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ABSTRACT. This paper studies the input-to-state convergence (ISC) on time scales for
neural networks with distributed delays. By using the time scale calculus theory and
constructing appropriate Lyapunov functions, new sufficient conditions on input-to-state
convergence of such neural networks on time scales are derived. At last illustrative ez-
amples demonstrate the effectiveness of the input-to-state convergence criteria. The new
results given are general which unify continuous-time with corresponding discrete-time
situations and extend the existing relevant input-to-state convergence results in the liter-
ature to cover more general neural networks.
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1. Introduction. Recently, there has been increasing interest in the potential applica-
tions of neural networks in many areas. Hopfield-type neural networks [1, 2, 3] and their
various generalizations can be described as

dt

== —dzl'l(t) —+ Zt”g](x](t)) —+ Iz'; 1= 1, 2, e, N,
j=1

where t > 0, the coefficient d; > 0 represents the passive decay rate with which the
unit self-regulates or resets its potential when isolated from other units and inputs, z;(t)
corresponds to the state of the sth unit at time ¢; ¢;; weighs the strength of the unit j
on the unit ¢; g;(-) denote activation functions of signal transmission; I; is the input to
the ith unit at time ¢ from outside the networks. We refer for more detail to [4, 5] and
references cited therein.

They have attracted the attention of many scientists due to their promising potential
for tasks of classification, associative memory, signal processing, parallel computation
and their ability to solve difficult optimization problems, see for example [6, 7] and the
references therein. As we know, time delays may lead to an oscillation and possible
instability of neural networks [8]. A lot of papers have studied the following delayed
neural networks model [9]:

n
dxdl—it) = —dll'l(t) + Z [t”g](ib'](t)) + t;g](x](t — sz(t)))] + [i; Z = 1, 2, e, N,
j=1
where t7; denotes the delayed feedback connection weight of the unit j on the unit 4
7;; corresponds to the signal transmission delay along the axon of the jth unit which is
nonnegative and bounded, and other notations are the same as above. Usually, bounded
delays (either constant or time varying) in the models of delayed feedback systems serve
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as good approximation in simple circuits having a small number of cells. A neural network
usually has a spatial nature due to the presence of an amount of parallel pathways of a
variety of axon sizes and length. It is desirable to model them by introducing distributed
delays [10, 11].

We studied the models above are continuous, but as we know sometimes we meet with
the situation of neural network with time-varying delays being discontinuous in reality,
and it is necessary for people to research it. The study of dynamic equations on time
scales was initiated by S. Hilger [12] in order to unify the continuous and discrete analysis,
and it allows a simultaneous treatment of differential and difference equations, extending
those theories to so-called dynamic equations. It is a fairly new subject, and research
in this area is rapidly growing. Many authors incorporate time scales into analysis of
neural network models in all directions, and we can refer to [13-17]. In [13], existence
and exponential stability of periodic solution for stochastic Hopfield neural networks on
time scales were considered. In [14], the problem on the global exponential stability of
neural networks on time scales was considered and got some nice results. In [15], based on
contraction principle and Gronwall-Bellman’s inequality some first results for the existence
and exponential stability of almost periodic solution for a general type of delay neural
networks with impulsive effects had established. In [16], authors pay attention to the
periodic solutions for a class of neural networks delays on time scales. In [17], the scale-
limited activating sets and multiperiodicity for threshold-linear networks on time scales
were considered and got some nice results.

2. Problem Statement and Preliminaries. Based on the above discussion, we also
want to incorporate time scales T into the input-to-state convergence (ISC) analysis for
a class of neural networks with distributed delays described by the following system of
integro-differential equations on time scale T:

ﬁiA(t):Zwijgj(xj(t))jLij/[o | kij(s)gi(z;(t — ) As + L;(t), i=1,2,...,n, (1)

where ¢ > 0 and t € T, x(t) = [21(t), 2a(t), ..., 2,(t)]" is the state vector; W = (wi;)nxn
and W7 = (w];)nxn are the feedback connection weight matrix and the delayed feedback
connection weight matrix, respectively; G(z(t)) = [g1(x1 (%)), g2(72(1)), - - -, gu(zn(t))]" is a
nonlinear vector-valued activation function from R to R* and G(z(t)) is called the output
of the network (1); K(s) = (ki;j(s))nxn in which the kernels k;; : [0, 00]r — [0, +00) are
piecewise continuous functions, I(t) = [I;(t), Ir(t),..., I,(t)]" € R" is a locally Lipschitz
continuous input vector function defined on [0, oo]r := [0, +00) N T.
We can rewrite (1) in a compact vector form

22 (t) = WG (2(t)) + W™K (s)G(z(t — s))As + I(t). (2)

[0,00]T

Each activation function ¢; will be assumed to be a sigmoid-type function and we
assume that:
(H,) There exist constants l;, L; > 0, such that

gi(u) — gi(v)

forany u,v e Rand u #v,1=1,2,...,n.
(H3) There exists a constant vector I € R” such that
lim I(t) = 1.

t—+o00
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(Hj) The functions k;; satisfy
/ kij(S)AS:L i,j:1,2,...,n.
[0,00}T

The concept of ISC [18, 19] is similar to the widely recognized notion of input-to-state
stability (ISS), which has been a useful concept in studying nonlinear control problems
(see [20, 21]). In this paper, we continue the study of ISC for the network model (1)
on time scales and obtain new ISC stability criteria which can include continuous and
discrete-time cases. Illustrative examples demonstrate the effectiveness of the input-to-
state convergence criteria.

2.1. Several definitions and theorems. Some basic definitions of dynamic equations
and ISC convergence of networks on time scales are given in this section.

Definition 2.1. A time scale T is arbitrary nonempty closed subset of the real set R with
the topology and ordering inherited from R.

Definition 2.2. For any time scale T, we define the forward and backward jump operators
by o(t) := inf{s € T : s > t}, p(t) == sup{s € T : s < t}, we put inf}) := supT
and sup) := infT, where ) denotes the empty set. A point t is said to be left-dense if
t > infT and p(t) = t, right-dense if t < supT and o(t) = t, left-scattered if p(t) < t
and right-scattered if o(t) > t. The graininess function u for a time scale T is defined by
u(t) == o(t) —t. If T has a left-scattered mazimum m, then we defined TF to be T — m.
Otherwise, TF = T.

Definition 2.3. For a function f: T — R, the (delta) derivative is defined by

flo(t)) — f()

/"= oty —t

if fis continuous att and t is right-scattered. Ift is not right-scattered, then the derivative
s defined by

= lim

a_ . Sflo(t) = f(s)
f= =lim P

s—t 0'( )

provided this limit exists.

Definition 2.4. A function F' : TF¥ — R is called a delta-antiderivative of f : T — R
provided F® = f holds for all t € TF. The integral of f is defined by f[a t]Tf(s)As =

F(t) — F(a) fort € T and ftg(t) f(s)As = pu(t)f(t) fort € TF.

Definition 2.5. For a given continuous vector function I(t) and a constant vector I,
(I(t),I) will be called an input pair. The network (1), or equivalently (2), is said to be
ISC with respect to an input pair (I(t),I), if

Q) = {a" € R"|(W +WT)G(z") + T =0} #0
implies that for any z(0) € R™, limy_, o 2(t) = 2* for some z* € Q(I).

3. Main Results. In this section, we study the networks with distributed delays on time
scale, and give new criteria for the ISC of the network model (1).
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Theorem 3.1. Assume that (Hy)-(Hj) hold and w;; < 0, the input pair (I(t),I) satisfies
f[o OO]T(l + u()|:(t) — LAt < 400 and the following condition

n
oy T ) 2—aji 7 2T .
— 2cjwjjl; E Ci (|wﬂ| L + [wij
1=1,i#]

n
4ij L;iﬂ'> —2¢j — p(t)3n Z Ciw?jL?

— (n+ u(t)3n) Zc@? (wzj)2 >0, j=12,...,n,

i=1
holds, then the network (1) is input-to-state convergent with respect to (I(t),I).

Proof: By definition of ISC, let Q(I) # (. Then there exists a constant vector x* =
(zt, 25, ...,2%)" € R* such that

n

> (wij +w]) gi(x5) + I

=1

0, i=1,2,....n. (3)
Let z(t) be the solution of (1) starting from z(0) € R”. Then it follows from (1) that
(zi(t) —2])> = iwz‘j 95 (2;(t)) — g;(})]
j=1
+ wj; /[O’OO}T kij(s) (g5 (@it = 5)) = g;(«)] As + (Li(t) = L.

thLetting i(t) = x(t)—a*, [(t) = I(t)=1, f(2(t)) = g(z(t)+2") —g(z*) = g(x(t)) —g(z),
en we get:

20 =3 [whia0) +uf [ wOhEE- D] vio, o

j=1 [0700}11‘

where i = 1,2,...,n. Let ¢; > 0 and V(t) = X", c;22(t), we get

7 [

n

VA(t) = Z ci [z (Dzi(o(1) + ()= (1)]

= alalo) +50)=2)
= Z ¢; [n() 2 (1) + 22;(1)] 2 (¢)
=2 aa()z () + (1) Yo a4 (1)

It follows from (1) that

2 Z ¢izi(t) 22 (1)

700}'11'
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SQZCizl szyfy 2;(t +QZcZzZ Zw/ )f](z](t—s))As
i=1

T
+2) (i)
=1

1=1 j=1,j#i

n

+i0i (i IijILj/[O kij(s)|zi(t — s) |AS> +ZCZ< SORRAC ))
i [20iwiizi(t)fi(zi(t)) +2 i ¢ {Izz'(t)||wz‘j|2_2%L;;ij} x {|wij|q;jL;?|Zj(t)|H

i=1 j=Li#i

IN

+ 2Zcz~zi2(t) + nZCZZ (wfj)zLi </ kij(s)]z(t — s |As> + z:czl2
i=1 i=1  j=1 [0,00]7
<> lzcjwjjzj(t)fj (250) + D e [P LY + w9 L5 2 (0)] ]
j=1 i=1,i#]

n

+ QZCizf(t) + anZZ (wzj)2L? </ kij(s)]z(t —s |As> + Zczl2
i=1 =1 j=1 [0,00] 7

n
(2wajjlj + D <|wji|2_qjiL?7Tji + Jwgg | L?”) + 26]') 40
=1 i=1,i%j
n n

+aniZ (w%)2L§ </
i=1  j=1 [0

\E

kij(s)]z;(t — s) |As> +Zczz2

» Q[T

and
gci(zﬂt»z

< Z (z b 0) oy [ e st = ) s] + fi(t>>2

§3Z[(wa( ) (Z%/T >f]<zj<t—s>>As>2+(1-<t>)2]

n

<3) @ <Z|MZJ|L 124t ) +3Zcz(2|w |/ ks (5) L |z](t—s)|As>

+3§n:ci(f(t) ?

n n n n 2
§3TLZCZ'ZUJ”L? ]2 +3n26i2(wzj)2L§ </[0 kij(8)|zj( )|AS>
=1 j=I i=1  j=1

700}'11'
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+3§n:ci <fi(t)>2.

Hence, let u;(t) = supye( o 4, 27 (5), We can get

;LT Tt
VA ()
<X <2Cjwjﬂj+ S e (LT o9 ) *”“) o
j=1 i=1,i#j

+nYy ey (wf)* L2 (/
i=1  j=1 0,00
(036 3wt 0
+3aniZL§ (wiTj)2 (/ kij(s)|z;(t — |As> +320Z )
=1 j=1 [0,00]z
= (201'“)]‘]‘1]' + )« (|wji|27qjiL?_rji + [wi
j=1 i=1,i#j
3”2 cleLi)
2
+ (n+ p(t)3n) ZCZ' ZL? (wZTj)2 (/[0 | kij(s)|2;(t — s)|As>
=1 j=1 ,00]r
+ > a1+ 3p(0) (L)’
i=1

> <2Cjwjjlj + )G (|wji|2_qjiL?7rﬂ + |wz~j|q”L;ij) +2¢

j=1 i=1,i#j

kij(s)|z;(t — s) |As> +Zc112

oo T

%L?)+2q

IN

n

2
t)3n Z cowl; L2 + (n 4 p(t)3n) Z ;L7 (wzj)2 </ kij(s)As> )uj (t)
i=1 [0,00]T

+3 i1+ 3u(t) (Li(t))

=1

n n
=D <2Cjwjjlj + D G (|wji|27q”L?_rji + |wi;

j=1 i=1,i#j

%L?)+2q

t)3n Z cowi; L7 + (n+ p(t)3n) Z ;L (w-Tj)2 ) u;(t)
i=1

+Zcz +3u(t)) (L()”

n

_ _Z(sjuj@ + 3 (1 +3u) (51),

j=1
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where

0= = 2cwil; — D ¢ <|wji|2_qjiL?7T"i + |wij|q”L§ij> — 2¢
i=1,ij
! n (6)
3anzw”L§ (n + p(t)3n) Zcz-L? (wiTj)2 >0, j=1,2,....,n
i=1

In what follows, we show that tlirn z(t) = x*. On the contrary, we suppose that z(t) —
—00

*

xf is not established, as ¢ — oco. Then there exist & > 0 and a sequence {t,,}32, — oo

such that

‘gj(xj(tm))_ ( )‘ |fi(zi(tm))| > Uil2(tn)| > >0, j=1,2,...,n.

Since z(t) is continuous and each g;(z;(¢)) is bounded, it follows from (4) and f 1+

3u(t)|I;(t) — L]?At < +oo that z(t) is absolutely continuous. This 1mpl1es that each
gj(x;(t)) is also absolutely continuous. Therefore, for any 0 < ¢ < &, there exists o > 0
such that for all m, whenever |t —t,,| < o,

195 (5(1)) = g; (#})| > Ulz()] = € —e >0, j=1,2,...,n,

Let

S ey (1 SO (1) — At = [ SR NOI AT
tg,00

tOOOszl [to,00]T j=1

Integrating (5) on both sides from ¢, to ¢y, we obtain

V(tN)—V(to)g—/” Z(S]zf(t)Ath/tt S 51+ 3u(0) ()] At

<— Z& mz:/t tYAt + M

m—0stm]T
S — 25] 20'772 + M
j=1 m=1

:—N0'772zn:(5]+M,

j=1

which leads to

V(ty) < V() + M — Non? Z(Sj — —00,
j=1

as N — oo. This contradicts the positivity of the function V' (¢). Therefore, lim z(t) = z*

t— 00

and the proof is completed. 0]
By choosing all ¢; = ¢;; = r;; = 1 (i,j = 1,2) in Theorem 3.1, we immediately obtain
the following corollaries.

Y
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Corollary 3.1. Assume that (Hy)-(Hs) hold and wj; < 0, the input pair (I(t),I) satisfies
f[o OO]T(l + 3u(t)|Li(t) — L)*At < +00 and the following condition

n

—2wjly = Y (lwgilLi + hwig | Lj) =2 — p(t)3n Y wi L3
i=1,i#j i=1
— (n+ p(t)3n) ZL? (wiTj)2 >0, 7=12,...,n,
i=1
holds, then the network (1) is input-to-state convergent with respect to (I(t),I).
Suppose T = R, the network model (1) becomes
(1) roo
— = WG (x(t)) + WTK (s)G(z(t — s))ds + I(t), t>0, (8)
0
then p(t) =0, and we let ¢;; = r;; =1 (4,5 = 1,2). Then we obtain corollary as follows.
Corollary 3.2. Assume that (Hy)-(H;) hold and wj; < 0, [5°[I;(t) — I;]*dt < +o00 and
the following condition

n

— QCjw]'jlj > Z ci(|wji|LZ~ + |’UJ”|L]) + 2Cj + RZCZL? (w;rj)Z , j = 1, 2, e, n,
i=1,i#£j i=1

holds, and then the network (8) is input-to-state convergent with respect to (I(t),I).
Suppose T = Z, the network model (1) becomes

+0o0
ri(n+1) = z;(n) + WG(x(n)) + Y W K(§)G(x(n—j4)) +1(n), neZ,  (9)
=0
then p(t) = 1, and we also let ¢;; = r;; = 1 (i,j = 1,2). Then we obtain corollary as

follows.

Corollary 3.3. Assume that (H,)-(Hs) hold and wj; < 0, Y% |I;(n) — I;] < +oc and
the following condition

—2cjwjjlj > Z Cz(|w]z|Lz + |wz]|L]) + 2Cj
i=1,i#]

n n 9 .
+3anz-wi2jL? +4aniL? (wij) , J=12,...,n,
i=1 i=1
holds, and then the network (9) is input-to-state convergent with respect to (I(n),I).

4. Numerical Example. In this section, two examples are shown to verify the effec-
tiveness of our results.

Example 4.1. Consider the following network with delays on time scale T = R with

(=10 1 (1 -1 [ 2+
W_<—1 —10)’ W_<—1 1 ) I(t)_<1+1+1t2 ’

choose ¢; =1, I; = %, Li=gqj;=rijj=1(i,5=1,2). From Corollary 3.2 we can get

(
(

|wia|La + |UJ21|L1) +2¢1 + 2 [CIL% (wﬁ)2 + C2L? (wgl)Q] =38,
|way | Ly + |w12|L2) + 2¢y + 2 [Cng (wIQ)Q + CZL% (w§2)2] =38,

—2ciwyi1ly = 10 > ¢

— 2¢oWals = 10 > ¢
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+oo ) +oo 1 2
[ wo-nrse= [T () arm1<a

+oo ) +oo 1 2 T
L(t) — I,)"At = At = — .
[T mo - [ () AT e

We can easily verify that the conditions of Corollary 3.2 are all satisfied, respectively, then
the network (1) is input-to-state convergent with respect to (I(t),I).

and

Example 4.2. Consider the following network with delays on time scale T = ﬁZ with

_ (=025 0.01 . {001 001 [ 2+
W‘( 0.01 —0.25)’ W‘(o.m 0.01>’ ](t)—<1+1++t2 -

Then p(t) = 0.07. Choose ¢; =1,1; =7, Ly =71, ¢;j =ri; =1 (i,7 = 1,2). From
Corollary 3.1, we can get

—2ciwy1l; = 3.5 > 02(|w12|L2 + |w21|L1) + 2¢1 + 3 x 2u(t) [clL?w%I + @L?w%l}
+ (243 x2u(t)) [ L2 (w]))® + eaL? (wh;)?] = 3.4918,
and
—2cowysls = 3.5 > cl(|w21|L1 + |w12|L2) + 209 + 3 x 2u(t) [cngw%Z + @L%w%ﬂ
+ (243 x 2u(t)) [ L3(w],)? + c2L3(w3,)?] = 3.4918,

+00 ) +00 1 2
Ii(t) — 1) At = — | At=1
[T me-nrac= [ () A=<,

+o0o 2A +00 1 2A T
/0 (L(t) — 1) t—/o <1+t2> 1= <+oo.

We can easily verify that the conditions of Corollary 3.1 are all satisfied, respectively, then
the network (1) is input-to-state convergent with respect to (I1(t),I).

and

5. Conclusions. This paper incorporates time scales T into the input-to-state conver-
gence (ISC) analysis for a class of neural networks with distributed delays. By using
the time scale calculus theory and constructing appropriate Lyapunov functions, some
new criteria are given to the input-to-state convergence of the neural networks (1) on
time scales. Our new results are general which unify continuous-time with corresponding
discrete-time situations and extend the existing relevant input-to-state convergence re-
sults in the literature to cover more general neural networks, and they can also be easily
checked by simple algebraic method. Several examples are also given to illustrate the
effectiveness of the input-to-state convergence criteria.

We would like to point out that it is possible to generalize our main results to more
complex neural networks, such as neural networks with time-varying delays [22], dynam-
ical neural networks [23], and neural networks with unbounded time-varying delays [24].
The results will be carried out in the near future.
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