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Abstract. As the basic cryptographic structure for MQQ scheme, multivariate qua-
dratic quasigroup (MQQ) has been one of the latest tools in designing cryptographic
system. However, it is limited to the operation over GF (2) and lacks the general under-
standing. In this paper, we propose a necessary and sufficient condition to verify whether
a given quasigroup of any order pkd is a bilinear MQQ over GF (pk), which shows check-
ing whether an arbitrary quasigroup is bilinear MQQ is equivalent to solving a simple
matrix equation. Based on this newly established condition, a deterministic algorithm is
proposed to judge whether or not a given quasigroup is bilinear MQQ, and to generate
bilinear MQQ if it is. Two examples are given to show the validity of our results.
Keywords: Quasigroup, Multivariate quadratic quasigroup, Vector-valued Boolean
functions, Judging method, Generating algorithm

1. Introduction. Public key cryptography (PKC) plays an important role in secure
communication. The most widely used PKCs nowadays are the number theory based
cryptosystems such as RSA, DSA, and ECC [1, 2]. However, due to Shor’s Algorithm [3],
such cryptosystems would become insecure under attacks from a large quantum computer.
As a new family of cryptosystems that can resist quantum computer attacks and that
are more efficient in terms of computation, post-quantum cryptography (PQC) has been
proposed.

Multivariate public key cryptography (MPKC) is the one among a few serious candi-
dates to have risen to prominence as post-quantum options. The security of MPKCs is
based on the knowledge that solving a set of multivariate polynomial equations over a
finite field, is proven to be an NP-hard problem [4]. A quantum computer has not yet
been shown to be efficient in solving this problem. However, this does not guarantee that
these cryptosystems are secure. In the last twenty years, MPKC was developed rapidly,
many schemes had been proposed and attacked and then amended.

Recently, based on multivariate quadratic quasigroups (MQQ) and Dobbertin transfor-
mation, Gligoroski et al. proposed a novel type of MPKC schemes called MQQ scheme
[5]. As it only needs the basic operations of XOR and AND between bits during the
encryption and decryption processes, its speed of decryption/signature generation is al-
most as fast as a typical symmetric block cipher [6]. The size of the set of MQQs is
rather large, which makes MQQ scheme have a bigger scale of private key and public
key than conventional MPKC schemes [5]. Moreover, this scheme offers flexibility in its
implementation from parallelization point of view [6]. In a recent work, MQQ scheme has
been successfully used in wireless sensor network [7]. Though the original MQQ scheme is
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considered broken now [8], if a suitable replacement for the Dobbertin transformation is
found, MQQ scheme can possibly be made strong enough to resist pure Gröbner attacks
for adequate choices of quasigroup size and number of variables [9]. In addition, using
left quadratic quasigroups, and excluding some polynomials to make MQQ non-injective,
MQQs can be still secure for signing [10]. Experience indicates that the newly proposed
signature scheme MQQ-SIG is not vulnerable under the existing successful attacks on
MQQ scheme.

However, the currently designed MQQ-SIG suffers from the common drawback of all
MPKC defined over GF (2): its public key is very big [11]. A typical technique to reduce
the public key in MPKC is to use polynomials over bigger fields GF (pk). For MQQ-SIG,
Chen et al. and Samardjiska et al. proposed respectively techniques for constructing two
different subclass of MQQs (bilinear MQQs [12] and T-MQQs [13]) as public key. Later,
Samardjiska et al. generalize the given techniques for the case of arbitrary finite field
GF (pk), and these new constructions can sharply reduce the public key size of cryptosys-
tems based on MQQs [11]. However, the above works are all to construct straight Boolean
polynomials of MQQ according to the characteristic of MQQ. Due to the fact that the
existing methods of constructing MQQs are almost all based on the sufficient conditions
for quasigroups to be special type MQQs, this will cause some MQQs may be missed.
Considering that, Zhang et al. [14, 15] gave the respective necessary and sufficient con-
ditions for quasigroups to be bilinear MQQs and strict type MQQs. At the same time,
the corresponding algorithms to justify whether quasigroups of any order 2d are bilinear
MQQs and strict type MQQs over GF (2), are proposed therein. As a result, the algo-
rithms can obtain all the bilinear MQQs and strict type MQQs theoretically. Recently, an
algorithm is proposed to justify whether quasigroup of any order pkd is nonbilinear MQQ
over GF (pk) [16]. This result can greatly increase the number of MQQs and reduce the
public key size of cryptosystems based on MQQs.

In this paper, we extend the work of [14] and propose a necessary and sufficient condition
to verify whether a given quasigroup of any order pkd is a bilinear MQQ over GF (pk),
which shows checking whether an arbitrary quasigroup is bilinear MQQ is equivalent to
solving simple matrix equations. Based on the condition, a deterministic algorithm is
proposed to judge whether or not a given quasigroup is a bilinear MQQ, and to generate
the bilinear MQQ if it is.

The rest of the paper is organized as follows. Section 2 recalls the original MQQ
generation scheme [5]. Section 3 gives the necessary and sufficient condition and algorithm
for justifying and generating bilinear MQQs. Two explicit examples are presented to show
the validity of our algorithm in Section 4. Finally, we conclude the paper in Section 5.

2. Original MQQ Generation Scheme. In this section, we will review the original
MQQ generation scheme.

Definition 2.1. (Definition 1 in [12]) A quasigroup (Q, ∗) is a set Q with a binary oper-
ation ∗ such that for any a, b ∈ Q, there exist unique x, y:

x ∗ a = b; a ∗ y = b. (1)

Lemma 2.1. (Lemma 1 in [5]) For every quasigroup (Q, ∗) of order 2d and for each
bijection Q → {0, 1, . . . , 2d − 1}, there are a uniquely determined vector valued Boolean
function ∗vv and d uniquely determined 2d-ary Boolean functions f1, f2, . . . , fd such that
for each a, b, c ∈ Q

a ∗ b = c ⇐⇒∗ vv(x1, . . . , xd, xd+1, . . . , x2d) =

(f1(x1, . . . , xd, xd+1, . . . , x2d), . . . , fd(x1, . . . , xd, xd+1, . . . , x2d)). (2)
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In general, for a randomly generated quasigroup of order 2d (d ≥ 4), the degrees of
Boolean functions are usually higher than 2. Such quasigroups are not suitable for the
construction of multivariate quadratic public-key cryptosystem.

Definition 2.2. (Definition 3 in [5]) A quasigroup (Q, ∗) of order 2d is called multivariate
quadratic quasigroup (MQQ) of type Quadd−kLink if exactly d − k of the polynomials fs

are of degree 2 and k of them are of degree 1, where 0 ≤ k < d.

If the vector valued Boolean functions defining the MQQ have no terms of the form
xsxt with s, t ≤ d or s, t > d [8], we call such MQQs as bilinear MQQs in order to differ
from other MQQs.

3. Algorithm for Justifying and Generating Bilinear MQQs over GF
(
pkd

)
. In

this section, we will establish a necessary and sufficient condition for a given quasigroup
of order pkd to be a bilinear MQQ over GF (pk), and then use this condition to propose
an algorithm for verifying whether a quasigroup is a bilinear MQQ over GF (pk) and
generating the bilinear MQQ if it is.

For convenience we adopt the following notations. In is the identity matrix of order n.
Ei,j is the shorthand for the elementary matrix of switching all matrix elements on row
i with their counterparts on row j of In. Ei,j(1) is the elementary matrix of adding all
matrix elements on row j (column i) to their counterparts on row i (column j) of In.

Definition 3.1. (see [17]) Given an m × n matrix A = (aij), vec(A) is a vector defined
as

vec(A) = (a11, . . . , a1n, a21, . . . , a2n, . . . , am1, . . . , amn)T .

Lemma 3.1. (see [17]) Let A ∈ Rm×u, B ∈ Rv×n, X ∈ Ru×v, then

vec(AXB) =
(
A ⊗ BT

)
vec(X).

Lemma 3.2. Let A = (aij)m×u, B = (blt)v×n, X = (xjl)u×v, where aij, blt, xjl ∈ {0, 1, . . . ,
pk − 1}, and p be prime number, then

vec
(
AXB mod pk

)
=

(
A ⊗ BT mod pk

)
vec(X) mod pk.

Let a quasigroup (Q, ∗) of order pkd be given by the multiplication scheme in Table 1.

Table 1. A quasigroup (Q, ∗) of order pkd

∗ 0 1 2 · · · pkd − 1

0 q
(0)
0 q

(0)
1 q

(0)
2 · · · q

(0)

pkd−1

1 q
(1)
0 q

(1)
1 q

(1)
2 · · · q

(1)

pkd−1

2 q
(2)
0 q

(2)
1 q

(2)
2 · · · q

(2)

pkd−1
...

...
...

...
...

...

pkd − 1 q
(pkd−1)
0 q

(pkd−1)
1 q

(pkd−1)
2 · · · q

(pkd−1)
pkd−1

In Table 1, q
(j)
i ∈ Q, (i, j = 0, 1, . . . , pkd − 1). For given i and ∀j ̸= j′, we have

q
(j)
i ̸= q

(j′)
i ; for given j and ∀i ̸= i′, we have q

(j)
i ̸= q

(j)
i′ . One can choose two bijections

κ : Q → {0, 1, . . . , p − 1}dk and ι : {0, 1, . . . , p − 1}k → {0, 1, . . . , pk − 1}. Collect the
elements of Table 1 into a vector(

q
(0)
0 , q

(0)
1 , . . . , q

(0)

pkd−1
, q

(1)
0 , q

(1)
1 , . . . , q

(1)

pkd−1
, . . . , q

(pkd−1)
0 , q

(pkd−1)
1 , . . . , q

(pkd−1)
pkd−1

)T

, (3)
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and convert every element of the vector into a kd-ary sequence over GF (p) according
to the bijection κ. Then, divide every kd-ary sequence into d groups from left to right,
where every group is a k-ary sequence, and denote every group by the unique element in
{0, 1, . . . , pk − 1} in terms of the bijection ι. With this method, we get a p2kd × d matrix
[b1, . . . , bd], where every bs (s = 1, . . . , d) is a p2kd dimensional column vector over finite
field GF (pk).

By Lemma 2.1, whether or not a given quasigroup is a bilinear MQQ mainly lies in
whether there is a 2d-ary bilinear function set {f1, f2, . . . , fd}, which have no terms of the
form xsxt with s, t ≤ d or s, t > d, satisfying Table 1. Observe that, for ∀s (1 ≤ s ≤ d),
the bilinear function fs(x1, . . . , xd, xd+1, . . . , x2d) can be written by

fs = (1, x1, . . . , xd)As


1

xd+1
...

x2d

 , (s = 1, 2, . . . , d), (4)

here As is a matrix of order d + 1 over GF (pk). Let

Qkd/k =



1 0 0 · · · 0 0 0
...

...
...

...
...

...
1 0 0 · · · 0 0 pk − 1
. . . . . . . . . . . . . . . . . .
1 0 0 · · · 0 pk − 1 0
...

...
...

...
...

...
1 0 0 · · · 0 pk − 1 pk − 1
. . . . . . . . . . . . . . . . . .
1 0 0 · · · pk − 1 0 0
...

...
...

...
...

...
1 0 0 · · · pk − 1 0 pk − 1
. . . . . . . . . . . . . . . . . .
1 0 0 · · · pk − 1 pk − 1 0
...

...
...

...
...

...
1 0 0 · · · pk − 1 pk − 1 pk − 1
. . . . . . . . . . . . . . . . . .
1 pk − 1 0 · · · 0 0 0
...

...
...

...
...

...
1 pk − 1 0 · · · 0 0 pk − 1
. . . . . . . . . . . . . . . . . .
1 pk − 1 0 · · · 0 pk − 1 0
...

...
...

...
...

...
1 pk − 1 0 · · · 0 pk − 1 pk − 1
. . . . . . . . . . . . . . . . . .
1 pk − 1 0 · · · pk − 1 0 0
...

...
...

...
...

...
1 pk − 1 0 · · · pk − 1 0 pk − 1
. . . . . . . . . . . . . . . . . .
1 pk − 1 0 · · · pk − 1 pk − 1 0
...

...
...

...
...

...
1 pk − 1 0 · · · pk − 1 pk − 1 pk − 1
. . . . . . . . . . . . . . . . . .
1 pk − 1 pk − 1 · · · pk − 1 0 0
...

...
...

...
...

...
1 pk − 1 pk − 1 · · · pk − 1 0 pk − 1
. . . . . . . . . . . . . . . . . .
1 pk − 1 pk − 1 · · · pk − 1 pk − 1 0
...

...
...

...
...

...
1 pk − 1 pk − 1 · · · pk − 1 pk − 1 pk − 1


pkd×(d+1)

, (5)
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by (2), (4), and Table 1, when (x1, . . . , xd) and (xd+1, . . . , x2d)
T in fs are respectively

assigned d-ary sequences in the order of {0, 1, . . . , pkd−1} where every element is denoted
by d-ary sequence over GF (pk), we have

Qkd/kAsQT
kd/k mod pk = (ρji)pkd×pkd , (6)

where ρji is the sth element of d-ary sequence obtained by dividing κ
(
q
(j)
i

)
into d groups

and writing every group by an element in GF
(
pk

)
.

Then (6) can be rewritten by

vec
(
Qkd/kAsQT

kd/k mod pk
)

= bs. (7)

By Lemma 3.2, (7) can be reshaped into(
Qkd/k ⊗Qkd/k mod pk

)
vec(As) mod pk = bs. (8)

Thus, the given quasigroup in Table 1 is a bilinear MQQ iff there is a set of matrices
{A1, . . . ,Ad} satisfying the following matrix equation(

Qkd/k ⊗Qkd/k mod pk
)
[vec(A1), . . . , vec(Ad)] mod pk = [b1, . . . , bd], (9)

where [vec(A1), . . . , vec(Ad)] is seen as an unknown matrix [x1, . . . , xd]. Let

P =
1∏

i=13

Pi, (10)

where

P1 =

pkd−1∏
j=1

pkd∏
i=1

Ei+jpkd,i(−1), (11)

P2 =
1∏

l=d−1

pk−1∏
j=1

p2kd−kl∏
i=1

Ei+jp2kd−kl,i(−1), (12)

P3 =
d−1∏
l=1

pk−1∏
j=1

pkd∏
i=1

Ei+jpkd+kl,i(1), (13)

P4 =
d−1∏
u=1

pk−1∏
l=1

p(d−u)k−1∏
j=1

pkd∏
i=1

Elp2kd−uk+jpkd+i,lp2kd−uk+i(−1), (14)

P5 =
d∏

l=1

pk−1∏
j=2

pkd∏
i=1

Ei+jp2kd−kl,i+p2kd−kl(−j), (15)

P6 =
1∏

l=d−1

1∏
i=pkd

0∏
j=p2kd−kl−pkd−1

Ei+p2kd−kl+(l−1)pkd−j,i+p2kd−kl+(l−1)pkd−j−1, (16)

P7 =
d∏

j=0

pkd−1∏
i=1

E1+jpkd+i,1+jpkd(−1), (17)

P8 =
d∏

u=0

1∏
l=d−1

pk−1∏
j=1

p(d−l)k∏
i=1

Ei+upkd+jp(d−l)k,i+upkd(−1), (18)

P9 =
d∏

l=0

d−1∏
j=1

pk−1∏
i=1

E1+ipjk+lpkd,1+lpkd(1), (19)
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P10 =
d∏

u=0

d−1∏
l=1

pk−1∏
j=1

p(d−l)k∏
i=2

Ejp(d−l)k+upkd+i,jp(d−l)k+upkd+1(−1), (20)

P11 =
d∏

l=0

d∏
j=1

pk−1∏
i=2

E1+ip(d−j)k+lpkd,1+p(d−j)k+lpkd(−i), (21)

P12 =
d∏

l=0

1∏
j=d−1

0∏
i=p(d−j)k−2

Ej+p(d−j)k+lpkd−i,j+p(d−j)k+lpkd−i−1, (22)

P13 =
1∏

l=d

1∏
j=d+1

0∏
i=lpkd−l(d+1)−1

Ej+lpkd−i,j+lpkd−i−1. (23)

Then

P
(
Qkd/k ⊗Qkd/k mod pk

)
=

(
I(d+1)2

0p2kd−(d+1)2,(d+1)2

)
. (24)

Furthermore, let

P [b1, . . . , bd] mod pk =

(
b̄1, . . . , b̄d

b̃1, . . . , b̃d

)
. (25)

If
(
b̃1, . . . , b̃d

)
= 0p2kd−(d+1)2,d, then the matrix Equation (9) has unique solution

(
b̄1, . . . ,

b̄d

)
. Thus, {f1, f2, . . . , fd} can be obtained by (4).

By now we have proved the following necessary and sufficient condition that a given
quasigroup in GF

(
pkd

)
is a bilinear MQQ in GF

(
pk

)
.

Theorem 3.1. For a given quasigroup (Q, ∗) of order pkd, change every element of (Q, ∗)
into a kd-ary sequence over GF (p) in terms of the bijection κ, divide every kd-ary sequence
into d groups from left to right, and denote every k-ary sequence by the unique element in{
0, 1, . . . , pk − 1

}
in terms of the bijection ι. Then (Q, ∗) is a bilinear MQQ in GF (pk)

of type Quadd−lLinl if and only if the matrix Equation (9) has solution. Furthermore, fs

(s = 1, 2, . . . , d) obtained by (4) are just d polynomials of the bilinear MQQ, and their
degrees are not more than 2.

Remark 3.1. Compared with the existing bilinear MQQ-generating methods which are
based on sufficient conditions for MQQs over GF

(
pk

)
[11], the method of Theorem 3.1

is based on a necessary and sufficient condition for a given quasigroup of order pkd to
be a bilinear MQQ over GF

(
pk

)
. As a result, all the bilinear MQQs can be obtained

theoretically by our work.

4. Two Examples. In this section, we use quasigroups of orders 24 and 32 to show how
our methods work. We first justify that the given quasigroups are bilinear MQQs over
GF (22) and GF (3) respectively, and then generate the corresponding polynomials.

4.1. Example 1. A quasigroup (Q, ∗) of order 24 and its corresponding representations
based on GF (22) are given in Table 2.

By Theorem 3.1, the problem of finding 2-ary quadratic functions set {f1, f2} satisfying
(2) transforms into the problem of finding 3 × 3 matrices set {A1,A2}. Furthermore,
whether {A1,A2} exists or not relies on whether the matrix equation

(Q4/2 ⊗Q4/2 mod 4)[vec(A1), vec(A2)] mod 4 = [b1, b2],
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has solutions. By new algorithm for generating MQQs, we have that

[vec(A1), vec(A2)] =



0 0
1 0
0 1
1 0
2 0
0 0
0 1
0 0
0 2



Table 2. A quasigroup (Q, ∗) of order 24 and its representations based on GF (22)

∗ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

∗ 00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33
00 00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33
01 01 00 03 02 11 10 13 12 21 20 23 22 31 30 33 32
02 02 03 00 01 12 13 10 11 22 23 20 21 32 33 30 31
03 03 02 01 00 13 12 11 10 23 22 21 20 33 32 31 30
10 10 11 12 13 00 1 02 03 30 31 32 33 20 21 22 23
11 11 10 13 12 01 0 03 02 31 30 33 32 21 20 23 22
12 12 13 10 11 02 03 00 01 32 33 30 31 22 23 20 21
13 13 12 11 10 03 02 01 00 33 32 31 30 23 22 21 20
20 20 21 22 23 30 31 32 33 00 01 02 03 10 11 12 13
21 21 20 23 22 31 30 33 32 01 00 03 02 11 10 13 12
22 22 23 20 21 32 33 30 31 02 03 00 01 12 13 10 11
23 23 22 21 20 33 32 31 30 03 02 01 00 13 12 11 10
30 30 31 32 33 20 21 22 23 10 11 12 13 00 01 02 03
31 31 30 33 32 21 20 23 22 11 10 13 12 01 00 03 02
32 32 33 30 31 22 23 20 21 12 13 10 11 02 03 00 01
33 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
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So, the corresponding bilinear Boolean functions are achieved as follows:

f1 = (1, x1, x2)A1

 1
x3

x4

 = (1, x1, x2)

 0 1 0
1 2 0
0 0 0

 1
x3

x4

 = x1 + x3 + 2x1x3,

f2 = (1, x1, x2)A2

 1
x3

x4

 = (1, x1, x2)

 0 0 1
0 0 0
1 0 2

 1
x3

x4

 = x2 + x4 + 2x2x4.

This is a bilinear MQQ.

4.2. Example 2. A quasigroup (Q, ∗) of order 32 and its corresponding representations
based on GF (3) are given in Table 3.

Table 3. A quasigroup (Q, ∗) of order 32 and its representations based on GF (3)

∗ 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 2 0 4 5 3 7 8 6
2 2 0 1 5 3 4 8 6 7
3 3 4 5 6 7 8 0 1 2
4 4 5 3 7 8 6 1 2 0
5 5 3 4 8 6 7 2 0 1
6 6 7 8 0 1 2 3 4 5
7 7 8 6 1 2 0 4 5 3
8 8 6 7 2 0 1 5 3 4

∗ 00 01 02 10 11 12 20 21 22
00 00 01 02 10 11 12 20 21 22
01 01 02 00 11 12 10 21 22 20
02 02 00 01 12 10 11 22 20 21
10 10 11 12 20 21 22 00 01 02
11 11 12 10 21 22 20 01 02 00
12 12 10 11 22 20 21 02 00 01
20 20 21 22 00 01 02 10 11 12
21 21 22 20 01 02 00 11 12 10
22 22 20 21 02 00 01 12 10 11

By Theorem 3.1, the problem of finding 2-ary quadratic functions set {f1, f2} satisfying
(2) transforms into the problem of finding 3× 3 matrices set {A1,A2}. Further, whether
{A1,A2} exists or not relies on whether the matrix equation

(Q2,1 ⊗Q2,1 mod 3) [vec (A1) , vec (A2)] mod 3 = [b1, b2],

has solution. This is a bilinear MQQ. By new algorithm for generating MQQs, we get
that

[vec(A1), vec(A2)] =



0 0
1 0
0 1
1 0
0 0
0 0
0 1
0 0
0 0


So, the corresponding bilinear Boolean functions are achieved as follows:

f1 = (1, x1, x2)A1

 1
x3

x4

 = (1, x1, x2)

 0 1 0
1 0 0
0 0 0

 1
x3

x4

 = x1 + x3,

f2 = (1, x1, x2)A2

 1
x3

x4

 = (1, x1, x2)

 0 0 1
0 0 0
1 0 0

 1
x3

x4

 = x2 + x4.
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5. Conclusions. This paper reports a method for justifying and generating bilinear
MQQs over Galois Field. We establish a necessary and sufficient condition to verify
whether the given quasigroup of any order pkd is bilinear MQQ over GF (pk), and pro-
pose an algorithm to judge whether the given quasigroup is bilinear MQQ and obtain the
corresponding functions if it is. As a result, all the bilinear MQQs can be obtained the-
oretically by our work. To find a highly efficient method for constructing bilinear MQQs
over GF (pk) is our future research direction.
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