upper part of the network while
the constant ternary signals (ancillaries) are placed at the bottom. We have chosen the
following optimization parameters: a) minimal amount of logic errors on output, according
to the truth table of synthesized ternary reversible device; b) minimal amount of constant
(ancillary) inputs; ¢) minimal amount of circuit gates; d) minimal circuit delay time.
Genetic algorithm was used to automatically search for a sequence of primitive connections
(chromosome) that satisfy a given truth table and imposed optimization conditions. The
parameter space contains almost all possible chromosomes. Chromosome is a scheme of
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FiGURE 1. Realization of ternary reversible half-adder with one ancilla
input (0)

the device, and is encoded as the ordered 3-tuples of genes, which correspond to the gate
of the column. The gene contains the following information: the number of controlling
lines, the line number of a gate location, the type of a gate (Figure 1, bottom row). In
Figure 1, an example of chromosome coding is presented.
Fitness-function F' used in this paper consists of three fitness components as a weighted
sum:
F:k1F1+k2F2+k3F3. (2)

F) — fitness component that minimizes the number of logical errors (Error) of output
signals according to the truth table of the synthesized device:

Fy = (Error+1)"", (3)

F; — fitness component that minimizes the number of gates dG not 0-type of the circuit,
if the length of the chromosome, i.e., the number of genes in the chromosome, is dL:

dL — dG
Fy=—71— 4
2 dL ) ( )
F;3 — fitness component that minimizes the number of controlled M-S gates:
dG M
F3=—+- 5
3 dG ) ( )

where dGM — number of 2-qutrit gates; ky, ko, k3 — weights coefficients. To find the
correct, logic circuits, the coefficient k; is always taken as 1. Other coefficients of fitness
function are assumed to be less than one. We have used adaptive genetic algorithm where
k; changes dynamically as [14]:

ki(itr + 1) = k;(itr) (1 . F}(itr)) (6)

where k;(itr) is the weight of the i-th fitness component (i = 2, 3) in the itr generation.

We chose as an operator selection a simple panmixis, i.e., random mating. The simplest
selection operator assigning each member of the population a random integer number from
the range [1,n] where n is the amount of members in the population. These numbers
represent the individuals that will participate in the crossover. Some members of the
population will participate in reproduction with many other individuals. A panmictic
population is one where all individuals are potential partners. This assumes that there
are no mating restrictions, neither genetic nor behavioral, upon the population, and that
therefore all recombination is possible. Despite the simplicity, this algorithm is universal
for many classes of problems. The proposed GA uses one-point crossover operation or
uniform crossover with probability 0.5. In this way, the offspring is ensured to have
alternate short lines of individuals-parents. The mutation occurs in each locus with a
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certain probability p,, and means random change of gene. When reaching a given number
of stagnation GA re-runs with a new seed. A feature of the approach is to use PostGA [19],
i.e., a process of minimizing genetic algorithm circuits obtained by replacing certain parts
of chromosomes on their equivalents, shorter in length. The algorithm terminates when
the specified number of working cycles is done or if chromosomes with a fitness-function
equal to or greater than one is obtained.

4. Design of Ternary Arithmetic Unit. The major components of ternary reversible
ALU and oracles are adders and subtractors [7]. They can also be used for building
multipliers and dividers. The main problem in design of reversible adder and subtractor
is that the target functions are not bijective. It is important to find the proper reversible
presentation of target functions with the minimum of extra signals (ancillaries inputs).
We used the proposed adaptive genetic algorithm for realization of two basic reversible
arithmetic operations — addition and subtraction of ternary numbers.

4.1. Ternary full-adder circuit. For the ternary full-adder the inputs are A, B and C;
(input carry). The outputs S, (sum) and C,, (output carry) can be expressed as below:

Sap =sum(A, B,C;) = A® B C,, (7)
Cap = carry(4, B, C;) = int {%] : (8)

Here we have introduced the following notations: sum(A, B, C) — the sum modulo three
of input ternary terms A, B and input carry C; the carry(A, B, C') — output carry; int(A)
— the integer part of A. Realization of ternary reversible full-adder with one ancilla input
(0) is shown in Figure 2. The obtained circuit contains 13 primitives, corresponding to
the quantum cost of realization of 13. The delay time of the obtained full adder, as can
be seen from Figure 2, equals 12¢y, where ¢, is the single gate delay time. For instance,
the cost of ternary full adder developed by Zobov and Pekhterev [25] is 18 and requires
one ancilla input. Proposed full-adder circuit coincides with the circuit obtained in [19],
but gives the result in twice less time at the same conditions. This task can be seen as a
test of the use of adaptive genetic algorithm proposed in the previous chapter.

In Table 2, it can be seen a comparison of the experimental results of this work with
some other works on the basic parameters — the number of ancilla inputs, delay time and
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FIGURE 2. Realization of ternary reversible full-adder with one ancilla in-
put (0) (Population size — 500, p. = 0.3, p,,, = 0.02)

TABLE 2. Comparative results of different reversible ternary full adder circuits

Ancilla inputs |Delay time, tg | Quantum cost

M. H. A. Khan & M. Perkowski [26] 2 42 50
A. T. Monfared & M. Haghparast [28] 1 30 34
V. E. Zobov & D. L. Pekhterev [25] 1 18 18

This work 1 12 13
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the quantum cost of the full adder. Furthermore, it should be noted that the best results
of other authors [25,26,28], usually derived heuristically. Thus, we can conclude that we
have received ternary circuit of reversible full adder with better performance.

4.2. Control ternary adder/subtractor circuit. The synthesized above full-adder
circuit can be used to build a control ternary reversible adder/subtractor. The idea of
using the adder to perform a subtraction of numbers A — B is implemented as A + B’ +
1, where B’ is 2’s complement ternary digit. 2’s complement just gets in the circuit, if
applied to the digit of permutation 02 (Table 2). Control one-digit adder/subtractor is
shown in Figure 3, where the controlling block is marked by dashed line. According to the
above algorithm, if the control signal A/S = 0 or 1, the input signal B does not change the
output control unit and performs the operation of addition. When the input of controlling
unit A/S = 2, then subtrahend digit B will be converted into their 2’s complement as
can be seen in Figure 3. The value of the input signal C}, is equal to 1 and after the
addition of 2’s complement of B giving 3’s complement of B. Thus, it is possible to
perform a subtraction operation using the previously obtained full adder circuit (Figure
2). In Figure 3 Cy,(B;,) — input carry (borrow), Coyi(Boy:) — output carry (borrow), S(D)
— sum (difference). The main parameters of realized control ternary reversible one-digit
adder/subtractor are allowed: quantum cost — 15, ancilla input — 1, garbage outputs — 3,
delay time — 13¢y. Synthesized circuit of the control ternary one-digit adder/subtractor
has significantly better parameters in comparison with similar circuits [26,28] (see Table
3).

NS g J AIS
Ciu(B;,) CinlByp)
A ] S(D)

B B(B')

0 Cout{BOllt)
FIGURE 3. Realization of ternary control (A/S) one-digit adder/subtractor
with one ancilla input (0)

TABLE 3. Comparison of different reversible ternary parallel one-digit
adder/subtractor circuits
Ancilla inputs | Delay time, ¢ty | Total cost
M. H. A. Khan & M. Perkowski [26] 3 50 52
A. T. Monfared & M. Haghparast [28] 2 35 36
This work 1 13 15

5. Design of Ternary Logic Unit. Basic logical operations in classical design are
AND, OR, NOT and XOR, that are irreversible. The reversible ternary equivalents of
these logical operations are TAND: (A, B, 0 — A, B, MIN(AB)), ternary TOR: (A, B,
0 — A, B, MAX(AB)), standard ternary inversion STIL: (0, 1, 2 — 2, 1, 0), and ternary
TXOR: (A, B — A, A® B). From the truth table (Table 4), the standard ternary
inversion may obviously be represented by a permutational gate Z3(02) (Figure 4).

For the synthesis of other logical operations, the developed adaptive genetic algorithm
has been used. As can be seen from Figure 5, for implementation of TXOR operation
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TABLE 4. Truth table of basic ternary logic operations

STI (A)

TAND (4, B)

TOR

)| TXOR (4, B)
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FIGURE 4. Realization of ternary standard inverter (STI)
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FIGURE 5. Reversible implementation of ternary TXOR(A, B)
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FIGURE 6. Reversible implementation of ternary TOR(A, B) with one an-

cilla input (0)
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FIGURE 7. Reversible implementation of ternary TAND(A, B) with one
ancilla input (0)

constant lines are not required, while reversible logical operations TOR and TAND led to
the use of one input ancilla signal (0) (Figures 6 and 7). Our reversible implementation
of ternary TXOR operation is entirely consistent with the previously obtained [27].

The synthesized in MS-gates base TOR and TAND circuits have a quantum cost equal
to 9, the delay time — 9%y, ancilla inputs — 1, garbage outputs — 2. These logic circuits
have been obtained for the first time, so there is no way to compare them with others.
The resulting circuits of the ternary logic operations can be easily modified for TXNOR,
TNOR and TNAND operations, which increase the applicability and flexibility of pro-
posed ternary ALU.



1530 V. DEIBUK

Function Selector

r— - — — — — " A
A zUM.’I;JBIFF | = ‘ 5
arl
B TY/BOITOW ! = ‘
5 [STHANSTIB) || % |
CinBin) | % i
in{Bin g TOR ! |
< - % \
g TAND |2 2 | R
1= | -— - |
5 TXOR - 5|
£ L= ]
5 TNOR L |
i = =
TNAND | | 2 |
TXNOR | | © ‘
i |
‘ - 4
AIS CJ CI

F1cUrE 8. Block diagram of ternary reversible ALU

6. Reversible Ternary Arithmetic Logic Unit. Arithmetic logic unit (ALU) is the
main part of the central processor unit (CPU) and is intended for one of a few of arith-
metic and logical functions of two input operands A and B. This choice depends on
the additional control signals. Required resulting function is selected by the multiplexer.
Architecture reversible ALU has been considered in detail [22-24]. Serial, parallel and
V-shape designs have both advantages and disadvantages. In this paper, it was pro-
posed for the first time the design of the ternary reversible ALU consisting of two mod-
ules. The first module is the function generator, outputs of which perform arithmetic
and logic ternary functions. In particular, the outputs of functional generator synthe-
size eight logical operations (STI(A), STI(B), TOR(A, B), TXOR(A, B), TAND(A, B),
TXNOR(A4, B), TNOR(A, B) and TNAND(A4, B)), as well as four arithmetic operations
(sum(A, B,C), carry(A, B, (), diff(A, B, C') and borrow(A, B, C')) depending on the con-
trol signal A/S, which determines addition (A/S = 0) or subtraction (A/S = 2) ternary
operation. Then, signals generated in the first module, input to the second module —
function selector. Figure 8 shows the structure of the proposed ALU.

The function selector selects a desired function and transmits a corresponding signal
to the output of the ALU. Cj and C; are the selection lines, whereas A/S control line
selects addition (A/S = 0) or subtraction (A/S = 2) operation of the input A and B
(Table 5). When A/S = 2, then B will be converted into their 2’s complement B’. If
the control signal A/S = 0, the input signal B is transmitted to the output unchanged.
This parallel architecture is quite easy to verify, cascading and size expanding of ternary
reversible ALU.

Implementation of the function selector module is a reversible multiplexer 9 x 1, which is
performed through two stages 3 x 1 multiplexers. We have synthesized reversible ternary
3 x 1 multiplexer using above described adaptive genetic algorithm (Figure 9). Proposed
multiplexer has three information (X, Y, Z), a selective (C') and four ancilla inputs. One
of the three input signals is passed to the output depending on the controlling signal. The
structure of the multiplexer coincides with the results of [27]. The quantum cost of our
implementation is 72, delay time is 24t,, while the cost of the 9 x 1 multiplexer proposed
by Khan [27] is 102, and delay time is 90¢y. Therefore, the proposed two-stage multiplexer
9 x 1 has a lower quantum cost and delay time in comparison with realization [27].

Proposed adaptive genetic algorithm has been successfully used for the synthesis of the
function generator as described above. Figure 10 shows the ternary M-S gate realization
of function generator. The quantum cost of the realization is 64 and it requires 5 ancilla
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TABLE 5. Function table for ternary reversible ALU

A/S Operation

SUM(A, B, Cy)

DIFF(A, B, B;y)

Carry(A, B, Ci,)

Borrow(A, B, B;,)
STI

e}

MM[\DHHHOOOOOOQ
l\Dr—‘Ol\DI—‘O[\Dl\Dr—‘r—‘OOQ

SO OO OO NONON

0 I+_2| I_LI 9 . 9
] 1] & < 9,
0 E 9 — Y
X 12 12-| X
Y 12 12-| Y
z 12 12 z
\ rM—rirrm rmn—r ‘
Ll L | M | L L L

FIGURE 9. Realization of a 3 x 1 ternary reversible multiplexer (cost is 18,
delay time is 12t)

bits, delay time is 14¢y,. Copies of the input signals A and B can be easily implemented
using the TXOR(A, B) operations (Figure 5) at A =0 or B = 0.

Therefore, proposed ALU is characterized by the following parameters: quantum cost
is 136, ancillary inputs 6 + 4 x 4 = 22, the delay time 14ty + 24ty = 38ty,. The obtained
ternary reversible ALU device cannot be compared with similar devices, because it has
been implemented in this paper for the first time.

7. Conclusions. We present the new design of reversible ternary arithmetic logic unit
based on adaptive genetic algorithm. Proposed circuit was synthesized for the first time
on the basis of the full set of permutational one- and two-input Muthukrishnan-Stroud
gates which can be physically implemented and have a minimum quantum cost. Based
on our proposed adaptive genetic algorithm, we got a better implementation of the basic
arithmetic and logic ternary devices. The obtained reversible ternary full-adder, con-
trol adder/subtractor and two-stage 9 x 1 multiplexer circuits have better parameters
(quantum cost, ancilla inputs, garbage outputs and delay time) in comparison with those
obtained in other studies. These results allowed us to propose for the first time a design
of the reversible ternary ALU. An advantage of proposed circuits is the possibility of their
potential implementation in NMR technology.
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FIGURE 10. Realization of a function generator (cost is 64, delay time is 14¢)
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