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ABSTRACT. In this paper, two differential neural networks (DNN)-based adaptive iden-
tifiers for unknown nonlinear systems are proposed. The first proposed identifier is with
the single layer DNN and the second one is with the multilayer DNN. Lyapunov approach
is used to develop the online updating laws for the dynamic linear matriz and the weights
of the proposed two DNN identifiers. Moreover, robust properties of the proposed two
DNN identifiers are proved by means of passivity approach, and the commonly used ro-
bust modification methods such as dead-zone, e-modification or o-modification are not
needed. Simulation results of an engine idling system demonstrate that the proposed
identifier with the multilayer DNN is more accurate than the proposed identifier with the
single layer DNN, and both of them illustrate improved performance compared to the con-
ventional neural network-based identifier based on the assumption that the linear matriz
is known a priori.

Keywords: Black box, Nonlinear identifier, Unknown nonlinear systems, Differential
neural network, Robust property

1. Introduction. Nonlinearity and model uncertainty for most of the practical systems
present great challenge for the controller design. Therefore, it becomes necessary to iden-
tify the system model before system control can be considered. Several conventional
nonlinear identification methods have been proposed during the past decades. However,
most of these studies rely on a prior information of the system model. This assumption
is hardly satisfied for most practical systems when acquiring an exact model is quite diffi-
cult or even impossible. Engine idling process is a good example of such kind of systems.
Engine idling operating condition accounted for 1/3 of the total run time in the city con-
ditions and about 30% of the fuel consumed in this process. In order to reduce the fuel
consumption, the idle speed should be as low as possible, but too low speed will cause
engine stalling. Meanwhile, the presence of external disturbances, such as the air condi-
tioning, the power steering, the change of environmental temperature and the quality of
fuel and other factors make the engine idling system exhibit higher nonlinear, time delay
and uncertainty characteristics. These properties bring great challenge for modeling the
engine idling system and lead to severe difficulty for the controller design [1,2,30,31].
Neural network with the superiority of mapping the complex nonlinear system has been
used to identify and control the engine idling system [3-9]. Design and implementation
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of neural network-based controller for SI engine can be found in [3]. A self-adaptive ra-
dial basis function network (RBF)-based control method for the engine idle speed control
is presented in [4] and an RBF network model-based observer for idle speed control of
ignition in SI engine can be found in [5]. A differential dynamic neural network (DNN)
identifier with the application to the engine idling system is introduced in [6]. However,
the linear matrix is assumed to be known which is inaccurate for the model uncertain
engine idling system. In [7], a DNN algorithm with decoupled extended Kalman filter
(DEKF) training method is presented to solve the control problem in engine idling sys-
tem. Jagannathan and Lewis develop a DNN based nonlinear identifier in [8] and design
the neural network-based output feedback control of the engines with high EGR levels in
[9]. In addition, an excellent summarization of the identification and control of the engine
system via DNN in discrete time domain can be found in [10].

Compared to the feed-forward neural network, recent results show that DNN seems to
be more effective to identify and control high degrees complex nonlinear system for its
incomparable advantage [11-13,32,33]. Since DNN incorporate feedback to the structure
and have more powerful mapping ability, it can successfully overcome the drawback of
feed-forward neural network that the static approximation was used to model the dy-
namic behavior which inevitably leads to the disadvantage of rapid expansion of network
structure and slow convergence speed. However, there is no unified approach that can be
followed to investigate in DNN due to lack of a unified model. In view of this, a standard
DNN model consisting of a linear dynamic matrix and two nonlinear active functions is
developed in [14,15], where the conclusions were drawn that the developed standard DNN
model can map any complex nonlinear system in arbitrary degree of accuracy. Identifica-
tion by standard DNN using the sliding mode updating laws can be found in [16] and the
controller design based on the DNN identification model is investigated in [17,18]. When
part of the system state cannot be available, a model free sliding observer based standard
DNN identifier is shown in [19]. Nonlinearity in parameter DNN identifier is studied in
[20,21]. Furthermore, standard DNN identification method is extended to discrete-time
domain in [22].

Summarizing all of the aforementioned standard DNN identifier design, the dynamic
linear matrix needed to be known a priori which is impossible for the real unknown
nonlinear system. It should be pointed out that the identification error is influenced by
the dynamic linear matrix. Big eigenvalues of dynamic linear matrix may speed up the
convergence process, but at the same time, the identification accuracy is affected, so high
accuracy is hard to achieve by trial-and-error method to select the dynamic linear matrix
offline. In our previous research studies, we have designed the multi-time scales dynamic
neural network identifier for a kind of structure uncertain singularly perturbed nonlinear
system [23,24]. A dead-zone function is introduced in the updating laws to solve the
weights drift problem caused by the structure uncertainty. However, it is well known that
the dead-zone function makes the updating laws become complex and reduce the learning
speed, which also makes them impossible for practical implementation. Moreover, single
layer structure for our previous identifier design limited the ability to solve many practical
systems with arbitrary degrees of nonlinearity and complexity. Motivated by these issues,
this paper develops an adaptive standard DNN-based identification method for unknown
nonlinear systems. The main contributions of this paper can be organized as follows.

1) Lyapunov approach is used to develop the online updating laws of the proposed two
identifiers with the single layer DNN and multilayer DNN, respectively. The proposed
two DNN identifiers do not need any information of the plant model, which makes them
more convenient for practical implementation. In particular, the online updating law of
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the linear matrix achieves the improved performance compared to the general neural
network-based identifier design which rests on a prior known linear matrix.

2) By means of passivity approach, we prove that the proposed two DNN identifiers
are robust with respect to bounded disturbance and the commonly used robust modi-
fication methods (e.g., dead-zone [23,24], e-modification [25] or o-modification [26]) are
not needed. Hence, the higher learning speed can be achieved by the simplified updating
laws.

3) Online adaptation and robustness properties of the proposed identification method
make it very convenient for operating in practical application. The simulation results of
an engine idling system demonstrate the improved performance of the proposed identifier
than the conventional neural network identification method.

The reminder of this paper is organized as follows. Section 2 discusses the identifier
design with the single layer DNN without any prior knowledge about the system dynamics.
In Section 3, the results are extended to the case of the identifier design with the multilayer
DNN which makes it applicable to many complex nonlinear systems. The robustness
properties of the proposed two DNN identifiers are introduced in Section 4 by using
the passivity approach. We succeed in proving that the proposed updating laws for the
identifiers with the single layer DNN and the multilayer DNN are robust with respect to
any bounded uncertainties without using the conventional robust modification methods,
such as dead-zone, e-modification or o-modification. The identification performance is
evaluated and demonstrated in Section 5 by simulation carried out on an engine idling
system. Section 6 provides brief conclusions of this paper.

2. Identifier with the Single Layer DNN. The general nonlinear system can be
described by the following state space equation

T = f(x,u) (1)
where x € R" is the state variable, u € RP is the control input vector, and f(z,u) :

R" x RP — R™ is the unknown nonlinear vector function.
The following single layer DNN is used to identify the nonlinear system (1)

T = Az + Wio (&) + Wao(2)6 (u) (2)
where € R™, A € R™*", Wi, Wy € R™ " are the identification state, the linear matrix
and the weights of the DNN, respectively. o(z) = [o(21)---0(2,)]" € R, ¢(z) =
diag[d(z,) - - - d(2,)]"7 € R™™. The differentiable input-output function §(-) : ®? — R"

is assumed to be bounded [|§(u)||* < 4. The activation functions o(-), ¢(-) are generally

selected as sigmoid function i.e., o(+) = #@))—01’ () = m

As evidenced by [15], there definitely exist nominal constant values of the weights W},
Wy and nominal constant Hurwitz matrix A* such that the nonlinear system (1) can be
described by the following DNN model

T=A"r+W]o(x) + Wyd(x)d(u) + & (3)
where W', W5 are assumed to be the bounded unknown idea matrices, i.e., Wf‘Al‘lWI*T_g
Wi, Wi Ay "W5T < Wy, where At A, are the positive definite symmetric matrices, W,
W are prior known matrices, and £ is the modeling error.

The identification error is defined as

e=x—1 (4)
Then from (2) and (3), one can obtain the error dynamics equation

¢ = Ate + Az + Wio(2) + Wop(2)8(u) + WG + Wid(u) + € (5)
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where Wl =Wy - Wh, Wg =Wy — Wy, A = A* — A. The error of the active functions
6 =o0(zr) —o(&), d = ¢(x) — ¢(2) satisfy the following Lipchitz properties

- T -
5"Ay6 < €' Dye (¢5(u)) Ay <¢6(u)> < e Dye (6)
where A;, Ay, D,, Dy are positive definite matrices.

Lemma 2.1. [27] A € R™" is a Hurwitz matriz, R,Q € R, R = R" > 0, Q =
QT > 0. If (A,RI/Q) 15 controllable, (A, QI/Z) is observable, and ATR7'A — Q >
LATR'—RT'A)R(ATRT' - R_IA)T is satisfied, the algebraic Riccati equation AT P+
PA+4 PRP + @Q = 0 has a unique positive definite solution P = PT > 0.

Assumption 2.1. Define R=W,+W,, Q = D, +uDy+Q,, one can select proper Q,,
hence @, such that the conditions in Lemma 2.1 are satisfied, and there exists matriz P
satisfying the Riccati equation ATP + PA+ PRP +@Q = 0.

Remark 2.1. Assumption 2.1 is presented here just for the subsequent satiability analysis.
Note that in Assumption 2.1, R is related to the upper bounds of the weight matrices which
are assumed to be bounded, ) can be freely selected because of QQ,, hence the conditions
as depicted in Assumption 2.1 can be easily satisfied. Practical implementation of the
identification algorithm is free of R and Q (or Q,), and we only need to select the learning
rate as illustrated in the following theorem.

Theorem 2.1. By properly designing the Lyapunov function, we obtain the updating laws
as
A =nei”
Wy = npea’ (2) (7)
Wa = n3¢(2)0(u)e”
where 11, 1M, 13 represent the learning rate of the DNN identifier. The identifier (2)
with the updating laws (7) can guarantee the following stable properties: e € Ly, € Lo,
Wiz € Lo, A€ Lo and lim e =0, lim Wy, = 0.

Proof: Consider the Lyapunov function as follows
L=¢"Pe+n'tr {flTPfl} +my tr {valTPval} +m3 tr {W;PWZ} (8)
Then, the time derivative of L is obtained by using (5)
i =" (A*TP v PA*) e + 2T P Az + 26T PWyo(3) + 267 PWo(3)8(u)
~ 2 i3 ~
+ 2T PW#G + 26T PW;é6 (u) + 26T PE + —tr {ATPA}
m
2 ~T __ 2 T
+ —tr {W1 PWI} + —tr {W2 PWQ} (9)
72 73

By using the updating laws (7) and taking the facts A = —A, Wl’g = —WLQ, tr (sz) =
2Ty, for any y, 2 € R™*! into consideration, (9) becomes

i=er (A*TP + PA*) e+ 2eT PWiG + 267 PW; o (u) + 267 P¢

1 = - 1 =T —
+ 2tr { (i"eT + —AT> PA} + 2tr { (a(i")eT + —W1> PWI}
m 2

ot { <e(¢(:z)5(u))T + lﬁ/’f) P’W}}

13



A NOVEL ONLINE BLACK-BOX IDENTIFICATION METHOD 475
_ (A*TP + PA*) e+ 2¢T PWiG + 267 PW;gd(u) + 2¢7 P¢ (10)
From [27], one has the following matrix inequality
XTY +(XTy)" < XTAT'X + YTAY (11)
where X,Y € R™ ¥ are any matrices, and A is any positive definite matrix.
Then, from (6) and (11) we have
2¢" PW;6 < e" PWyA'WiTPe+6"A,6 < e’ (PW,P+D,)e
2¢T PW; o (u) < e’ (PWsP +uDy) e (12)
Substituting (12) into (10), one obtains
i=er (A*TP + PA*) e+ 2e" PWiG + 2T PW;gd(u) + 267 PE
< T [A*TP + PA* 4 P (W, +W,) P+ (D, + Dy + Q)| e + 267 P
< —eTQ,e + 2eT P¢ (13)
If the modeling error is zero, i.e., £ = 0, then from (13) we have
L<—e'Qpe= —|lellg, <0 (14)

Thus, e, W1 9,A € Lo, 50 T = e + x is also bounded. Then, from the error dynamics
(5), é € Ly is achieved. Further, integrating L on both sides, one obtains

/0 " lel3, = L(0) — L(co) < o0 (15)

which implies that e € Ly N Ly; using Barbalat’s Lemma in [28], we have ltlirn e=20.In
—00

view of the fact that v and o(-), ¢(-) are bounded, thus tlirn Wi = 0. Theorem 2.1 is
—00

proved.

3. Identifier with the Multilayer DNN. To take advantage of the full capability of
universal approximation of DNN and increase the identification performance, the proposed
single layer DNN identifier as described in Section 2 is further extended to the case of
multilayer DNN architecture, such that

T = Az + Wio(Viz) + Wap(Vax)d(u) (16)
where £ € R™ is the identification state, A € R"*™ is the linear matrix, Wi, Wy €
R™<™ are the weights in the output layers, Vi, V5, € R™*" are the weights in the hid-
den layers, and o(-) and ¢(-) are activation functions. For simple analysis, the differ-
entiable input-output function 6(-) : R? — R is assumed to be identify matrix I.
u = [uy,ug, -+ ,up,0,-++, 0T € R™ is the control input vector.

From the multilayer perception theory, we know that nonlinear system (1) can be
identified by the following DNN

T=A%+Wio(Vie) + Wio (Viz)u+ € (17)

where W, W5, V", V) are unknown idea matrices, A* is unknown idea linear matrix,
and the vector functions £ can be regarded as modeling error.
From (16) and (17), one can obtain the error dynamics equation

¢ = A%+ Ai + W5 + Wio(Viz) + Wi du + Wag(Vaz)u + € (18)
Where A = A* — A, /WJLQ == WI*,Q - WI,Z; 6' =0 (‘/1*:6) - O'(WZU), Q~S - ¢ (‘/Z*x) - ¢(V’2x)
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By using Taylor’s formula, one has
o= D(,‘N/Ix + 0 (‘71:17>2
2

dN)u = qu;D%%xuq + 0 (‘72:17>2 u= D¢‘~/2x + 0 (‘72:17> u

_ O0o(Vix)
(Vi)

p, =y 2, (19

D,
g 0(Vax)

where 171,2 =V —Vig, ¢=1,---,m.
From (18) and (19), we have

¢ = A*e + Az + Wi D,Viw — WD, Viz + Wyo(Viz) + WaDyVar

— WaDyVaz + Wad(Vaz)u + € (20)
where the disturbance term is
— — ~ 2 ~ 2
€ = WD, Viz + WoDyViz + Wi0 (m) + W0 (vﬂ) u+ € (21)

Assumption 3.1. The idea weights values are bounded as |[Wyl, < Wi, [|Will, < Wa,
IVille < Vi and ||Vi|| < Va. We further define the compact form of the idea weights
values as Z; = diag W}, Vi*], | = 1,2, and then we have | Z{||, < Z1, [|Z]|p < Zo,
where Wi, Via, Z12 are known boundary, and || e || is the Frobenius norm.

From [28], we know that the higher-order terms of the sigmoid activation functions in
the Taylor series are bounded as

9) (fflx)2

where C, Cy, C3, Cy are positive constants.
From Assumption 3.1, the disturbance term (22) can be further expressed as

<o+a|n 0 (Vo) u 7

< Csllul| + Cy

22
el il (22)

1€l < C5 + Ce HZ F+C'7‘Zz . (23)
where C5, Cg, C; are positive constants, 21’2 =Ziy— 212
Online adaptive laws are derived by considering the Lyapunov function as
L =e"Pe+tr {WfAfIWI} +tr {WEAEIWQ} +tr {IZT)\?)_IXN/I}
+tr {VZT)\;%} + Ayt {ATPA} (24)

Then from (18), the time derivative of L is obtained as

L = —e"Qe+ 2" PAi + 2P [Wngfflx — WD, Viz + WDy Var — W2D¢%x]
— — T . T .
+2¢7P [Wla(le) + W2¢(V2x)u] + 2eT' P¢ + 2tr {W1 )\11W1} + 2tr {W2 AQIWZ}
=T — T ~ i ~
+otr {V1 A31V1} + 2tr {V2 )\41V2} + oAt {ATPA} (25)

Theorem 3.1. Consider the nonlinear system (1) and the identification model (16), the
updating laws for the DNN are proposed as

A=s ()\Ae:%T)
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Wy = s {\Pec” (Viz) — M Pe(Viz)' D, — kA ||e]|W; }
Wy = s { A Pefp(Vaz)u]" — NoPe(Vax)" Dy — ko|e]|Ws )}
Vi=s {\s(W1D,)" Pex — kXs]le||V1 }

Vo =s {N(WDy)" Pex — kXslle||Va}

1 e > @
with s = { 0 iflle]l < @ (26)

where A1 234 are positive definite matrices, Aa, k are positive constant, and w 1is spec-
ified as w = (27" (kCF + kC3) + 2| P||Cy) /Amin(Q). The above learning laws (26) can

guarantee the following stability properties, i.e., e, A,W19,Vio € L, tlim Wl’g = 0,
—00
lim V1 2 = = 0.

t—00
Proof: Equation (25) can be further rewritten as follows
L =1L+ Ly, + Lw, + Ly, + Ly, — €' Qe + 2¢" P¢ (27)
where
L= 2\'tr {ETPA} + 2T PAi
Ly, = 2tr WIT)\ +2¢" PWyo(Viz) — 2¢" PW, D, Vi

= 2r {W2 Ay 1W2} + 2" PWoop(Vaz)u — 2¢" PW,y Dy Vi
{V Ay Vl} +2¢" PW,D,Viz
Ly, = 2tr {V2 Ay VQ} +2¢" PW,yDy Vo
By using the updating laws (26), we have
. T —~N\T — ~\T ~
L = —e"Qe + 2k|e||tr (Wf‘ - W1> W, + 2k]|e]tr (vl* . vl) "
~\T — ~\T ~ T
+2k||e]|tr (W; - WQ) Wa + 2k]|e]tr (v2 - v2) Vs + 27 Pe

~\NT ~ ~\T ~
= —"Que + 2k||e|jtr (z;—zl) Z, + 2k||e||tr (z;—ZQ) Zo+2¢TPE (28)

T ~ 2 ~
By using the fact tr <Z* — Z) 7 = <Z*,Z> < HZH 1Z|| and
F F
Equation (23), one obtains
L < =@l + 26lell || 71| (72— || ) +2xlell | Z]| (72 - | 2| )
F F F F
+ 2[le[[[| PIlI<]]
< lell Pan@llell + 26|\ 21| (|7 - 70) = 20Pi (s + G5 || 21| )
w22 (|Z],-7) -2cap1| 2] | (29)
F F F
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Thus, L is negative as long as the term in the bracket of (29) is positive. Define
Cs =271+ %, Cy = Z5+ %, and then the term in the bracket of (29) becomes

)\min(Q)||e||+2kHZ F(Hz F—og) —2||P||Cl+2k‘§2 F(‘ZQ F—og)
- Qk(HZ F—(JB/Q)Q—/~s(182/2+Amin(62)||e||—2||13*||(11+2/~C(HZ2 F—cg/z)2
— kC2/2 (30)

The above term is guaranteed to be positive as long as either

fel] > 27! (kG +kC5) +2|P|Cy _ \ fl > /24 V(C3+C)) JA+[IPC1 /K
Amin (€2) |2, > cor2+ ViCT+ B [+ TPIIC R

(31)

Thus, L is negative outside a compact set. Then UUB of |||, ‘Z - ‘22 L are

established by using the standard Lyapunov theorem extension in [28], which implies
e,Wi9,Via, A € Ly. Furthermore, & = x — e is also bounded. Then from Equation (18),
we can draw the conclusion that é € L., with the assumption that error and disturbance
are bounded. Since the control input u and o(-), ¢(-) are bounded, it is concluded that
lim Wl,g = 0, lim VLQ = 0.

t—o0 t— 00

Schematic representation of the proposed DNN identifier is illustrated as Figure 1.

u X
» Nonlinear System

il i

DNN

Updating law of
Linear Matrix A

A A

Weights updating
Laws

A A

F1GURE 1. Schematic representation of the proposed DNN identifier

A summary of the two identifiers are listed as follows.

1) Construct the single layer DNN as (2) or the hidden layer DNN as (16) to identify the
unknown nonlinear system (1). The initial values of A and Wy, Wy, V3, V5 are selected
as any random small values. o(-) and ¢(-) are usually selected as the sigmoidal function
o() = a/(1 + e™) — ¢, where a, b, ¢ are design parameters which are determined in
terms of trial-and-error methods.

2) Select the proper learning rate (through A4 and A 534) in (7) and (26) for different
practical nonlinear systems. It is well known that larger learning rates can lead to
faster convergence but extra care should be taken to avoid overshoot. There is no
preliminary offline learning phase. The weights Wy, W5, V;, V5 and linear part matrix
A are tuned online according to (7) and (26) for the single layer DNN and hidden layer
DNN, respectively.
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3) Online identification process. One can measure the system state x from the plant and
obtain the neural networks state & from Equation (2) corresponding to the single layer
DNN or from Equation (16) corresponding to the hidden layer DNN. Based on the
identification error e = x — &, the weights of single layer DNN and hidden layer DNN
are updated online according to Equation (7) and Equation (26), respectively.

4. Robust Properties of the Proposed Identifiers. It is well known that NN identi-
fication is in sense of black-box identification, and robust property needs to be considered
when confronted with uncertainty. By using the passive theory, robust properties of the
proposed two identifiers are analyzed in this section.

Lemma 4.1. [28] A system with input u(t) and output y(t) is said to be passive if it
verifies an equality of the so-called “power form”

L(t) =y u - g(t)
and satisfies the following inequality

T T
| @iz [ g -7
0 0
for all T > 0 and some v > 0, where g(t) is positive semi-definite function of the state.

Rewrite the error Equation (13) as
L < —eTQ.e + 2¢T P¢ (32)

From Lemma, 4.1, if we choose the input as £ and the output as 2Pe, then the proposed
DNN identifier is state strictly passive (SSP). The SSP property of the weight tuning
subsystem can guarantee the boundedness of the internal state in terms of the power
delivered to each block. Hence, the PE condition is not needed to ensure the boundedness
of the weights and the proposed DNN identifier is robust according to the definition in
[28].

Theorem 4.1. The proposed updating laws (7) and (26) can also keep the DNN identifier
robust to the bounded modeling error and disturbance, i.e., ¢ € Lo, Wi9 € Loo, M € Lq.

Proof: From the matrix inequality (11) we have
2" PE < " PA¢Pe+€TA;'E
Then, (16) can be expressed as
L < =" Qoe+2¢" PE < —Auin(Qo)lle]|” +e" PAcPe+E"A € < —ki([lell) +ka(lI€]) (33)

where k1 (]le]]) = [Amin(Qo) — Amax(PAeP)]|le]?, k2(][€]]) = )\maX(Agl)H{Hz. One can select
the small enough positive matrix A¢ such that Anin(Qo) > Amax(PA¢P) is satisfied. Then
from (17) and using the input-to-state stability (ISS) definition in [29], one can draw the
conclusion that the error dynamics of the DNN identifier (5) are ISS. ISS property of the
DNN identifier can ensure the boundedness of the whole learning process for the bounded
input. i.e., e € Lo, W19 € Lo, A € L. The same conclusions hold for the updating law
(26) by using the similar analysis.

Remark 4.1. It should be pointed out that ISS property of the two DNN identifiers can
ensure that the entire learning process remains bounded for the bounded input. Then from
(3), we know that bounded state and input of the system can guarantee the boundedness
of the modeling error £&. Therefore, the boundedness of the modeling error is not needed
for the tuning laws of the proposed two DNN identifiers.
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Remark 4.2. It should be noted that model uncertainties may lead to the parameter drift
problem in adaptive control community. Some conventional robust modification methods,
such as dead-zone, e-modification or o-modification, have been used to make identification
error stable. Unlike the conventional robust adaptive laws, in this paper, the passivity
approach has been successfully used to prove that the proposed two DNN identifiers are
robust with respect to bounded uncertainties.

5. A Case Research: Application to an Engine System. To illustrate the usefulness
and flexibility of the proposed identifiers, model identification of engine idling system is
discussed in this section. Engine idling system is a typical system with the characteristic
of complex nonlinearity, time-varying and structure uncertainty. The two inputs and two
outputs dynamic engine model in [15] is utilized here

I.? - kp(mai - mao)
N = k(T — Ty)
mm’ = (]. + kmlg + km292) g(P)

T;’Lao = —kmgN - kmAP + km5NP + kmgNP2

(34)

An engine model with 1.6-L four-cylinder fuel injected is selected as the simulation
parameters

(P) = 1 P < 50.6625
U= 0.0197V/101.325P — P2 P > 50.6625

2
T; = —39.22 4 325024m4, — 0.01126” + 0.6350 + 6—78 (0.0216 + 6.75 x 107*6) N

(Y 1.02 x 10~*N?
60)

N 2
To= () £Ty ey = hgg(t — 7)/(120N):  kp = 42.4:  ky = 54.26
v=(qers) T oo = ialt = 1)/120N); .

i = 0.907; ko = 0.0998; ks = 5.968 x 104 Ky = 5.341 x 10°*
ks = 1.757 x 10°% 7 =45/N

where manifold press P (kPa) and engine speed N (r/min) are the system outputs. Throt-
tle angle 6 and the spark advance § are the system inputs. 7, M4, indicate the mass air
that flows into and out of the mainfold. m,, is the air mass in the cylinder. Uncertain
disturbance load torque is expressed as Ty. Engine output torque is 7;. Load torque is
Tr. g(P) is the manifold pressure function. 7 is the time delay.

The aforementioned engine model can be expressed as a general nonlinear system

i(t) = f(x,u,1) (35)
where z(t) = (9”1 ) - (ﬁ) W= (0,0)7 and f(z,u,t) = ( ﬁgzg ) is the

X2
unknown nonlinear function.

The designed two DNN identifiers with the single layer structure (2) corresponding to
the updating laws (7) and the multilayer structure (16) corresponding to the updating
laws (26) are used to identify the engine model (35), and parameters are selected as
follows.

For the single layer identifier: a =2, b =2, ¢ = 0.5, n; = 1, ny = n3 = 200.

For the multilayer layer identifier: ¢« = 2, b = 2, ¢ = 0.5, A, = —1000, &£ = 0.05,
A = —2001, Ay = —1001, \3 = Ay = —0.051.
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Input u = (0, 6)7 is selected as § = 30sin(¢/2) and @ is a saw tooth wave with amplitude
10 and frequency 0.5. T} is selected as a square wave with amplitude 20, frequency 0.25.
The state initial values are selected as ( 10 10

T20 500

The proposed two identifiers are compared to [15] which does not consider the on-line
updating law for the linear matrix (i.e., the linear matrix A is assumed to be known a
priori). Comparative identification results are illustrated as in Figures 2-5. It can be seen
that the proposed identifier with the multilayer DNN is more accurate than the proposed
identifier with the single layer DNN, and both of them demonstrate better performance
than [15]. The reason is that the constant value of linear matrix A in [15] will influence

the accuracy of the identification results due to the time varying linear matrix A in
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the practical system. However, the linear matrix A is updated online for the proposed
identifiers, which greatly improves the accuracy of the identification results.
To further make a comparison, the performance index: root mean square (RMS) is

adopted:
RMS = <2”: 62(2')) /n

where n is the number of the simulation steps, and e(7) is the difference between the state
variables in model and system at the ith step. The RMS values of the aforementioned
identification process are illustrated in Table 1. The RMS values of the proposed identifier
with the multilayer DNN are smaller than that of the proposed identifier with the single
layer DNN, and both of them smaller than [15], which further demonstrates the better
performance of the proposed two DNN identifiers.
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TABLE 1. The RMS values for the identification error

a1 o)
Single layer 0.00032 0.64917
Multilayer 0.00012 0.00179
Ref. [15]  0.05467 4.58098

Remark 5.1. From the whole learning process, one can see that the proposed two DNN
identifiers are actually a kind of black-box identification methods, which is just based on the
state and input of the nonlinear system, and no precise plant model is needed. Moreover,
convergence speed can be adjusted by setting different learning rates and robust property
can be quaranteed during the entire learning process. These advantages make them more
convenient for practical application.

6. Conclusions. The problem of designing a black-box identification method for un-
known nonlinear systems using both single layer DNN and multilayer DNN has been
investigated in this paper. To the best of our knowledge, it is the first time that the online
updating laws are designed for both the weights and the linear part matrix A, unlike the
general neural network-based identification method, where a strong assumption about the
linear part matrix A was posed as a known Hurwitz matrix which was sometimes unrealis-
tic for the black-box nonlinear system. Moreover, by means of the passivity approach, we
succeed in proving that the proposed updating laws of the identifiers with both single layer
DNN and multilayer DNN are robust with respect to any bounded uncertainties without
using the conventional robust modification methods, such as dead-zone, e-modification or
o-modification. Simulation results of an engine idling system demonstrate that the pro-
posed identifier with the multilayer DNN is more accurate than the proposed identifier
with the single layer DNN, and both of them illustrate improved performance compared
to the general neural network identifier without considering the updating law of the linear
matrix. Further study can be carried out on the control strategies based on the identifi-
cation results.
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