
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2017 ISSN 1349-4198
Volume 13, Number 6, December 2017 pp. 1941–1951

EVOLVING FUZZY LOGIC RULE-BASED GAME PLAYER MODEL
FOR GAME DEVELOPMENT

Varunyu Vorachart1 and Hideyuki Takagi2

1Graduate School of Design
2Faculty of Design
Kyushu University

4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540, Japan
varunyu@kyudai.jp; takagi@design.kyushu-u.ac.jp

Received May 2017; revised September 2017

Abstract. We propose a framework for automatic game parameter tuning using a game
player model. Two kinds of computational intelligence techniques are used to create the
framework: a fuzzy logic system (FS) as the decision maker and evolutionary computa-
tion as the model parameter optimizer. Insights from a game developer are integrated
into the player model consisting of FS rules. FS membership function parameters are
optimized by a differential evolution (DE) algorithm to find optimal model parameters.
We conducted experiments in which our player model plays a turn-based strategy video
game. DE optimization was able to evolve our player model such that it could compete
well at various levels of game difficulty.
Keywords: Player model, Fuzzy logic system, Differential evolution, Video game

1. Introduction. Making games fun is one of the most important objectives in video
game development. A game should not be so difficult that it discourages a beginner, nor
so easy that it bores a skilled player [1]. There are many factors involved in creating game
engagement. One way to engage the player is to properly adjust the game parameters.
Game parameters are variable settings in a video game that control the game difficulty.
However, it is not easy to manually tune game parameters to make an enjoyable game.
Game designers must iteratively tweak the game parameters to achieve a design plan [2].
This is a laborious and time-consuming task. With a limited production schedule, game
designers need new tools to speed up the game parameter tuning process.

Our goal is to design a methodology for helping game developers by fine-tuning game
parameters automatically. At the same time, the system should allow game developers to
easily use their game expertise to assist in the tuning process.

As the first step toward the automatic tuning of game parameters, this paper proposes
a game player model to be used for game development. A game player model is a compu-
tational model which represents the interactions between a human game player and the
video game environment from a specific point of view. In a broader sense, the form of the
representation can be cognitive, affective, or behavioral [3]. We focus on the player’s deci-
sions for the game’s input. Hence, a human game player is replaced with our player model
as shown in Figure 1. Subsequently, we let the model play the game repetitively with
different settings and variations to automatically search for desirable game parameters.

Our game player model uses computational intelligence approaches for knowledge-based
modeling and optimization. Similar to pioneering work on improving fuzzy logic systems
(FS) for process control with genetic algorithms [4], our system consists of an FS to express
the insights from a skilled game player, and evolutionary computation (EC) to search for

1941

1942 V. VORACHART AND H. TAKAGI

Figure 1. (a) A human game player is replaced by (b) a player model

the optimal FS parameters. We expect that our model should evolve and produce better
performance than if modified manually by an expert game developer, thanks to EC, and
confirm this result in this paper.

Following this section, we provide a background on some game player models and related
topics in Section 2. Our proposed player model is explained in Section 3. Section 4 shows
our experiment setup, results and discussions thereof. Finally, our conclusions and plans
for future works are presented in Section 5.

2. Background and Related Topics. The role of player models is to either manipulate
a game itself or to inform game designers about a game player’s experiences or behaviors
[5]. However, modeling a game player to assist video game designers, which is also known
as designer modeling, is still in its early stages [3]. This type of player model can be
viewed as a second-order player model [5]. That is, a player’s behaviors simulated by the
player model are evaluated with the intention of aiding the game designer.

‘Game player model’ is an umbrella term for how to represent specific information when
a game player interacts with a video game. There are many kinds of player models with
different intended purposes, scopes of application, sources of derivation, and domains
of finding [6]. Our model can be described as an individual analytic action generator
following the terminology of Smith et al. [6]. This is a model that generates game inputs
for an individual player from an automated method that examines the mechanisms of
a game play. In our case, an FS is used as the analytical tool to generate the player’s
actions.

Due to its simple, yet expressive and powerful algorithm, FS is a very popular artificial
intelligence approach in video games (game AI), both commercially and academically
[7]. With relatively less effort to incorporate into an existing game design, FS has been
used in commercial video games, typically in the form of a fuzzy state machine. Many
successful games in various genres – for example, a first-person shooter like Unreal, a
turn-based strategy game like Civilization: Call to Power, and a simulation game like
The Sims – have applied fuzzy logic to their AI mechanisms [7]. For academic game AI,
FS is often implemented as an extension to other computational intelligence techniques
forming more-advanced game AI methods. Examples are fuzzy neural networks, fuzzy
Q-learning, and the evolutionary fuzzy systems that our player model is based on.

An evolutionary fuzzy system is a hybrid system between EC and FS. It incorporates
the linguistic expressivity of FS and the adaptive learning capabilities of EC. Many game
AI researchers have applied EC techniques with FS to controlling game characters, for
instance, an evolutionary strategy for a Pac-Man game [8], coevolution [9] and a genetic
algorithm [10] for a racing game. Previously, evolutionary fuzzy systems have been used
generally to manipulate game characters. However, in our automatic game parameter
tuning, it is developed as a tool for the game designer instead.

EVOLVING FUZZY LOGIC RULE-BASED GAME PLAYER MODEL 1943

3. Framework for Game Player Model.

3.1. Interaction with video game environment. We design our player model based
on the interaction between a video game player and a video game environment. We con-
sider the video game environment as a set of game states with three-actions loop: input,
update, and output. A game receives commands from a game player to change its states
via game inputs. The game then updates its states and responds back to a game player
via game outputs. Therefore, a player receives game responses and makes a decision
accordingly. Later on, the player transforms the decision into game commands and re-
sponds back as game inputs. The game loop continues iteratively until the game ends.
The relationship between player decisions and game responses establishes the foundation
of our player model’s framework.

3.1.1. Hierarchy of player decision. We model a player decision while playing a video
game in a top-down approach, from an abstract idea down to concrete game commands.
This hierarchy of the player’s decisions consists of a decision, an action, and a game
command. First of all, a strategic plan to achieve the game’s objective yields a target
decision according to the current game states. Next, the player constructs a series of
actions to accomplish the target decision. Then, the player inputs game commands along
with their corresponding parameters to control the game according to the decided actions.

3.1.2. Levels of game responses. In response to player inputs, a video game sends out data
that can be classified as game states and game information. Game states represent the
current value of variables in the game environment, and game information is the reaction
from the game to the corresponding decision hierarchy. Depending on this information,
the subsequent game command is either a follow-up to the preceding ones or a call for a
new decision.

We classified game information with a bottom-up approach, from command feedback up
to decision calls. The levels of game information therefore consist of command feedback,
action results, and decision calls. Firstly, a command feedback is a quick response made
to game command inputs or their parameters. It would include, e.g., a notice that a
command was invalid or give the expected range of a command parameter. Secondly, an
action result is when the game state is updated in response to an issued action command.
This indicates progress towards or recess away from a player’s target decision. Finally,
a decision call is a request for a new decision which will be consumed as game input. A
special kind of decision call, namely a critical call, must be noted [11]. This call requires
an immediate resolution from the player. Without a suitable response, the player’s game
states may become worse and the player may even lose the game.

3.2. Game player model. The association between the hierarchical levels of player
decisions and the matching game information is used as the underlying mechanism for
our game player model, as presented in Figure 2. Output from a video game environment
is parsed by a game interface and supplied to a decision maker to generate a player
decision. Later, a game command generated from this decision is dispatched back as an
input to the game. Each module is discussed in more detail in the following subsections.

3.2.1. Game interfaces. Our player model communicates with a game environment throu-
gh a game interface module, as shown in Figure 1(b). The interface mainly consists
of a game parser and a command dispatcher. A game parser extracts necessary game
information and game states from game outputs. Depending on the video game, the
output format may be textual, visual, auditory, haptic, etc. Game information is used to
evaluate issued actions or commands while game states are supplied to a decision maker.

1944 V. VORACHART AND H. TAKAGI

Figure 2. Data and information flow between a video game environment
and our player model

Essential game states are stored internally to keep track of past game states. The ability
of a player model to store a large number of past game states is an advantage over a
human player’s restricted memory.

Afterwards, when the game requests an input, a command dispatcher delivers inputs to
the game environment in a suitable format. In general, there are two types of game inputs:
an action command that modifies a game state and a query command that retrieves the
current game state. For a player to make a correct decision in a game, a necessary amount
of game states must be gathered carefully with a certain degree of accuracy either by
querying the game directly or deducing them from other game states implicitly.

3.2.2. Decision maker. The brain of our player model is the decision maker module. Game
player experts express their decision-making knowledge linguistically with fuzzy logic rules
(FS rules). This requires less effort for non-technical professionals to present their exper-
tise in the domain. The main advantage of FS is that it is easy to create, understand, and
maintain. In addition, new findings may be discovered from the optimized FS parameters
due to their high level of interpretability.

The FS consists of three major components as illustrated in Figure 3: FS rules, member-
ship functions, and the FS reasoning engine. Firstly, the FS rules specify the relationship
between game states, in the form of FS inputs and Boolean inputs, and their consequent
game decisions. The game developer provides knowledge of game decisions with FS rules.
Figure 4 shows an example of FS rules implemented in our experiments. Secondly, the
membership function is an interpretation of the FS variable used in the rules. The func-
tion is governed by function parameters that define the shape of the function and lead to
a certain resulting decision. Membership function parameters can be assigned manually

(b)

FS

reasoning

engine

FS
rules

membership

functions

expert

player

DE

optimizer

Decision MakerDecision Maker

expert

player

FS

reasoning

engine

FS
rules

membership

functions

(a)

Figure 3. The decision maker in our player model. While an expert player
uses his or her skills to create FS rules, the FS membership function pa-
rameters are tuned by either (a) an expert player or (b) a DE optimization
algorithm.

EVOLVING FUZZY LOGIC RULE-BASED GAME PLAYER MODEL 1945

by a skilled game player or optimized automatically by an optimization algorithm. Lastly,
the FS reasoning engine examines current values of game states according to the supplied
FS rules and membership functions and calculates player decisions accordingly.

Designing FS rules is a demanding task for a novice. Three features have been developed
to aid in the creation of FS rules: a modular FS table, multiple-output decisions, and FS
table re-evaluation. The modular FS table reduces table size drastically by dividing FS
rules into smaller tasks. Smaller tables are easier to create and maintain than larger and
complicated ones. Multiple-output decisions allow many decisions to be expressed via a
single rule. Depending on the design of player’s behaviors, a game developer is able to
provide optional decisions and let differential evolution (DE) optimization find the right
decision instead. FS table re-evaluation activates automatically when an FS decision
generates an invalid command feedback due to unexpected game events or mistaken game
information retrieval. In this case, the FS will be re-evaluated with the false decision
disabled. This ensures a new decision will be made by the FS reasoning engine.

In our implementation, the output decision from the FS reasoning engine is specified
in the form of a decision function. The decision function is called to generate a series of
actions to achieve the target decision. Each action is then mapped to one or more game
commands with their corresponding parameter(s). Command parameters are computed
by a certain formula or optimized as preset values by DE optimization.

3.2.3. Player model parameter optimization. We select key parameters from the deci-
sion maker discussed in the previous subsection, namely the FS membership parame-
ters, multiple-output decision parameters, and the preset command parameters, as player
model parameters. In our experiments, these parameters are adjusted manually by a
skilled game player or optimized automatically by a parameter optimization algorithm.

Although, in general, any population-based optimization method could be used, we
select a DE algorithm to optimize our player model’s parameters. The main advantages
of DE are its simplicity and ease of use. Moreover, DE is efficient for optimizing real-
valued, multi-modal problems. It yields good convergence properties and performs well
at avoiding local optima.

We use DE optimization in several parts of our player model. The primary use is to
optimize FS membership parameters for decision making. During the FS inference process,
an FS membership function maps an FS input variable and its degree of membership to
a numerical value. With different sets of FS membership parameters, various numerical
interpretations of the fuzzy terms are achieved and result in different game decisions.
Additionally, we use DE optimization to search for the best multiple-output decision in
an FS rule. For this, the rule weight is divided proportionally according to the weight
given for each distinct output by the DE optimizer. The divided rule weights are added to
the output weight of the corresponding output decisions. The output with the maximum
weight is selected as the FS decision. This decision may point to another FS table for
further reasoning computation or call a decision function for action planning and game
command generation. Furthermore, we assign the value of a gene element to the preset
value of command parameter. The preset values are used directly as command parameters
or indirectly as numerical constants for some calculations.

While playing a game, the player model parameters determine decisions which generate
all game actions. These generated actions interact with the video game environment and a
variety of game states emerge. At the end of the game, selected game states are evaluated
as a fitness score in the search for the population’s best DE individual, representing the
best player of the game.

1946 V. VORACHART AND H. TAKAGI

4. Experiments of Evolving Game Player Model.

4.1. Star Trek game. We use Star Trek, a turn-based text strategy game [12], as a test
bed for our player model. A player controls the Starship Enterprise to survey the 8 ×
8 quadrants of an unexplored galaxy. The objective is to destroy all Klingon spaceships
within a given game time. Two kinds of weapon can be used for an attack: photon
torpedo or phaser. A player has to manage the energy for navigation, attack, and shield.
The energy can be recharged at one of the Starbases located throughout the galaxy.

Following from the game play outlined above, there are three game parameters for
controlling game difficulty: (1) the game time limit for destroying all Klingons, (2) the
number of Klingons, and (3) the number of Starbases. Among these parameters, the game
time has a direct effect on the game difficulty. The less game time is, the greater the game
difficulty is regardless of how the galaxy map is initialized. The difficulty also depends on
the number of Klingons and their distribution throughout the galaxy. In general, the more
Klingon spaceships, the greater the game difficulty. Finally, the number of Starbases has
less effect on the game difficulty because it is not directly related to the game’s objective:
destroy all enemies within a limited time. Hence, we adjust only game time and the
number of Klingons to control the game difficulty in our experiments.

4.2. FS engine and DE optimization. We obtain input data to the FS decision maker
by parsing screen text from the game output. Thus, the player model perceives the same
information as a human player. This ensures that all decisions are made according to the
game outputs, not data which is internal to the game environment.

For the FS decision maker, we create five modular tables (i.e., MAIN, ATTACK, NAV-
IGATE, TO STARBASE, and TO KLINGON) consisting of five binary FS inputs (LOW
or HIGH) and nine Boolean inputs. Selected FS tables and their modular relationship
are shown in Figure 4.

FUZZY 1 MAIN
SHIELD

ENERGY

KLINGON

EXISTS

SHIELD

AVAILABLE

STARBASE

EXISTS DECISION

LOW YES NO YES TO_STARBASE

LOW YES NO NO ATTACK

LOW YES YES YES set_shield_energy()

LOW YES YES NO set_shield_energy()

LOW NO NO YES TO_STARBASE

LOW NO NO NO NAVIGATE

LOW NO YES YES TO_STARBASE

LOW NO YES NO NAVIGATE

HIGH YES NO YES TO_STARBASE

HIGH YES NO NO ATTACK

HIGH YES YES YES ATTACK

HIGH YES YES NO ATTACK

HIGH NO NO YES TO_STARBASE

HIGH NO NO NO NAVIGATE

HIGH NO YES YES TO_STARBASE

HIGH NO YES NO NAVIGATE

3 NAVIGATE
WEAPON

AVAILABLE

ENERGY

LEFT

TIME

LEFT DECISION

YES HIGH HIGH TO_KLINGON

YES HIGH LOW TO_KLINGON

YES LOW HIGH TO_STARBASE

YES LOW LOW TO_KLINGON

NO HIGH HIGH TO_STARBASE

NO HIGH LOW TO_STARBASE

NO LOW HIGH TO_STARBASE

NO LOW LOW TO_STARBASE

2 ATTACK
KLINGONS

HIDDEN_ALL

TORPEDO

AVAILABLE

PHASER

AVAILABLE DECISION

YES YES YES
torpedo_to_klingon()

& phaser_to_klingon()

YES YES NO move_to_expose_klingon()

YES NO YES phaser_to_klingon()

YES NO NO TO_STARBASE

NO YES YES
torpedo_to_klingon()

& phaser_to_klingon()

NO YES NO torpedo_to_klingon()

NO NO YES phaser_to_klingon()

NO NO NO TO_STARBASE

Figure 4. Three out of five modular FS tables used in Star Trek game.
Two FS rules in the ATTACK table (top right) use the multiple-output
decision feature. They are indicated by the “&” symbol in the decision
column.

EVOLVING FUZZY LOGIC RULE-BASED GAME PLAYER MODEL 1947

Figure 5. Parameter coding in DE population individuals. We imple-
mented our DE optimizer to search for (a) optimal triangular shapes for
FS membership functions, (b) optimal decisions for the multiple-output FS
rules, and (c) optimal preset values for command parameters.

For FS inference by membership function, we implement a triangular-shaped member-
ship function for its quick computation and minimum number of function parameters.
The shape of each membership function is determined by the gene elements in DE pop-
ulation individuals, as presented in Figure 5(a). The height of each triangle membership
function is exactly one. At any position along the x-axis, the summation of overlapped
membership functions always equals one. To represent a series of triangular functions,
one gene element serves as the position along the x-axis where the function shape reaches
its peak. This same position is also a base, at zero height, of the preceding and following
triangle. Hence, two gene elements represent a membership function with two degrees of
membership: LOW and HIGH and three gene elements represent a membership function
with three degrees of membership: LOW, MEDIUM, and HIGH. A minimum and max-
imum value for each FS variable is specified by an expert player and the DE algorithm
fits the optimized parameters within this range.

In addition to membership parameter optimization, we use DE to optimize the multiple-
output decisions in the FS rules and the preset values of some command parameters. Both
features are illustrated in Figures 5(b) and 5(c) respectively. In multiple-output optimiza-
tion, each gene element represents the weight of an output decision. When calculating the
rule weight, the optimized output weights split the specific rule weight for each output
proportionally. In preset command parameter optimization, the gene element is directly
used as a constant for the specific command in the whole game. For example, when the
FS decision is phaser to klingon() and there is only one Klingon in a quadrant, the player
model will fire phasers with an energy of g16.

For the DE algorithm environment, we set the scale factor and crossover rate to 0.9 and
0.8, respectively. Our DE employs the DE/best/1 mutation scheme and uses a binomial
crossover operator. We provide 40 DE populations to optimize 22 model parameters:
10 FS membership function parameters, 2 multiple-output decision parameters, and 10
preset command parameters. Each individual in the population is represented by an array
of 22 real numbers.

For a specified number of Klingons, we initialized ten galaxy maps with different Klingon
distributions. The map distribution is incremental: a new Klingon is placed in a random
location while the existing Klingons’ locations are unchanged. With each setting of the
game parameters (i.e., game time and the number of Klingons), each individual of the
population plays the same set of ten Star Trek games with different initial galaxy maps.

fitness score = average game scores + win ratio (1)

1948 V. VORACHART AND H. TAKAGI

game score = 0.60 ∗ #destroyed enemies

+ 0.30 ∗ #found enemies

+ 0.10 ∗ (win game ? #remaining time : 0.0)

(2)

win ratio =
#win games

#total games
(3)

The fitness function, shown in Equation (1), is an average of the scores of ten games
plus a win ratio incentive. The objective of the fitness function is to win more games or, if
unavoidable, lose by as little as possible. The game score in Equation (2) is calculated by
the weighted sum of three normalized final game states. Firstly, the number of destroyed
Klingons is selected to motivate destroying more Klingons, which eventually leads to
winning a game. Hence, the largest weight is assigned to this number. Secondly, the
number of Klingons found in the galaxy is chosen to encourage better exploration; we
cannot win a game unless all Klingons are discovered. Finally, the remaining time is used
to distinguish the best winner from average winners. When winning the same game, the
faster win is preferable. A win ratio, shown in Equation (3), is a motivation to win more
games.

4.3. Simulation setups. We simulated our player model at various levels of game diffi-
culty. Each game difficulty is obtained by altering two game parameters: the number of
Klingons and the game time. Increasing the number of Klingons or decreasing the game
time result in more difficult games. The number of Starbases was fixed at three due to its
diminished impact on game difficulty. We characterize game difficulty into the three levels
of easy, medium and hard. For each game parameter, we choose three values at an equal
interval that is large enough to distinguish between the three levels of game difficulty.

Klingon spaceships are randomly distributed throughout 64 quadrants. To give a suit-
able occupation rate, we use settings of 10, 15, and 20 Klingon spaceships for easy, medium
and hard. If the Enterprise is in perfect condition, it takes 20 Stardates to survey the
entire galaxy. Thus, we determine that 40 Stardates is a moderate time to complete the
games mission, so settings of 30, 40 and 50 are used for hard, medium and easy. The
combination of the two game parameters settings establishes the total number of game
difficulty parameters sets as nine.

We conducted 18 sets of simulations to evaluate the tuning capabilities of our player
model: nine for DE-optimized tunings and another nine of the same game parameter
setups for manual tunings. For DE-optimized tunings, we ran the DE simulation 50 times
with different initial populations. Each individual population plays ten Star Trek games
with unique galaxy maps. For manual tunings, we created three sets of player model
parameters to play against 10, 15 and 20 Klingons at all three game times (30, 40, and 50
Stardates) for the same set of ten Star Trek galaxies once and then compared the results
with the DE-optimized tunings.

4.4. Results and discussions. For each set of simulations, we plotted the best fitness
scores and the corresponding maximum numbers of games won in Figures 6(a) and 6(b),
respectively. The left side of both graphs shows the nine fitness scores from the manual
tunings, and the right shows the evolution of the nine averaged best fitness scores in
50 runs from DE optimizations. All DE-optimized tunings reached their stable states
within 200 generations. All optimized player model parameters performed better than
the manual tunings with the corresponding game parameters in all 50 runs. The only
exception is with the most difficult game settings, with the maximum number of Klingons

EVOLVING FUZZY LOGIC RULE-BASED GAME PLAYER MODEL 1949

Figure 6. (a) The best fitness score and (b) the corresponding maxi-
mum numbers of games won from manual tunings (points graph) and DE-
optimized tunings (line graph). We conducted experiments with nine game
parameter setups, which were obtained by varying the numbers of Klingons
(k) and game time (t).

Table 1. Results from the Friedman test and the Holm’s multiple com-
parison test. The symbols of ≪, < and ≈ mean that there is a significant
difference with significant level of 1%, 5%, and no significance, respectively.
The subscripts of man, 1st, and 200th refer to the fitness values obtained by
manual tunings, DE-optimized tunings at the 1st generation and at the
200th generation, respectively. Fitness values of DE-optimized tunings are
the average of the best fitness scores from 50 trial runs.

Game
parameters

Best fitness score Number of won games (out of 10)

k = 10, t = 50 1.53381st ≪ 1.6741man ≪ 1.9343200th 7.121st ≪ 8man ≪ 10.00200th

k = 10, t = 40 1.23561st ≪ 1.4446man ≪ 1.9108200th 4.661st ≪ 6man ≪ 9.94200th

k = 15, t = 50 1.17591st ≪ 1.6276man ≪ 1.7724200th 4.421st ≪ 8man ≪ 9.08200th

k = 20, t = 50 0.7987man ≈ 0.81731st ≪ 1.3838200th 1man ≪ 1.581st ≪ 5.88200th

k = 15, t = 40 0.80701st ≪ 1.0430man ≪ 1.2195200th 1.621st ≪ 3man ≪ 4.62200th

k = 10, t = 30 0.84731st ≈ 0.8511man ≪ 1.1640200th 1man ≪ 1.561st ≪ 3.84200th

k = 20, t = 40 0.59501st < 0.6000man ≪ 0.7960200th 0man ≈ 0.041st ≪ 0.9200th

k = 15, t = 30 0.55601st < 0.5660man ≪ 0.6931200th 0man ≈ 01st ≪ 0.1200th

k = 20, t = 30 0.4740man ≪ 0.49331st ≪ 0.5808200th 0man N/A 01st N/A 0200th

(20) and the minimum game time (30 Stardates); here the best fitness improves a little
and cannot win even a single game.

Table 1 compares the simulation results among three groups of parameter tunings: man-
ual tunings, initial generation and stable generation of DE-optimized tunings. Initially,
the manual tuning by an expert player performed significantly better than the 1st gener-
ation of DE optimization in six out of nine setups, especially in a group of easy games.
However, within a few generations, the results from the DE optimization outperformed
the manual tunings in all cases. This demonstrates that manual tunings by a skilled
player played the game well to a certain degree. It is common for a population-based
optimization to perform better than a human due to the size of its searching population.
The optimization method also provides solution parameters with a higher degree of pre-
cision than those can be achieved via human adjustment. Even though human experts
can design the FS rules reasonably well, the interpretation of FS inputs with membership
functions may not be an easy task.

1950 V. VORACHART AND H. TAKAGI

From Table 1, we can clearly classify these nine game parameter setups into three
difficulty levels. The first three rows are the easy-level games with an almost 100%
winning rate and have the most optimization improvement. The last three rows are hard
games with a winning rate less than 10% and hardly have any improvement at all. This
is likely because the hard games have such a low winning rate at the start and therefore
create a weak selection pressure to search for better solutions. On the contrary, the easy
games have higher initial winning rates and generate a stronger selection pressure to
search for optimal solutions.

5. Conclusions. The experiments demonstrated that our game player model was prac-
tical for competition in a turn-based strategy game with both manual and DE-optimized
tunings. Thanks to DE optimization, our player model evolved reasonably well and the
optimized model parameters generated better fitness scores than traditional expert tun-
ings in all game-difficulty levels. The design of rule-based reasoning for decision making
still requires the knowledge of a domain expert. The combination of an FS decision maker
and an EC-based approach to parameter optimization, which is not just limited to the
DE technique, is a feasible framework for automatic game parameter tuning.

For future works, we need to improve the performance of our player model. Even
though our optimized player model provides us with good results, its performance is still
not comparable to expert players. When our player model is strong enough, we can then
use it to coevolve with the game parameters. As illustrated in Figure 7, another EC
optimization will evolve the game parameters and evaluate its population based on their
counter interaction with the optimized game player model, and vice versa. Applying the
competitive coevolution algorithm, our game player model will evolve to win as many
games as possible for a given game difficulty while game parameters will evolve to search
for more difficult game settings for the model. We hope that, with a robust player model,
automatic game parameter tuning will become more practical for real-world applications.

Figure 7. Future works are shown as dashed in the diagram. We will
use a coevolutionary algorithm to evolve game parameters along with our
proposed player model.

REFERENCES

[1] P. Spronck, I. Sprinkhuizen-Kuyper and E. Postma, Difficulty scaling of game AI, Proc. of the 5th
International Conference on Intelligent Games and Simulation (GAMEON’2004), Ghent, Belgium,
pp.33-37, 2004.

[2] M. O. Riedl and A. Zook, AI for game production, IEEE Conference on Computatonal Intelligence
and Games, Niagara Falls, Canada, pp.1-8, 2013.

[3] G. N. Yannakakis and J. Togelius, A panorama of artificial and computational intelligence in games,
IEEE Trans. Computational Intelligence and AI in Games, vol.7, no.4, pp.317-335, 2015.

EVOLVING FUZZY LOGIC RULE-BASED GAME PLAYER MODEL 1951

[4] C. Karr, L. Freeman and D. Meredith, Improved fuzzy process control of spacecraft autonomous
rendezvous using a genetic algorithm, Proc. of SPIE – The International Society for Optical Engi-
neering, vol.1196, pp.274-288, 1990.

[5] A. Liapis, G. Yannakakis and J. Togelius, Designer modeling for personalized game content creation
tools, The 9th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
Boston, USA, pp.11-16, 2013.

[6] A. M. Smith, C. Lewis, K. Hullett, G. Smith and A. Sullivan, An inclusive view of player modeling,
Proc. of the 6th International Conference on Foundations of Digital Games, Bordeaux, France,
pp.301-303, 2011.

[7] M. Pirovano, The Use of Fuzzy Logic for Artificial Intelligence in Games, University of Milano,
Milano, Italy, 2012.

[8] H. Handa and M. Isozaki, Evolutionary fuzzy systems for generating better Ms.PacMan players,
IEEE International Conference on Fuzzy Systems, Hong Kong, China, pp.2182-2185, 2008.

[9] S. Guadarrama and R. Vazquez, Tuning a fuzzy racing car by coevolution, The 3rd International
Workshop on Genetic and Evolving Fuzzy Systems, Witten-Bommerholz, Germany, pp.59-64, 2008.

[10] D. Perez, G. Recio, Y. Saez and P. Isasi, Evolving a fuzzy controller for a car racing competition,
IEEE Symposium on Computational Intelligence and Games, Milano, Italy, pp.263-270, 2009.

[11] B. Vallade, A. David and T. Nakashima, Three layers framework concept for adjustable artificial
intelligence, Journal of Advanced Computational Intelligence and Intelligent Informatics, vol.19,
no.6, pp.867-879, 2015.

[12] P. David, Flights of fancy with the enterprise, Byte Magazine, vol.2, pp.106-113, 1977.

