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ABSTRACT. This work proposes a mon-parametric nonlinear Bayesian mode filtering
technique for estimating the state of discrete time dynamical systems. The mathematical
model of the system can be evaluated for any input of interest, and the corresponding
output can be obtained without any knowledge of the model internal functioning. In the
proposed method, a set of weighted samples are updated by evaluating the system state
transition function, and then the kernel function based non-parametric approzimation of
the weighted samples is used to estimate the prior probability. The natural evolution gra-
dient of the posterior conditional probability is derived, and hence a Monte Carlo method
is applied to recursively locate the mode of the posterior conditional probability. The two
dimensional Van der Pol oscillator system is considered as a numerical example. The
simulation results show superior performance compared to the standard Particle filter,
especially in the cases with small number of particles.

Keywords: Bayesian filtering, Mode filtering, Natural gradient, Fisher information ma-
trix

1. Introduction. Bayesian filtering techniques are widely applied in many real-world
applications to estimate unknown quantities given a set of noisy observations and knowl-
edge of the system dynamics. The most popular applications include, but not limited to,
tracking, extraction of signals of interest from contaminating environments, and estimat-
ing the dynamic states for regulating the systems, for example, see [1-6]. In most of the
cases, the unknown quantities can be featured by a dynamic equation and are observed by
a measurement equation, which together form the so-called dynamic state space model.
For such a problem, one can adopt a Bayesian filtering approach, and thereby recast the
problem to one of tracking a hidden process given a set of noisy observations and the
knowledge of both the dynamic process and observation equations [7].

In many applications, the numerical solution of mathematical models could result in
high-dimensional outputs. For instance, the dimension of the space aircraft usually is
greater than ten, and the models in geophysics have much higher dimensions [8]. Tt is
often hard or sometimes even impossible to directly manipulate those system functions,
and the only thing one can do is to evaluate the system functions at some particular
inputs to obtain the corresponding outputs. From the point of view of filter designer,
these are forward models, and hence the estimation error covariance matrix cannot be
analytically updated. Moreover, the system is not guaranteed to be linear, making the
celebrated Kalman filter not suitable for such applications. This is also true for the
Extended Kalman filter, which requires the derivatives of the system functions [9].

Monte Carlo filtering, like Particle filters, is a compromise choice for this kind of prob-
lems [10]. In these filters, a set of weighted samples updated by the system state transition
function is used to approximate the prior probability density, and when an observation
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is available, the relative likelihood of the forecast estimates are calculated to update the
importance weights. The updated weighted samples are then used to approximate the
posterior probability density. However, the computation effort largely depends on the
number of evaluation of those functions [11]. Given a particular slot of computation time,
the number of evaluations can be limited. Moreover, although the Particle filter is a fully
nonlinear Bayesian filter and the weighted samples are believed to represent the posterior
probability, the optimal estimate from the Particle filter, i.e., the convex combination of
those samples, could be far from the true state when the number of samples involved
in the estimation is small and/or the mathematical model is not accurate enough [12].
Given that the estimate of the Particle filter is the weighted sum of the forecast samples,
if the true state cannot be described as a convex combination of the forecast samples, the
Particle filter may not generate an adequate estimate. To tackle this problem, we develop
a non-parametric probability density estimation method based on the forecast weighted
samples to estimate the probability density at any point in the state space.

Given the knowledge of the prior probability at every point of the state space, the mode
of the posterior probability is regarded as the optimum of an objective function, and its
corresponding natural gradient is derived to design a Monte Carlo maxima searching
algorithm [13]. This algorithm could be considered as a variants of the Covariance Matrix
Adaptation Evolution method, which would locate the posterior estimate at any point
outside of the convex space if it has higher estimated posterior probability density.

This paper is organized as follows. Section 2 describes the system to be filtered, and in-
troduces the Bayesian formulation of the state estimation problem. Section 3 discusses the
limitation of the Particle filters and introduces a non-parametric probability estimation
method for weighted samples. A natural gradient based Monte Carlo searching technique
is proposed in Section 4 to estimate the mode of the posterior probability. Finally, a nu-
merical example is presented in Section 5, and the performance of the proposed algorithm
is tested wherein. Section 6 concludes the paper.

2. Problem Formulation.

2.1. System descriptions. The considered discrete time nonlinear system with additive
white noises can be described as follows

Tn+1 = f(xn) + Wy (1)
Yn = h(zy) + vp, (2)

where x,, € R™ and y,, € R™ refer to the system state and its corresponding observation
at time instant, n, n, and n, are the dimensions of the state x and the observation y,
respectively. w, ~ N(0,Q) and v, ~ N(0, R) are the process white noise and observation
white noise, respectively. Operator f(-) is the states transition function and h(-) is the
observation function. They are both deterministic, and in this work they are assumed to
be forward model functions, i.e., they could only be used to evaluate the output at any
particular input.

In a Bayesian context, the estimation problem is to quantify the posterior density
p(,|Yn), where Y, is made of all observations up to the estimation time n, i.e., Y, =
{y1,y2, - ,yn}. The Bayesian inference of state estimation involves computing

_ pWnlwn)p(@a|Ya1)
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where the prior probability p(z,|Y, 1) is given by

p(mn|Yn—1) = /p(mn|mn—17Yn—l)p(l‘n—1|Yn—1)dmn—1- (4)

Here, the previous posterior density is identified as p(x,_1|Y,_1). Since the denominator
of (3) is actually a constant, (3) is rewritten as

P(@n]Yn) = cp(ynlzn)p(zn|Yn_1), (5)

where the normalization constant

=1 / [ Pl ot Vi),

The filtering problem consists of recursively estimating the state z,, given observations
Y,. There are three widely used criterion functions for estimation [14]. The first is to min-
imize [ ||z, — &,||p(x,|Yy)dx,, and its corresponding solution is #,, = E{x,|Y,}, which is
usually called the minimum variance estimate. The second is to maximize the probability
of the event (z,, = ,), and its solution is Z,, = Mode of p(x,|Y;). The last criterion is to
minimize the maximum of |z, — Z,|, and its solution is &, = Medium of p(z,|Y,). If the
posterior probability p(z,|Y;) is Gaussian or any other symmetrical shaped distribution,
then these three criterion functions coincide with each other. In this work, we consider
the mode of the posterior distribution as the estimation target.

3. Non-parametric Monte Carlo Approximation of the Prior Probability Dis-
tribution. The mode estimate is defined as follows,

&, = arg, maxp(z,|Y,) (6)

= arg,, maxp(ya|7)p(wa]Va 1)- (7)

The first term in the right hand side of this equation can be easily obtained from (2) as
P(Ynl2n) = N(yalh(zn), R), (8)

where the notation N(z|u, ) denotes a Gaussian probability of z with mean p and co-
variance o,

1 1
Vel 6) = o oo { 3o~ B} )

with ||z — u||2_, = (x — p)T¢ 1 (x — u) and |- | denotes determinant. The second term of
the right hand side of (7) can be computed from the analysis distribution of the previous
step, i.e.,

p(l‘n|Yn—1) = /N(l’n|f(flin_1), Q)p(mn—1|Yn—1)dmn—1- (10)

This can be accomplished either numerically, or analytically, from the knowledge of the
studied system. In the current work, we make two important assumptions: 1) the system
is a forward model system; it is not possible to manipulate the transition function f(-);
and 2) there is no parametric assumption on p(z,_1|Y,_1). Based on these two points, we
apply a Monte Carlo method to estimate this distribution. Assume a set of N weighted
samples {25 |, wn 1}, 4=1,2,---, N drawn from p(x, 1|Y;, 1) is available, where the
importance weights w,_;; are approximations of the relative posterior probabilities (or
densities) of the samples such that

N
anfl,i =1 (11)
i=1
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The forecast samples are generated by evaluating the system state transition function
at each weighted sample as xﬁz = f(zg_1;). The weighted samples {xﬁz, Wn—t,i}, © =

1,2,---, N follow the distribution p/ = p(x,|Y, 1), and its corresponding mathematical
expectation can be approximated as

E {z,} = /xnp(xn|Yn1)dxn (12)

N
~ an—l,il‘i,iv (13)
=1

where the subscript p/ of E s {z,,} refers to the prior probability p(x,|Y, 1). This approx-
imation is widely used for forecast estimation in the Unscented Kalman filters, Particle
filters, and if a set of uniform importance weights is considered, i.e., w11 = Wp_12 =
-+« =wy_1,n = 1/N, this approximation simplifies to the Ensemble Kalman filters [15].
The prior probability density function p(x,|Y, 1) is estimated from the weighted sam-

ples {x,’;l, Wn—1,} as

N
pl(z) ~ h}lw an,l,ik (h’l (x - xf:z)) , (14)
i=1

where k(-) denotes a kernel function and the scalar h is the bandwidth parameter, which
is tuned according to the confidence in the weighted samples {xf;z, Wp—1,}. This equation
could be applied to estimate the prior probability at any point of interest in R"*, especially
at those points located outside of the convex region spanned by the particles. We will use
it to locate the mode of the posterior probability in the next section. The derivation of
(14) is detailed in Appendix, where it is shown that the approximation (14) matches at
least the first two moments of the prior probability.

The tuning bandwidth parameter h in (14) controls confidence in the samples are
trusted. It is analogous to the variance of the samples. To make the estimation more
robust to the forecast model uncertainties, it is usually better to use a large value of A,
which results in a posterior estimate that is more affected by the observations.

4. Monte Carlo Mode Searching. Following the standard Particle filters algorithm,
once the observation is available, the relative likelihood of each sample is calculated as

rni = P(Ynle ), (15)
and the importance weights are updated as

@n,z’ = Wn—1,iT"n,i» (16)
with the normalized new set of weights

Wn,i = 7;)“{ :

Zp:l Wn,p

The forecast samples with the updated importance weights represent the posterior prob-
ability

(17)

{@hsr wai} ~ plxa]Yn). (18)
The first guess estimate of the mode of the posterior probability could be selected as the
weighted mean:

N
Bo=) warh (19)
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If the estimate of the effective number of the samples, which is computed as follows
- 1
Nesr = v
> =1 W%,L

is less than a predefined threshold Ny, a resampling step is applied to generate a new set
of samples with uniform weights replacing the current samples.

In the Particle filters, &0 in (19) is taken as the analysis estimate of the state at instant
time n, and unbiasedness and consistency are guaranteed when the sample number tends
to infinity. Particle filters are usually expected to be more accurate than other Gaussian-
based filtering schemes, such as the Unscented Kalman filters and the Ensemble Kalman
filters. However, when the sample number is small and/or when the forecast model is
not accurate enough, the performance of the Particle filters might significantly degrade
because of the collapse of the weights [16].

Suppose that a convex region ¢, is defined in R™* as the minimum volume including
all forecast samples xi,i, 1 =1,2,--- /N. Thus any convex combination of the forecast
samples

(20)

N
Z anfﬁz (21)
i=1

belongs to ¢,, if the weights satisfy the two conditions

N
Y wni=1, wy;>0. (22)
=1

This means that the possible estimate region is limited to ¢,, which is determined by
the forecast samples {x,{z}, i=1,2,---, N. If the predictive model is not perfect, and/or
the number of samples is small, the estimation error will always be greater than some
value no matter how strongly the observation is fitted. In other words, if the true state
does not belong to the predictive convex region ¢,, the infimum of the estimation error
could be large depending on how representative the forecast samples are.

Take the two dimensional Van der Pol oscillator [17] as a visual geometrical example,
suppose we have an input state x;,, and draw 10 random samples from the normal dis-
tribution with the input state as the mean, denoted by {x;}, £ =1,2,---,10. The true
output state x,, is obtained by evaluating the Van der Pol equation through Liénard
transformation at the true input state, which is depicted by the black crossing in Figure
1. To estimate the output state x,,;, we consider the corresponding perturbed observation

Y= h(l‘out) + v,

where v is the observation noise and to visualize this example on one plane, we take
h(xz) = z. All the samples are updated by a one-order approximative model as follows,

ol = fypp(zi), k=1,2,---,10

and the locations of those forecast samples are shown as blue spots in Figure 1. Obviously,
in this case, since the number of the samples is small and the forecast model is imperfect,
the convex combination of the forecast samples, which is the area enclosed by the green
dash lines, does not include the true state. The analysis estimate of the Particle filters is
always located inside the convex region. Below we propose a Monte Carlo method that
extends the search for the posterior estimate beyond this area. The method is based on
the evolution approach that searches directly for the mode of the posterior distribution.
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FIGURE 1. An visualized two dimensional example of the limitation of the
Particle filters

Consider the objective function
F(@) = N(ylh(2), R)p(wn = 2l¥a 1), (23)

In many applications, it is not possible to compute an analytical gradient of F. To
overcome this, an evolution strategy is adopted here to update the estimate in a stochastic
way, while seeking for the point = that maximizes the objective function F'(x). We propose
to search for the maxima through a Gausssian mutation approach [18]. The algorithm
repeats two steps at each iteration: mutation step and update step. At the mutation
step, some new points are generated from a Gaussian distribution with mean m and
covariance matrix C' as candidates of the maxima. At the update step, the parameters
0 = {m, C} are updated to promote promising mutation by using the sample points
which are generated at the mutation step.

The algorithm adjusts 6 to optimize the expected fitness J(0) = E{F(z)|f} of the
next generation under the mutation distribution N(x|#) by using the natural evolution
gradient of J(#). The expected fitness under the mutation distribution N(z|#) is

J(0) = /F(x)N(x|0)dx (24)

The core idea of this approach is to find, at each iteration, a small adjustment §6, such
that the expected fitness J(0 + d6) is increased. The gradient V,.J(0) with respect to 6 is
then expressed using the log-likelihood as

V,J(60) = / N{(z]0)F(2)V In N(z|6)dz. (25)

If the gradient V,J(#") at the current location " is available, one could update 8**! by
shifting 6 in the direction of the gradient as 0'™' = 0! + aV,.J ("), where the parameter
a > 0 is the step size. However, when the manifold of the parameter is without orthonor-
mal linear coordinates, like curved manifolds, the natural evolution gradient could be used
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instead, namely
Vo (0) = Fra(0)VoJ(6), (26)

where F7,}(6) is the inverse of the Fisher information matrix Fr,(#) [13]. Each element of
the Fisher information matrix is defined as the mathematical expectation of a second order
partial derivative of the mutation probability distribution function N(z|f) with respect
to two particular parameters. If the manifold of the parameter is with orthonormal
coordinates, the Fisher information matrix degenerates to the identity matrix.

Since the objective function is considered as a black-box function, the natural evolution
gradient is approximated by a Monte Carlo method as [13]

Y
Vol (0) = = Wg,Fryy(0) In N(z0), (27)

i=1
where Wg, = F(z;)/A, and the index R; denotes the rank of x; among x,xs,---,xy

with respect to the evaluation of F'(z). That is F'(z;) is the R;-th largest value among
F($1),F($2), T 7F(‘T)\)'
Let the parameterization follows the same idea suggested by [18]:

0 = [m"vec(C)"",
where vec(-) denotes a rearranging operator from a matrix to a column vector such that
vec([vivg -+ - vg]) = [vf vl - o], the gradient of the log-likelihood of N(x|6) is

O (x — m) ]

Voln N(z|0) = [ Lyec (C~(x —m)(z —m)"C~' = )

Since the Fisher information matrix for a Gaussian distribution has an explicit form,
the inverse of the Fisher information matrix of N(z|f) is [19]

C 0

-1 o

FIM(Q) - |: 0 20®C ] )

where @) denotes the Kronecker product. Therefore, the natural gradient of the log-
likelihood of N (x|0) is

(x —m)

vee ((x —m)(x —m)” — C) } |

By applying a Monte Carlo approximation to (27), the natural evolution gradient can be
estimated as

Frd(0)V,In N(2]) = [

- Z;\:l Wr,(x —m)
—vec <ZZ~A:1 Wi, (x —m)(x —m)T = 3, WRiC)

and the update of the next parameter is given by

Y

F i (0)Veln N(z|f) ~ [

A
m'* = (1—n)m' +n Z W,
i=1

A
CH = (1 =n)C + 7Y Wg,(xf —m')(z} - m")T,

i=1
where 7 is the learning rate.
The algorithm can be summarized as follows.
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1) Let m® = #% and C° = P/ at the initial iteration, where #0 is the analysis estimate of
the Particle filter, i.e., the weighted mean of the analysis samples and P/ is the weighted
covariance of the analysis samples.

2) At the kth step, draw A candidate solutions {x;} from a normal distribution

xin(mk,C’k), 221,2,,)\

3) The objective function F(z) is evaluated at the candidate solutions {z;}, and the
candidates are sorted in decreasing order

F(21:0) > F(9:0) > - > F(2a0),

where the index 7 : A denotes the ith candidate in an order of evaluations of the objective
function from the most to the least. The definition of F(z) is given in (23); the first
term of F(x) is evaluated analytically, and the second term of F(z) is evaluated by using
Monte Carlo approximation (14).

4) The new mean value (also the new estimate of the maxima) is computed as

A
m* = (1 — n)m* + 772 Wg,t,
i=1
and the mutation covariance matrix Cj is updated as
A
O = (1= )C* 0 3 W, (& — ) (ah — )T
i=1
6) Check the increment of the estimate. If
|[m*t —m¥|| <4,

where § > 0 is a predefined threshold of the stopping criterion, then take m**! as the
final estimate. If not, then go to 2). The pseudo-code is depicted as follows:

Algorithm 1 The pseudo-code of the algorithm proposed

Initialization: m® < &%
Initialization: C° < P/
while ||m**! — mF|| > § do
Draw A samples randomly from a normal distribution x; ~ N(my, Cy), i =1,2,---, A
Evaluate F'(z;), i =1,2,-+- A
Sort samples as F(z1.y) > F(xa.,) > -+ > F(x).)
mF = (L= m)m* 49 3L, Wl
CM = (1= n)CF + oo, W, (2F — mb) (ak — mb)"
end while

Remark 4.1. The stochastic optimization method proposed in this section does not guar-
antee to achieve global convergence, meaning the convergence to stationary points inde-
pendently of the starting point. In case that the objective function has two or more local
modes, [20] suggested to use two thresholds for both the mutation variables and the objec-
tive function fitness to guarantee global convergence.
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5. Simulation. In this section, a nonlinear example is presented to demonstrate the
performance of the proposed mode filtering scheme. The Van der Pol oscillator equation
[17] describes the second order differential equation of position coordinate x respect to

time t as follows
d*z, o\ dx
a2 —p(l—l‘l)E—FIL’l = 0.

Applying the Liénard transformation zo = x; — x3/3 — @, /p, where the dot indicates the
time derivative, the Van der Pol oscillator can be represented in its two dimensional form

[21]
2)-4((2)
g, 29)

2x
»T1

where the parameter p = 4. Let z = [z, x»]7. Let T denote the computation step size,
the one-order approximation of the Van der Pol oscillator system is as follows

z(t+T) = frap(x(t)) (30)

= z(t) + Tf(x(t)), (31)

where an incorrect parameter p = 3.5 is applied in this approximate model to update the
forecast samples.

Figure 2 is a snapshot of one simulation. We draw 10 samples from a Gaussian distri-
bution

where z;, = [1 2]" and P, = diag(0.01 0.01). Each sample is updated by the first order
approximating model (30) by setting 7" = 0.2 as follows

vl = fvap(z;), j=1,2,---,10. (33)

2.25
#* True State %
221 A Observation * ]
— B — State Estimate lIterations
215 *  Forecast Samples % |
21}k * * 7
F 70— —
_ a3
<" 2.05F . - S ¥ 4
L ]
P %*_|
A
1.95+ * |
19+ * ]
1.85 : ‘ : * ‘ ‘
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

FIGURE 2. Recursive estimation from posterior estimate ‘S’ to a better
estimate ‘F’
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The forecast samples {xf}, j=1,2,---,10 are plotted in Figure 2 as blue asters. The

true state x,,; is calculated by applying the accurate model and higher order algorithm,
which is denoted by the black crossing in the same figure. The noisy observation of the
true state, denoted by the red triangle, is assumed to be y = 24, + v, where v ~ N(0|R),
and R = diag(0.01 0.01). By applying a Particle filter, the posterior estimate of z,,; is
shown as one of the dash squares marked by ‘S’, which is apparently far away from the
true state since both the model is not perfect and the sample size is too small. We apply
the proposed method using the Gaussian kernel function

k(o) = (2r) "2 exp { -3 eI} (349)

with parameter h = 0.3. The initial value is set as the posterior estimate ‘S’. The dash
squares show the iteration results from this simulation, where ‘F’ denotes the stopping
position. The mutation covariance C' is updated at the same time and it is shown in
Figure 3.

In this numerical experiment, the proposed scheme is applied for one analysis cycle
but with different sample sizes. Each simulation of a particular sample size is repeated
200 times with different randomly generated samples to calculate the estimation error.
The root-mean-square error (RMSE) of both the Particle filter and the proposed filter is
recorded as shown in Figure 4, with

RMSE = \/(ml,out - i‘l,out)2 + (1‘2,out - j?,out)Qa (35)

where 1 4, and x5 4, denote the first element and the second element of z,,,, respectively.
Z1,0ut and T oy denote the first element and the second element of Z,,, respectively. The
RMSE ratio is defined as the RMSE of the Particle filter over the RMSE of the Mode
filter. The results show that the proposed method could provide much better results than
the Particle filter especially when the sample size is small.

A multi-steps simulation is also presented and its result is shown in Figure 5. In this
simulation, the time step is T" = 0.2, the incorrect model parameter is set to p = 2
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and the sample size is 5. The state propagation and the observation are perturbed with
additive independent Gaussian noises w(t) ~ N(0,Q) and v(t) ~ N(0, R), respectively.
The system is then formulated as follows,

z(t+T) = fvar(z(t) +w(?t) (36)
y(t) = 2(t) + v(t), (37)

where @@ = diag(0.1 0.1) and R = diag(0.3 0.3). The Gaussian kernel function (34) with
the bandwidth h = 2 is applied. This simulation runs 20 steps and both the initial state
and the initial estimate follow a standard normal distribution. In the upper panel and the
middle panel of Figure 5, the true states are depicted by the blue solid lines, the estimates
of the states by the proposed Mode filter (MF) are depicted by the black square dash lines,
and the Particle filter (PF) estimates are depicted by the red asterisk dash lines. In the
bottom panel of Figure 5, the RMSEs of both the Mode filter and the Particle filter are
depicted by red asterisk dash line and black square dash line, respectively. Obviously,
more accurate estimates are obtained with the proposed Mode filter.

0.34 I I I
: —&— RMSE of Particle filter
0.32 — B - RMSE of the proposed filter [
0.3F
w
€ 0.8t
o 0 _
0.26 =
0.24
e TE-—- g -8B - E8---8-- -4
0.22 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50
Sample Size
1.25[ T T
it N — B — RMSE ratio
N
12F .
2 8- _ _
© N
W 115 S .
N
- s---a_
11F : T . .
[ S R _
- - - —n
1.05 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50
Sample Size

Ficure 4. RMSE of both Particle filtering and the proposed filtering from
200 Monte Carlo Runs

6. Conclusions. This paper considers the filtering problem for discrete time forward
model systems with additive white noises. The mode of the posterior probability is cho-
sen as the estimation target. The proposed method follows the same technique as the
Particle filters at the beginning to update a set of weighted samples by evaluating the
system state transition function, and then uses a kernel function based non-parametric
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FIGURE 5. The real time estimation of Van der Pol systems. PF is short
for Particle filter and MF denotes the proposed Mode filter.

approximation to estimate the prior probability from the forecast weighted samples. The
natural evolution gradient of the posterior conditional probability is then derived, and an
iterative Monte Carlo method is applied to locate the mode of the posterior conditional
probability recursively. Particle filters generate the posterior estimate from the convex
space spanned by the forecast samples, and ignore those points located outside of this con-
vex space. The proposed method is designed to calculate the posterior estimate beyond
the limited search space of the Particle filters, and this is shown to improve performances,
especially for the cases with small number of particles.
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Appendix. The derivation of (14) is presented in this section. It is assumed that the
samples {xil} follow a probability distribution ¢(z) with an approximating analytical
form given by the sum of kernel functions [22] as

0(2) = s SR = ), (39)
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where k(-) is a kernel function, and h is the scalar bandwidth parameter. According to
the importance sampling [23], we have

p(xn - x|Yn71) - wnfl(x)q(x)' (39)
Unfortunately, only a set of normalized evaluations of function wn 1(2) is available, thus
the prior probability could only be estimated at the samples {x } 1= -+, N, i.e.,
(e = ol ,[Yo 1) & wn1iq(] ;). (40)
To evaluate the prior probability p/(z) = p(z, = x|Y,_1) at any z, we construct a set
of samples from p/ (). First, we generate a set of integer numbers {D;}, i =1,2,---, N,
which satisfy the following constraint:
D;
= Wn—1,is 41
D Wn-t (41)
where D =Y D;, then extend the sample set {z/ 4} to a new set
{m]} i=1,2,---,N; j=1,2,---,D; Vi, (42)
where x‘ifl = xi{m == gzjjz',D — 2/ . In other words, there are D; duplicates of the
sample xni in the new sample set, and the total number of the new samples is D. This

new set of samples is regarded as samples following the distribution p(z,|Y, 1), but with
uniform weights. In the following, we will show how closely the new samples follow the
prior distribution. First, the mathematic expectation of p/(z) is given by applying the
importance sampling method in (12), and its variance is similarly obtained as follows

P,{ = [ (x, — Epé{xn})Qp(xﬂYn_l)dxn (43)

xiw(xn)q(xn)dxn - E;fl{x} (44)

Z — B {z} (45)

=1

:an 12 nz (an 1zxnz) : (46)

The average of samples {xn”} i=1,2,--+,N,7=1,2---,D; is as follows

nz,]} = DZZ n,i,j (47)

i=1 j=1

N
= anq,ixﬁ,i, (48)
=1

Q

Il
= ZlH —

and the variance of samples {xn ij} is given by

VCL?"{ZUT”J} - E{( n,z,]) } E2{xn,z,]} (49)

—an lz nz <an 1lxnz) : (50)

The average of the new samples (47) is identical to the expectation of the prior prob-
ability (12), and the approximated variance of the new samples (50) is identical to the
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approximated variance of the prior probability (43). This means that the designed set of
samples (42) matches at least the first two moments of the prior probability p/ (z). Based
on the samples (42), the prior probability at any point in R™ is estimated as follows

py(x) = P(»Tn = ~T|Yn 1) (51)
Dhnw sz l‘_mnz,])) (52)
i=1 j=1
Since the kernel function k(-) is deterministic, Zle k(h='(x — xif”)) = D;k(h™"(z —

f

x;,;)), we have

Pi hn an 1k $_xf i))-

This equation could be applied to estimate the prior probability at any point of interest
in R™, and in particular at those points located outside of the convex region spanned by
the particles.

Although samples (42) match at least the first two moments of the prior probability, the
computation of the non-parametric approximation of prior probability density function
(14) is directly made from the forecast samples {x 4} and their corresponding weights
{wn—1,}. Samples (42) could be considered as an intermediate set, which is only useful
for analysis but not needed for the filter algorithm.



