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ABSTRACT. This paper proposes the use of artificial intelligence techniques for moni-
toring and predicting the underground water dam level in a double pump station gold
mine. Siz single classifiers methods (support vector machine, artificial neural network,
naive Bayesian classifier, decision trees, radial basis function and k nearest neighbors)
are applied for this purpose. The paper further proposes a new approach to select the
most suitable classifiers when constructing the most accurate ensemble in multiple clas-
sifier learning. This approach is based on determining the mutual information amount
between classifier pairs and is further used to determine the classifiers optimum number
in order to build the most accurate ensemble. Simulation results using underground pump
station dam levels and energy consumption data show the proposed strategy as being more
superior to methods such as Bagging and Boosting techniques in terms of predictive ac-
curacy.

Keywords: Machine learning classifiers, Ensemble, Mutual information, Energy, Gold
mines water pumps

1. Introduction. Demand side management (DSM) initiatives were implemented in the
South African mining sector due to the shortage of the electricity supply. Energy control
systems were installed for specific mining features such as water pumping control systems.
These control systems depend on instantaneous data to make a decision and therefore they
are not adaptive nor sustainable and needed to be updated frequently in order to meet
any alterations in the water pumping system [1,2]. Furthermore, these water pumping
control systems are not able to predict the energy consumption or the underground water
dam levels. As such, adaptive and predictive monitoring system that could control and
predict the energy consumption of the underground water pumping system and dam levels
should be introduced. These adaptive and predictive control systems perform based on
present and historical data [3].

In deep gold mines, fresh water pumping systems are considered as a main part of gold
mines structure. The mine water is basically pumped into the mining levels to reduce
its temperature during mining operations. Underground dam levels need to be always
monitored and controlled to avoid water flooding or other harm can be caused by low
water levels in the dams. Installing intelligent and adaptive control systems for water
pump stations could result in increased energy and cost savings as water pump stations
consume a large amount of electricity [2,4]. Intelligent control systems use the state of art
machine learning (ML) and artificial intelligence techniques. The use of ML in controlling
and monitoring water pumps stations will decrease human involvement and possible errors
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[5]. Presently, machine learning and artificial intelligence are being applied for prediction,
classification and optimization purposes in fields such as robotics, and engineering [5,6].
The major contributions of this paper are:

1)- The introduction and usage of artificial intelligence techniques to control and mon-
itor the water pumping system which could result in a major energy savings in the
mines, and that will have a positive impact on the South African national grid, by
decreasing the electricity load. On the other hand the adaptive and predictive na-
ture of artificial intelligence techniques will increase the safety of the mine personnel
by reducing human errors.

2)- The proposal of a new multiple-classifier learning (ensemble) technique using mutual
information theory as means of improving the predictive accuracy for underground
dam levels.

This paper is structured as follows: Section 2 gives a background about ensemble
techniques. In Section 3, a layout for a mine situated in South Africa is presented. A
mutual information theory is presented is Section 4. In Section 5, methods used in our
experiments for the paper are described briefly. Comparative experiments on dam levels
and energy consumption databases using ensembles and single classifiers are presented in
Section 6, followed by the results in Section 5. Section 7 contains concluding remarks.

2. Ensemble Classifier (Multiple Classifiers). Ensembles or multi-classifier methods
have been recently developed and widely used as learning techniques. Ensembles can be
directly implemented, and proven to have an outstanding predictive and classification
performance on real-world problems [6].

An ensemble comprises a set of individually trained classifiers (for example neural
networks, naive Bayesian classifier, or both) whose predictions or classifications are joined
when classifying distinctive instances. The aim of an ensemble technique is to enhance
the prediction results of a statistical learning system. An ensemble classifier is a technique
that combines several weak classifiers in order to yield a strong classifier. Many prediction
combination techniques of multiple classifiers have been tested and used to produce an
ensemble that has a high predictive accuracy and outperforms the single classifier [7].
Ensemble is also known in many other names such as, ensemble methods, committee,
classifier fusion, combination, and aggregation [8]. Recent research has illustrated and
proved that a strong and good predictive ensemble is the one where the own individual
classifiers are the most diverse. In other words, a good ensemble is the one that combines
classifiers which make their errors on different parts of the input space [7]. Ensemble
techniques usually produce better results and over perform single classifiers when there
is a significant diversity and un-correlation among the used methods and algorithms.
Therefore, ensembles aim to encourage diversity between the classifiers and techniques
they combine [10].

3. The Mine A Water Pumping System Overview. Our case study is a South
African gold mine, Mine A, which contains two underground water pump stations. There
is another adjacent mine that pumps its water to the case study mine through an under-
ground channel connecting the two mines, then the water gets pumped up to the surface.
The control system could not adapt to the sudden large amount of water caused by in-
creasing water influx from the adjacent mine, and therefore the control philosophy had to
be changed where the mine’s water circulation was operated and monitored by the control
room operators. The clear-water pumping system is shown in Figure 1.

Figure 1 shows that the mine includes two main pump stations situated in two different
mining levels. One pump station in located at 27-level and has 5 water pumps. Every
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FiGURE 1. Shaft clear-water pumping system

pump has a power capacity of 2.75 MW and a water flow rate of 190 1/s. The total
underground dam capacity is 3 Ml. The second pump station is located at 12-level and
includes 7 pumps. Each pump is rated at 3.30 MW and can pump 190 1/s. The total
underground dam capacity is 2 MI.

As mentioned before it was essential to frequently update the pump station control
system due to the fluctuations of the water volume that may increase or decline as a
result of the additional water as shown in Figure 1. Therefore, a machine learning control
system is proposed to predict the water levels, henceforward control the water dam levels
within the safe limits. This predictive control system uses parameters such as the water
levels, the pump running status (on/off), the amount of consumed energy, as explained
in Section 6.

4. Mutual Information Theory. In this paper, mutual information theory was used
to construct the most accurate ensemble. This was achieved by determining the mutual
information amount between all used single classifiers. The amount of mutual information
indicates the diversity and dependency level of the single classifiers [12].

Mutual information is defined as the measure of how much one random variable is simi-
lar to another random variable. Mutual information is usually measured in bits. However,
the unit of information depends on the base of the logarithm. When the base is 2, then,
the unit of quantity of mutual information is the “bit”. When two parties (statistically)
have one bit of information in common, then the mutual information quantity in bits is 1.
“Entropy” is the important concept of information theory which represents the amount of
uncertainty of a given system. It also measures the information quantity that is required
usually to define the random variable [12,13]. If the random variable is definitely to be
predicted then the entropy value is positive or it is zero. The main objective of mutual
information theory is to reduce the entropy amount in a system. If the shared information
is too small and insignificant between two items, then these two items are considered to
be independent. On the other hand, if the items share big amount of information between
each other, then these items are not likely to be independent system; in other words the
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two items depend one each other [13,14]. Mutual information can be defined as:
I(X;Y) = H(X) — H(X/Y)

where H(X) is the entropy and H(X/Y) is the conditional entropy. The mutual informa-
tion is the reduction in the uncertainty (entropy) of X due to the knowledge of Y where X
and Y are discrete random variables. Figure 2 shows the relationship between mutual in-
formation I(X;Y) and the entropies of two random variables and the conditional entropies
[13,14].

H(X) H(Y)

H(X,Y)

FI1GURE 2. The relationship between the entropies of two random variables
X and Y and their mutual information

5. Machine Learning Algorithms Utilized in This Study. In this study, six classi-
fiers were used in order to monitor and predict the water levels and the energy consumption
for an underground pump station. These classifiers have been trained and tested using
real time data which was collected from the mine. Default parameters were used for each
classifier. In this section a brief overview about each classifier is presented below.

A. Multilayer Perceptron (MLP): Multilayer perceptron (MLP) is a type of artificial
neural network. It computes using a set of weighted connected neurons [15,16]. MLP basic
structure usually comprises three layers, an input layer, hidden layer and an output layer.
A layer consists of a set of neurons, and each neuron utilizes a nonlinear activation func-
tion. Feed-forward setup is used to connect the neurons. Each neuron in a layer connects
with a certain weight to every neuron in the next layer [16,23]. MLP is considered among
the most powerful techniques in solving difficult and different problems by training them
in a supervised mode with a famous algorithm known as the back propagation algorithm.
Learning in the perceptron is accomplished by modifying connection weights after all the
data cases are processed, depending on the error volume in the output compared to the
anticipated outcome [15,16].

B. Support Vector Machine (SVM): In machine learning and pattern recognition,
support vector machine classifier (SVM) is identified as a superb classifier [17,18]. SVM
is also proven to be powerful when used to resolve two-class (binary) classification tasks.
The mechanism that SVM classifier follows is to determine a linear maximum margin
hyper-plane within the spaces of the data-points that deliver the utmost distance amid
the two classes. The closest data-points to the linear maximum margin hyper-plane from
the support vectors are considered classified correctly [17,18,23].

C. Decision Trees (DT): A decision tree classifier (DT) is a classifier that utilizes the
tree-like model to make decisions and reach their possible consequences. It is one system
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to show an algorithm [19]. Decision tree forms an interpretable model that denotes a set
of rubrics. It is a famous and well-known technique for classification. DT is relatively
fast method to train and to produce predictions. Decision trees are applied into many
fields, such as operations research, especially in decision analysis, to identify a strategy
most likely to reach a goal [19,20].

D. Naive Bayes’ Classifier (NBC): The naive Bayes’ classifier gives a simple ap-
proach, with clear semantics, to representing, using, and learning probabilistic knowledge
[21]. Basically, a naive Bayes’ classifier assumes that the presence (or absence) of a par-
ticular feature of a class is unrelated to the presence (or absence) of any other feature,
given the class variable [22]. Tt is based on applying Bayes’ theorem with strong (naive)
independence assumptions, or more specifically, independent feature model [22].

E. Radial Basis Function Classifier (RBF): The radial basis function (RBF) net-
work is a special type of neural networks with several distinctive features [24]. An RBF
network is structured in a way that it has a feed-forward neural network as an input layer,
then there is a hidden layer which contains the processing units that uses RB function
[25]. Each unit in the hidden layer then produces an activation based on the associated
radial basis function. Lastly, there is an output layer that computes a linear combination
of the activations of the hidden units [26].

F. K Nearest Neighbors (k-NN): In machine learning, k-NN represents a memory-
based (or data-point-based) technique for classification and regression problems. k-NN is
a popular classification technique that is successfully implemented in many applications
such as medical research, and business applications. The aim of the k-nearest neighbors
(k-NN) method is to use a data-set in a way the data points are classified into few different
classes for the prediction and classification of a new sample point [22]. In classification
problems, the label of possible items is obtained using the labels of closest training data
points in the feature space. This item is obtained by usually using “majority voting” or
“averaging” techniques [27].

6. Simulation Models and Experiments.

6.1. Experiment one set-up. The first experiment was to train and test each single
classifier separately from the six classifiers group (MLP, k-NN, DT, NBC, RBF, and
SVM) using the mine pumps energy data and underground dam levels. Data for energy
consumption and underground dam levels was collected for a period of three months by
using pressure transmitter fitted on the dams. This pressure transmitter is connected to
a programmable logic controller (PLC) fixed on the pump station, then via fibre optics
to a supervisory control and data acquisition (SCADA) system to log the data on a
spread sheet. It records a value every two seconds. Figure 3 illustrates the proposed
machine learning (ML), monitoring, and control system, and it also shows the required
infrastructure such as the PLC’s on each pump station and the SCADA PC which is
connected to the ML server. The energy consumption data represents the run time status
for each pump, where 1 value denotes pump is on status, and 0 is off status. Each pump
has a specified power capacity, as mentioned before, which determines the amount of
power consumption.

All the six machine learning algorithms used default parameters employed. For simu-
lation purposes, the data was averaged over 30 second intervals. Starting with the pumps
energy data for 12-level and 27-level pumps ML classifiers were trained and tested. En-
ergy data was categorized into classes for 12-level as shown in Table 1. The energy data
represent the energy consumed by the underground pumps for 12-level pump station.
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FiGURE 3. ML monitoring and control system

TABLE 1. 12-level energy consumption classes

Energy level (kW) Description Class
0 No Energy Consumption 0
3300 Low Energy Consumption 1
6600 Medium Energy Consumption 2
9900 Medium Energy Consumption 3
13200 Relatively High Energy Consumption 4
16500 High Energy Consumption 5
More than 16500 Very High Energy Consumption 6
TABLE 2. 27-level energy consumption classes
Energy level (kW) Description Class
0 No Energy Consumption 0
2750 Low Energy Consumption 1
5500 Medium Energy Consumption 2
8250 Relatively High Energy Consumption 3
11000 High Energy Consumption 4
More than 11000 Very High Energy Consumption 5

For 27-level underground pump station, energy data are categorized for classes as shown
in Table 2. The energy data represent the energy consumed by the underground pumps.
The data was split into 80% for training, and 20% for testing intervals for both pump-
ing stations. As mentioned before, the pumps are directly linked to the dam level, so
the attributes here represent the pump running status (on, off) in the case of energy
consumption test. The class represents, the total energy consumed by the pumps.

For underground dam level, each level (12-level and 27-level) data was trained and
tested separately. The maximum and minimum dam levels for both levels in this mine
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TABLE 3. 27-level dam level classes

Description Dam level percentage | Class
Pump damage risk > 25% 1
Low 25%-39% 2
Medium 40%-67% 3
High 68%-85% 4
Critically high (flooding risk) > 85% 5
TABLE 4. 12-level dam level classes
Description Dam level percentage | Class
Pump damage risk < 24% 1
Critically low 24%-30% 2
Low water level 31%-42% 3
Medium water level 43%-78% 4
High water level 79%-85% 5

were given by the mine’s engineer. For 27-level the maximum is 85% and the minimum is
20%, and the same for 12-level underground dam. The data was categorized into classes
for simulation. Classes for 27-level dam levels are shown in Table 3.

Table 4 shows 12-level underground dam level percentages and the corresponding classes.
Each dam was classified to 5 classes which represent a certain water level percentage.
These classes were carefully chosen to suit the underground dam capacity and to pre-
cisely monitor and control the dams within the required safe limits.

6.2. Experiment one results.
A. Pumps energy consumption

For the pumps energy consumption experiment, the number of instances for energy data
is 5, 620,200. After identifying the required classes, the data was processed by WEKA
software to define the most accurate classifier(s) that will achieve the maximum predic-
tion accuracy between the six classifiers used. Table 5 shows the classifiers prediction
accuracies and errors for 12-level pumps energy consumption.

TABLE 5. 12-level pumps energy consumption prediction results

Description MLP | SVM DT NBC | k-NN | RBF
Misclassification error | 1.34% | 1.071% | 9.396% | 12.080% | 6.040% | 1.60%
Mean absolute error 0.0044 | 0.1090 | 0.0160 | 0.0445 | 0.0087 | 0.0082
Root mean squared error | 0.040 | 0.2080 | 0.2993 | 0.1220 | 0.0808 | 0.6300

It can be seen from Table 5 that SVM has outperformed the other classifiers and
achieved the highest prediction accuracy with nearly 99%. In terms of the mean absolute
error and root mean square error, MLP performed the best; therefore, it may be con-
sidered to be the best classifier on these two bases. RBF and k-NN achieved excellent
results followed by DT. According to “Tukey-multiple test” the performance of these three
classifiers (SVM, MLP, and RBF) is almost the same. NBC achieved the least predictive
accuracy and the highest misclassification error of 12.08%, followed by DT with 9.396%
misclassification accuracy with significance difference in performance.

For 27-level pump station energy consumption, MLP was the best classifier in terms
of all performance measures and achieved 99% prediction accuracy (Table 6). RBF and
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Description MLP | SVM DT NBC | k-NN | RBF
Misclassification error | 1.00% | 2.00% | 11.456% | 11.150% | 3.067% | 1.49%
Mean absolute error 0.0053 | 0.1130 | 0.1260 0.0993 | 0.0068 | 0.0082
Root mean squared error | 0.033 | 0.2370| 0.1088 | 0.1310 | 0.0710 | 0.6410

k-NN classifiers showed an acceptable predictive performance, while DT and NBC un-
derperformed the six classifiers in terms of all performance measures. After applying
“Tukey-multiple test” for these predictive results, significance difference appeared in per-
formance between MLP, NBC and DT classifiers.

B. Underground dam level’s results
Prediction results for 12-level pump station underground dams are shown in Table 7.

TABLE 7. 12-level underground dam levels prediction results

Description MLP | SVM DT NBC | k-NN | RBF
Misclassification error | 46.30% | 45.60% | 48.40% | 47.00% | 46.67% | 46.89%
Mean absolute error 0.179 0.216 | 0.189 | 0.183 | 0.207 | 0.184
Root mean squared error | 0.306 0.320 | 0.318 | 0.309 | 0.307 | 0.312

Table 7 shows that all six methods have almost the same predictive accuracy, with
SVM being slightly more accurate, with minimal differences in root mean squared error
and mean absolute error. However, in terms of all measures, MLP shows the best per-
formance with the lowest mean absolute error and root mean square error as there is no
significance difference in performance between SVM and MLP. In general, all six classifiers
demonstrated low prediction accuracy.

Results for 27-level underground dam level prediction were similar to the prediction
results for 12-level underground dams in terms of high misclassification error and low
accuracy (Table 8). In terms of all performance measures NBC was the best performer.

TABLE 8. 27-level underground dam levels prediction results

Description MLP SVM DT NBC | k-NN | RBF
Misclassification error | 42.95% | 42.95% | 51.40% | 43.10% | 43.67% | 42.95%

Mean absolute error 0.232 0.2695 0.239 0.212 0.246 0.241

Root mean squared error | 0.346 0.360 0.344 | 0.341 0.356 0.349

6.3. Experiment two set-up. It can be seen from the single classifier results that the
classifiers achieved high prediction accuracy for energy data but did not perform as well
for the underground dam levels, which necessitated the implementation of an ensemble.
The second experiment is to combine the classifiers using multi-classifiers (ensemble)
technique in order to investigate the possibility of improving the prediction accuracy of
the underground dam levels.

Our first approach for combining the classifiers was to use Bagging and Adaboost
ensemble techniques. Different splits of train-to-test percentages were tested and the
most accurate split was found to be 60% to train and 40% to test for the Bagging and
Adaboost ensemble experiments. WEKA software was used to simulate the experiment.

Our second attempt entailed the construction of an ensemble depending on the mu-
tual information amount between the classifiers using a MATLAB simulator that was
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programmed for this purpose. The underground water dam level’s data was organized
in arrays as an “.m” file which can deal with MATLAB function, script, or class to be
suitable for the MATLAB simulator. All the six classifiers were included in the simulator
and use majority vote algorithm to combine the classifiers output. Majority vote was
used since it gives the best results among other combination algorithms, such as the sum,
the maximum, the minimum, the average, products and the Bayes algorithms for this
particular case.

The initial assumption states that, increasing diversity may decrease ensemble error.
The ensemble was constructed based on the amount of mutual information between each
two classifiers to determine the diversity between the classifiers. Each two classifiers pre-
dicted classes’ vectors mutual information value was determined using the water dam
levels dataset. The lowest shared information classifiers were considered the most inde-
pendent, thus the best classifiers to build the ensemble. The ensemble was only used for
the underground water dam’s level as will be seen later. The steps below summarize the
ensemble construction.

1)- Divide original dataset into training datasets, and testing dataset for all classifiers.

2)- Calculate mutual information between the six classifiers by taking every two classifiers
together, hence calculating 15 mutual information values.

3)- Combine the classifiers starting with the lowest mutual information (the most inde-
pendent classifiers) to construct the first ensemble.

4)- Add the second lowest mutual information classifier to the first ensemble to construct
ensemble two.

5)- Construct ensemble three and ensemble four by adding the remaining classifiers.

6)- Combine the multiple classifiers into aggregate output using majority voting algo-
rithm.

7)- Compare the classification accuracy of the various ensembles.

6.4. Experiment two results. Firstly, Bagging and Adaboost ensemble methods were
experimented and simulated for 12-level underground water dam levels data. Prediction
accuracy was (surprisingly) not increased compared to the single classifiers prediction
results with Bagging and Adaboost both achieved approximately 53% accuracy. For 27-
level underground water dam levels Bagging and Adaboost achieved the same prediction
accuracy of 57%; hence there was no improvement in terms of the predictive accuracy
when compared to the single classifiers performance.

For the mutual information ensemble experiment, the optimum number of classifiers
that construct the ensemble were determined based on the amount of shared information
between the six classifiers. This was done by taking two classifiers at a time and compute
the mutual information value which indicates the most independent classifiers, hence the
best to build the most accurate ensemble.

Starting with 12-level underground dam levels ensemble structures, 15 pairs of classifiers
were considered; hence, 15 values of mutual information were computed for each level.
Table 9 shows the mutual information values for 12-level pump station data. It can be
seen that the lowest mutual information achieved correspond to the pairs (MLP, k-NN),
(MLP, SVM) and (MLP, NBC) with value of 0.2032 bit, which means that MLP, k-
NN and NBC are the most independent classifiers. (MLP, SVM) also has low mutual
information compared to (MLP, DT). It can also be noticed that DT has the highest
mutual information with all the 5 classifiers. The highest mutual information amount
was recorded between the classifier pair (NBC, DT) with 1.7830 bit.

From the mutual information results, the first ensemble (ensl) will comprise MLP and
k-NN. The second ensemble (ens2) will combine MLP, £-NN and NBC. SVM will be
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TABLE 9. 12-level classifiers mutual information

Number | Classifiers pairs | Mutual information (bit)
1 MLP, i-NN 0.2032
2 MLP, SVM 0.2032
3 MLP, RBF 0.4566
1 MLP, NBC 0.2032
5 MLP, DT 1.0582
6 F-NN, SVM 0.2313
7 k-NN, RBF 0.4076
8 L-NN, NBC 0.2345
9 k-NN, DT 0.8695
10 SVM, RBF 1.3903
11 SVM, NBC 0.3795
12 SVM, DT 0.8991
13 RBF, NBC 0.6193
14 RBF, DT 0.8996
15 NBC, DT 1.7830

12-level ensemble prediction accuracy
90%

85%

80%
70% T T T T

ensl ens2 ens3 ens4 enss

m Ensemble accuracy

FIGURE 4. 12-level mutual information ensemble results

added to ensemble two to construct the third ensemble (ens3). The fourth ensemble
(ens4) was constructed by adding RBF to ens3, and the last ensemble “ens5” was built by
the addition of DT method to ensemble 4; therefore, ensemble 5 contained all 6 classifiers.
The five mutual information ensembles were implemented as follows:

e ensl: MLP + £-NN

e ens2: MLP + NBC + k-NN

e ens3: MLP + NBC + k-NN + SVM

e ensd: MLP 4+ SVM + k-NN + NBC + RBF

e ensb: MLP + SVM + k-NN + NBC + RBF + DT

The five mutual information ensembles were trained and tested using the underground
dam levels real-time data. The main performance measure used for the ensemble is the
classification accuracy. The ensemble prediction results are shown in Figure 4.

It can be seen that ensemble 3 was the most accurate ensemble and reached a prediction
accuracy of 89% with significance difference in performance when compared to the other



MONITORING SYSTEM USING ARTIFICIAL INTELLIGENCE TECHNIQUES 1787

four ensembles used. Ensemble 2 and ensemble 4 achieved 86% and 84% prediction ac-
curacy respectively with significant difference in performance. Ensemble 1 which consists
of MLP and £-NN realized 84% of prediction accuracy. The fifth ensemble (ens5) which
contains DT achieved the lowest prediction accuracy of 79% with significance difference
in performance. Table 10 shows the mutual information values between the six classifiers
for the 27-level underground dam levels data.

TABLE 10. 27-level classifiers mutual information

Number | Classifiers pairs | Mutual information (bit)
1 MLD, i-NN 0.2011
2 MLP, SVM 0.2011
3 MLP, RBF 0.5061
1 MLP, NBC 0.2011
Y MLP, DT 0.9289
6 NN, SVM 0.3003
7 k-NN, RBF 0.4786
8 -NN, NBC 0.2349
9 k-NN, DT 0.9605
10 SVM, RBF 1.0923
11 SVM, NBC 0.3491
12 SVM, DT 0.9901
13 RBF, NBC 0.709
14 RBF, DT 1.1091
15 NBC, DT 1.8231

It can be seen from Table 10 that the classifier pairs, (MLP, NBC), (MLP, SVM)
and (MLP, £-NN) has the lowest shared information with 0.2011 bit, followed by the
classifier pair (k-NN, NBC) with mutual information value of 0.2349 bit. The classifier
pair (k-NN, SVM) has a relatively low mutual information amount of 0.3003 bit. The
highest mutual information value was recorded for the classifier pair (NBC, DT). In
general, classifiers pairs containing DT have the highest mutual information amount.
Obtaining the mutual information amount made it possible to identify the most diverse
and independent classifiers, which lead to building the most accurate ensemble. Figure 5
shows the performance results for the five multi-classifiers (ensembles).

27-level ensemble prediction accuracy
95%
90%
85%

80%
. t
70% T T T T

ensl ens2 ens3 ensd enss

m Ensemble accuracy

FIGURE 5. 27-level mutual information ensemble results
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Figure 5 shows (ens3) with highest predictive accuracy of 90%. (ens2) with 87% pre-
dictive accuracy. (ens5) which includes DT underperformed the rest of the five ensembles.

7. Conclusions and Discussions. This paper introduced a machine learning based
monitoring system which uses single and combined classifiers (ensembles) for a gold mine
clear-water pumping system. Two experiments were conducted over two pump stations
situated in 12-level and 27-level mining levels in terms of predicting energy consumption
and underground dam levels.

The first experiment was to train and test six classifiers (MLP, £.-NN, SVM, DT, NBC
and RBF) separately using a real-time pumps energy and dam levels data that was col-
lected over 3 months. The results for both pump stations energy consumption’s ex-
periment were good as classifiers achieved high prediction accuracy. The DT classifier
achieved the lowest prediction accuracy. However, MLP was the best classifier in terms of
all performance measures. For the underground dam levels single classifiers experiment,
the classifiers prediction performance did not match the energy prediction performance.
However, DT was the worst performers among the used classifiers.

Mutual information based ensemble technique was implemented due to the “relatively”
poor predictive performance of the single classifiers, Bagging and Adaboost ensemble
methods for the dam levels prediction accuracies. The mutual information amount be-
tween the single classifiers was computed, and the two classifiers with the least shared
amount are considered the most diverse and hence the best to construct the ensemble.
Five ensembles were built based on the amount of mutual information.

12-level underground dam level (ens3) which consists of classifiers “MLP, NBC, k-
NN, and SVM” was the most accurate ensemble and achieved 89% prediction accuracy.
The least accurate ensemble was (ensb) which was constructed from all six classifiers
and achieved 79% prediction accuracy. 27-level underground dam level (ens3) which
consists of classifiers “MLP, k-NN, SVM, and NBC” was the best ensemble in terms of
prediction accuracy with 90% prediction accuracy, while the poorest ensemble prediction
performance was recorded by (ensb) which consists of all six classifiers.

The experimental results demonstrate that using artificial intelligence in certain aspects
in the mining sector could be possible and might lead to improved safety of the mine
personnel and providing enhanced protection to the equipment from damage. Also, energy
savings could be realized by regulating the pumps operation schedule.

Finally, the novel uses of new ensemble technique by defining the mutual information
amount between classifiers exposed a success in defining the optimum classifiers numbers
which construct the most accurate ensemble and displayed encouraging improvement in
terms of prediction accuracy of underground dam’s water level.
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