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ABSTRACT. For the terminal guidance problem of tactical missiles intercepting maneu-
vering targets with impact angle constraints, a fast terminal sliding mode guidance law
without any singularity is proposed based on a nonlinear disturbance observer. Consid-
ering the target acceleration as an unknown bounded external disturbance, the nonlinear
disturbance observer is employed to estimate the external disturbance. The estimated
disturbance is used to compensate the actual disturbance, which aims to alleviate the
chattering and to make the proposed guidance law with stronger robustness. With the aid
of the Lyapunov stability theory, the finite time convergence of the line-of-sight angle and
the line-of-sight angular rate in both reaching and sliding phase is proven based on a fast
terminal sliding mode and a switching controller that eliminates the singularity problem
generated by the fast terminal sliding mode control. Numerical simulations are presented
to demonstrate the effectiveness of the proposed guidance law. Although the proposed
guidance law is developed under the assumption that the missile speed is a constant, the
simulation results for the time-varying speed of missiles are also presented to validate the
proposed guidance law further.

Keywords: Missile, Guidance law, Finite time convergence, Fast terminal sliding mode,
Nonlinear disturbance observer

1. Introduction. The main purpose of a missile guidance law is to guide missiles to
intercept targets with minimal miss distances. In current applications, to increase the
effectiveness of warheads against targets and achieve the best destroying effect [1], a
specific terminal impact angle needs to be considered. Therefore, to meet the requirement
of this special guidance mission, it is necessary to do a further study on the guidance law
with terminal impact angle constraints. At present, many researchers have developed a
variety of guidance laws with impact angle constraints, which are based on proportional
navigation [2,3], optimal control [4,5], differential game [6,7] and sliding mode control
[8-11], etc.

It is well known that the sliding mode control (SMC) has good robustness to external
disturbances and parametric uncertainties [12-14]. The basic idea of the SMC is to drive
the system states to the designed sliding mode surface, and then to maintain the system
states on the sliding mode surface so that the desired convergence property of system states
can be obtained in the sliding phase. In the literature, the traditional linear SMC can
only finish the asymptotic convergence in the sliding phase [15,16]. In order to achieve the
finite time convergence in the sliding phase, the terminal sliding mode control (TSMC) was
proposed in [17] for rigid robotic manipulators. Compared with the conventional linear
SMC, the TSMC can provide a faster convergence rate and a higher control precision.
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This initial TSMC has been widely applied in missile guidance law design [11,18,19].
However, the initial TSMC results in two disadvantages. The first one is the singularity
problem. For example, these guidance laws proposed in [11,18,19] had the singularity
problem. In order to resolve the singularity problem, nonsingular terminal sliding mode
control (NTSMC) was developed in [20-22]. Various NTSMC algorithms could be divided
into two types. One is to design a novel nonsingular sliding mode surface directly based on
the system states. This NTSMC method has been successfully used for the guidance law
design with the impact angle constraints [23-25]. The other is to develop the switching
controller to avoid the singularity [21,22]. The second problem is that it has a slower
convergence rate than the traditional linear SMC when the system state is far away from
the equilibrium. To overcome the second problem, two fast terminal sliding mode controls
(FTSMC) combining the advantages of linear SMC and TSMC were given in [26] and [27].

As we all know, in the implementation of the sliding mode control, there exists an
unavoidable chattering problem. In order to alleviate the chattering phenomenon and
improve the system performance, an efficient method is to estimate the disturbances by
employing a disturbance observer (DOB). The DOB technique was first proposed in [28].
Since then, various disturbance observers have been developed and applied in many control
fields [29-31]. Up to now, DOB-based guidance laws have been designed in much literature.
For example, in [32], for the missile guidance law design, an extended state observer was
designed to estimate the target’s acceleration viewed as the external disturbance. An
extended high-gain observer was put forward to estimate unknown disturbance precisely
in [33]. In [34], a nonlinear disturbance observer was proposed and used to design the
guidance law with impact angle constraint and autopilot lag. The above-mentioned DOB
can estimate the unknown disturbance precisely; however, the result is not finite time
convergence. [35] proposed a nonlinear disturbance observer (NDOB), which is able to
perform transient estimation with high precision for the disturbance in the finite time.
However, this method converges quite slowly when there is great initial error, which is
determined by the nature of homogeneous system. Based on the proposed NDOB in [35],
[36] proposed a novel NDOB to speed up the transient process in finite time.

This paper investigates the terminal guidance problem for the tactical missiles inter-
cepting the maneuvering targets with impact angle constraints in the presence of bounded
external disturbances. With the purpose of addressing the above-mentioned problems
generated by the initial TSMC and by considering the target acceleration as unknown
external disturbances, this paper proposes a new NDOB-based nonsingular fast terminal
sliding mode guidance law. Compared with the listed literature, the main contributions
of this paper are as follows. (1) The proposed guidance law not only avoids the singularity
problem but also improves the convergence rate when the guidance system states are far
away from the equilibrium. (2) By use of the NDOB, the target acceleration viewed as the
external disturbance can be estimated precisely in finite time. So, the knowledge of the
target acceleration is not required to be known in advance. (3) The proposed guidance
law can guarantee the finite-time convergence of the line-of-sight (LOS) angle and the
LOS angular rate in both the reaching phase and the sliding phase by a Lyapunov-based
approach. And, both the LOS angle and the LOS angular rate can fast converge to their
corresponding desired value in finite time.

This paper is organized as follows. Some preliminaries are briefly stated in the following
section. In Section 3, firstly, an NDOB is introduced to estimate the target’s accelera-
tion. Then, a novel NDOB-based fast terminal sliding mode guidance law with impact
angle constraints is proposed and the corresponding stability proofs are given as well. In
Section 4, simulation results are presented, which are used to verify the effectiveness of
the proposed guidance law. The last section concludes this paper.
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2. Problem Formulation. This section presents the equations of guidance system for
the missile intercepting the target. For simplicity, only a two-dimensional model is con-
sidered. The engagement geometry of a missile and a target is shown in Figure 1, in which
the missile and the target are regarded as point masses, respectively. We assume that
the velocities of the missile and the target are constants, and the autopilot is fast enough
to be neglected. Under these assumptions, the corresponding equations of motion can be
described by the following differential equations:

i = V;co8(q — ¢1) — Vincos(q — o) (1)

rg = —V;sin(q — ¢;) + Vi sin(g — om) (2)
ag

_ W 3

Pt v, ( )
U

o 4

o= (4)

where r and 7 denote the relative distance and the relative velocity from the missile to
the target, respectively; V; and V,, represent the velocities of the target and the missile,
respectively; ¢ and ¢ denote the line-of-sight (LOS) angle and LOS angular rate between
the missile and the target, respectively; ¢, and ¢, represent the flight path angles of the
target and the missile, respectively; a,, and a; are the lateral accelerations of the missile
and the target, respectively.

M

FIGURE 1. Two-dimensional engagement geometry

By differentiating (2) with respect to time and using (1), (3) and (4), we can get

2r . cos(q — cos(q —
i= 2 (qr som)am+ (qr sot)at 5)

Note that, because the missile lateral acceleration a,, is multiplied by the term cos(q— ),
the LOS angle ¢ can be controlled when |q — ¢,,| # g In [11], it has been proved that,

if ¢ — om| = g, then ¢ — ¢, # 0. Therefore, |¢ — @] = g is not a stable equilibrium

point and, as a result, the missile lateral acceleration a,, can be used to control the LOS
angle ¢. By [11], we can see that the issue of impact angle control can be converted into
the issue of terminal LOS angle control.

This paper aims at developing a guidance law a,, such that the guidance law a,, could
not only guarantee that the missile has a small miss distance, but also ensure that the
LOS angular rate ¢ converges to zero in finite time, and the LOS angle ¢ converges to the
desired terminal LOS angle ¢4 in finite time in the presence of external disturbance.
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In this paper, required dates such as ¢, ¢, r, 7 and ¢,, are available. Let g; be pre-
specified with a constant value. Define ;1 = ¢ — ¢; and x5 = ¢. Substituting them into
(5) yields

l.'lz.fb'g

27 - _
where f = __Tx% b= _M, d = Mat
r r r

Remark 2.1. [37] Let the starting time of the terminal guidance process be zero. During
the guiding process, it has 7(t) < 0, 0 < r(t) < r(0), t > 0.

Remark 2.2. [35] Technically, the missile intercepting target by impact (“hit-to-kill”)
happens when r # 0 but belongs to the interval ro € [Fmin, Tmax] = [0.1,0.25]m. Therefore,
during the whole interception process, the inequality holds.

ro < r(t) < r(0) (7)

In practical applications, the target acceleration is regarded as external disturbance,
and it is usually difficult to obtain. However, it has upper bound. Referring to Remark
2.2, we have the following assumption.

Assumption 2.1 d is regarded as lumped external disturbance and assumed to be bounded
satisfying |d| < A, where A is a positive constant.

3. Design of the NDOB-based Fast Terminal Sliding Mode Guidance Law.

3.1. Nonlinear disturbance observer. Consider single-input and single-output (SISO)
dynamics of the first order

¢=gt)+u (8)
where ( € R, u € R! is a control input, g(¢) is a sufficiently smooth uncertain function.
Let the variables ¢ and u be obtained in real time, g(t) satisfies ¢(t) < L, L > 0 is a
Lipshitz constant. The control input function u is Lebesgue-measurable. Equation (8) is
understood in the Filippov sense [38], which implies in particular that ((¢) is an absolutely
continuous function for ¥t > 0. By modifying of the NDOB in [36] simply, the following
result is obtained.

Lemma 3.1. (See [36]) Consider the following NDOB:

20 =y t+ U
2
vy = — Mo L3 |20 — (|3 sign(zo — ¢) — pa(z0 — ¢) + 21
21 = . (9)
1 E
v = =\ L% |z — vp|? sign(z; — vy) — (21 — vo) + 29

2y = —AoLsign(zs — v1) — po(22 — v1)
where X\;, i >0, 1 =0,1,2 are chosen sufficiently large values in the reverse order, and
then it can be given that z, converges to g(t) in finite time.

Guidance system (6) can be rewritten as

L o ()

27 cos(q — ¢t

where h(t) = f+d = ——uz, + a;. The derivative of function h(t) is
r

. 1. . .. ., . . . )
h(t) = ﬁ[2r2x2 — 2rixy — 2r7ds) —|—ﬁ[(mt—mt) cos(q— i) —r(G—pr)agsin(g— ;)] (11)
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Remark 3.1. If the target acceleration a; is differentiable, then the function h(t) is also
differentiable except for r = 0. According to Remark 2.2, the function h(t) is differentiable
and the function h(t) is continuous everywhere until hit-to-kill happens. Therefore, the
function h(t) is continuously differentiable for any r > ro, the function h(t) has a Lipshitz
constant L.

For the guidance system (6), according to Lemma 3.1 and Remark 3.1, the lumped
external disturbance d can be estimated by the following NDOB (12)

;

2 =vo+ f + bay,
2,
vy = —\o L3 |20 — xo|? sign(zo — @) — 220 — 22) + 21
21 = U
- (12)
v = —\ L2 |21 — w2 sign(z1 — vg) — p1(2z1 — vo) + 22
Z = —XoLsign(zo — v1) — po(22 — v1)
L d(t) =z

where d(t) is the estimated lumped external disturbance. According to Lemma 3.1, we

can obtain that the estimated lumped external disturbance J(t) converges to the real
lumped external disturbance d(t) in finite time.

3.2. Guidance law design. Before designing the guidance law, the following assumption
is presented on the basis of Lemma 3.1.

Assumption 3.1. The lumped external disturbance estimation error is bounded and there
exists a known positive constant Amax, such that

‘d(t) - d(t)‘ < Ama‘x (13)
The following lemma is useful for the stability analysis of the guidance system.

Lemma 3.2. [27] Suppose that there ezists a continuous positive definite function V(t),
and that V(t) < —a V(t) —aV(£)", Vit > to, where ay > 0, ag > 0 and 0 < n < 1. Then,
the system state converges to the equilibrium point in finite time. The setting time can be
1 V(to)' "
given by ty < ty+ In & (o) ™" + a2
a;(l—mn) Qi

In order to make x; and x5 converge to zero fast along the sliding mode surface in finite
time, a fast terminal sliding mode manifold [27] based on the guidance system states can
be described by the following equation:

s = Ty + axy + Psig(xy)” (14)

1
where sig(z;)? = |x,|" sign(x), 5 <7< 1, @ and 3 are positive constants.

Based on the fast terminal sliding mode manifold (14) and motivated by [22], the
guidance law without singularity is designed as follows:

~

_ —f — (axy + sat(By |x1|771 To, ag)) — k15 — kosign(s) — d(t)

where
y—1 y—1 <
t v=1 _ Byl @2, Bz ~ 22| < ag 16
sat(By |x1|" 22, ap) { wosign(zy). By [ a| > ag (16)

ko = & + Amax, €, k1 and ag are positive constants.
Then we obtain the following theorem.
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Theorem 3.1. For the guidance system (6) with the fast terminal sliding mode manifold
(14), if the guidance law is chosen as (15), then the states of the guidance system (6) can
reach the fast terminal sliding mode surface s = 0 in finite time. Furthermore, the LOS
angle q converges to the desired LOS angle qq in finite time, and the LOS angle rate ¢
converges to zero in finite time.

Proof: We choose the following positive function as a Lyapunov function

1
Vi= 552 (17)

Applying (6), (14) and (15), the time derivative of V; can be written as
V1 = s§
= 5(dy + awy + By |z | ag)
= —ky5? — ko |s| + (d(t) — d(t))s 4+ s(By |z |" " x5 — sat(By x| 22, ag))
< —kys? —e|s| + s(By w7y — sat(By a1 [V @, ag))

(18)

In order to prove the theorem conveniently, we divide the space [z, 75]” € R? into two
areas named as A and B, which are described respectively as follows:

A= {(z1,2) 1 By a1 |22] < ao} (19)
B = {(x1,12) : By |x1|%1 |zo| > ag} (20)
25 q\ T ' T ! T ~
.. B iB2{ B 7
15¢ 5= 4 \\\\\I:": // / i
\“,ll :‘1’
« J N
05+ i .
\“I
o B
et i 520
5 . i :
[
ill: ‘I:‘1
/‘,‘I‘ E.‘\
1.5+ A A 4
-~ H \\\
L7 B By .J'Bz : B, e
25 /‘/’l 1 I \\x
-1 0.5 0 05 1
x1

FIGURE 2. Singular and nonsingular areas (« = =1, v = 0.6, ag = 2)

From Figure 2, we can observe that s always stays in the area A and crosses the area B
only in the origin. When s = x5 4+ ax; + Gsig(z;)” = 0, we have xo = —ax; — Ssig(z)”.

Further, because of = < 7 < 1, it can be obtained that  lim |x1|A’_1 x9 = 0, along
2 z1—0,220—0

s = 0. Therefore, after the guidance system states reach to the fast terminal sliding mode
surface, there is no singularity problem.

When the guidance system states are in A, the saturation function Equation (16) can
be rewritten as Equation (21).

sat ([ |~"151|Ay_1 Ty, a9) = By |351|7_1 T2 (21)
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Then, using Equations (18) and (21), we have

M

Vi < —kis? —e|s| = =2k, V; — V2eV (22)

According to Lemma 3.2, we can obtain that the existence condition of the fast terminal
sliding mode holds for the guidance system (6) and further the fast terminal sliding mode
surface s can converge to zero in finite time.

When the guidance system states are in the area B, it can be obtained that

sat(3y |~"151|Ay_1 T2, Qo) = aosign(z2) (23)
Applying Equations (14), (15) and (23), we can obtain
§ = —ks — kosign(s) — aosign(wa) + (d(t) — d(t)) + By [ [z (24)

When z; approaches zero, from Equation (24), we have § = O(8v |17 22) as 21 — 0
subject to xo # 0, where O is a Landau symbol representing the complexity function.
Then, we can obtain

Vl = s0(By |351|Ay_1 )
= (w3 + axy + Bsig(x1)”)O(By |~"151|771 T2) (25)
= OBy |1 [ 23)

Therefore, as 1 — 0 subject to x5 # 0, we have Vi > 0.
Based on the above analysis, we can divide the area B into two areas, B; and B, shown
in Figure 2, which are defined as follows:

B =B,V B, (26)
By = {(z1,22) : V1 < 0} (27)
By = {(1‘1,1’2) : ‘/1 > 0} (28)

So, in the area By, the same with that in the area A, the existence condition of the fast
terminal sliding mode still holds. However, when the guidance system states are in the
area By, the guidance system does not satisfy the existence condition of the fast terminal
sliding mode.

When guidance system states move to B from A, saturation function sat(8y |z1|"™" o,
ag) will change to agsign(z;) from B |z1|" ' z,. In the area By, Vi < 0 still holds, that
is, the existence condition of the sliding mode still holds. However, when the guidance
system states further enter By from B;, that is, x; approaches zero. As x; — 0 and
29 # 0, the guidance system does not satisfy the existence condition of the sliding mode.
Owing to the external disturbance in the guidance system (6), it is hard to determine the
boundary exactly between B; and B,. However, it does not affect the proof.

From the guidance system (6), the solution for z(¢) can be described as

x1(t) = 21(0) +/0 To(t)dt (29)
Using Equations (6), (15) and (16), we have
i’g = —QTy — agsign(xg) — kls — kQSigH(S) + (d(t) - CZ(t)) (30)

When the guidance system states are in the area B, we can divide the guidance system
states into two different cases. In case 1, we have x5 > 0; in case 2, we have x5 < 0.

When z5 > 0, from Equation (29), we can obtain that z; increases monotonically till
reaching and crossing the boundary between A and B in the single direction of increasing
x1. In addition, from Equation (30), we have iy < 0.
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Similarly, when z5 < 0, it can be seen that x; decreases monotonically till reaching
and crossing the boundary between A and B in the single direction of decreasing z;, and
9 > 0.

Therefore, the guidance system states will not stay in the area B forever, but cross
from B to A in finite time. Once the guidance system states enter A, the guidance system
states will stay in A and satisfy the existence condition of the sliding mode. Therefore,
from Equation (22) the states of the guidance system (6) can reach the fast terminal
sliding mode surface s = 0 in finite time.

In the end, we prove that the guidance system states converge to zero in finite time
after reaching the fast terminal sliding mode surface.

In the sliding phase s = 0, the following equation is given

To9 + axy + Bsig(x1)7 = (31)
Choose the following Lyapunov function
1
Vo = §$§ (32)
By differentiating V5 with respect to time and applying Equation (32), we have

V2 =117
= —az? — Bz, " (33)
LJFI
= =20V, — (V27515

By Lemma 3.2, the guidance system states x; and zs converge to zero in finite time.
Hence, the LOS angle ¢ converges to the desired LOS angle g4 in finite time, and the LOS
angular rate ¢ converges to zero in finite time. This completes the proof.

Remark 3.2. In order to guarantee that the fast terminal sliding mode surface s = 0 lies
in A rather than B as shown in Figure 2, ag can be selected as B’yax?max—i-ﬁlyx%?n;i < ay,

where the bounded constant x1max s defined as || < 1 max-

Because of the signum function in Equation (15), the proposed guidance law is a non-
smooth controller which can induce the chattering problem. In order to remove the
chattering, the signum function is replaced with a saturation function sat(s). Hence, the
proposed guidance law in Equation (15) is modified as

_ —f — (axs +sat(By |5E1|7_1 Ty, a9)) — k15 — kosat(s) — CZ(t)

A, ; (34)
with
1, s>h
sat(s) = ¢ s/h, |s| <h (35)
-1, s<-—h

where h is a small positive constant.

4. Simulation Results. In this section, the simulation results illustrating the effec-
tiveness of the proposed guidance law (34) used for the tactical missiles air-intercepting
maneuvering target are presented. First, we present the comparison between the proposed
guidance law in this paper and the existing ones for the constant speed missile against
the different kinds of maneuvering targets. Then, a case of the time-vary speed missiles
intercepting the targets is considered to verify the advantage of the proposed guidance
law further.
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The initial conditions of the guidance system are chosen as follows. The initial relative
distance between the missile and the target is 7(0) = 5000m. The initial LOS angle is
q(0) = 30deg. The desired LOS angle is g; = 20deg. The missile’s velocity is V},, = 600m /s
and its initial flight path angle is ¢,,(0) = 60deg. The target’s velocity is V; = 300m/s
and its initial flight path angle is ¢;(0) = 0deg. The parameters of guidance law (34)
are chosen as a = 10, # =5, v = 3/4, k; = 0.5, ks = 0.01, a9 = 5, h = 0.002. The
parameters of NDOB are selected as A\g = 1.1, A\ = 1.5, Ao = 2, g = 3, 1 = 6, po = 8§,
L = 100. The maximal acceleration of the missile is 40g, and g is the acceleration of
gravity (g = 9.8m/s?).

4.1. Constant speed missiles. In the subsection, the simulation results for the constant
speed missile intercepting two different target acceleration profiles are presented.

In order to verify the effectiveness of the proposed guidance law, two different target
acceleration profiles, which are consine maneuvering and step maneuvering, are considered
as those given below.

1) Case 1. a; = Tgcos(mt/4)m/s?.

2) Case 2. a; = Tgm/s* for t < 5s and a; = —7gm/s? for t > 5s.

For performance comparison, the traditional PN guidance law and the adaptive non-
singular terminal sliding mode guidance law [25] are also simulated under the same con-
ditions. The traditional PN guidance law is chosen as a,, = —Nr¢, where the parameter
N is set to be 4. In [25], the guidance law is designed as

s=x + |x2|§ sgn(xz) (36)
r 2rq _p Apsat(s Ksat(s
" cosla = o) [__q+i|x2|2 ogm(ry) + 2200 | RRUE)
cos(q — ¥m) rooap r r
where

sgn(s), |s|>9¢
sat(s) = 38
A NP 5

d
p 2_q

X — q >

A = apqr |‘T2| |8| ) |8| Z U (39)
0, |s|] <wv

Parameters are
a=1,p="7¢g=5, K=1800, v =0.05, 6 = 0.01, p = 2, A(O)leO

For simplicity, we denote the proposed guidance law in this paper, the PN guidance law
and the guidance law in [25] as the D-NFTSM, PNG and ANTSM, respectively.

With the initial conditions and data given above, simulations are performed for the
target acceleration profiles of case 1 and case 2. Simulation results are shown in Figures
3 and 4, respectively. Each figure consists of the responses of LOS angle, LOS angular
rate, sliding mode manifold, missile acceleration command, estimation error of lumped
disturbance and trajectories of the missile and the target for all the three guidance laws,
which are given in Figures (a)-(f), respectively. The miss distances and interception times
are shown in Table 1.

From Figures 3(a) and 4(a), we can observe that the proposed D-NFTSM guidance
law and the ANTSM guidance law can guarantee the LOS angles converge to the desired
LOS angle in finite time for the target acceleration profiles of case 1 and case 2. However,
under the D-NFTSM guidance law the convergence speed of the LOS angle is much faster
and the curve of the LOS angle is smoother than that under the ANTSM guidance law
in each one of the two cases. It can also be seen that the LOS angle under the PN
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FIGURE 3. Responses under three guidance laws in case 1: (a) LOS angle;
(b) LOS angular rate; (c) Sliding mode manifold; (d) Missile acceleration
command; (e) Estimation error of disturbance; (f) Trajectories of missile
and target

guidance law will not converge for case 1 and case 2. As shown in Figures 3(b) and 4(b),
the LOS angular rate under the PN guidance law will not converge for the all target
acceleration cases, while both the proposed D-NFTSM guidance law and the ANTSM
guidance law are able to make the LOS angular rates reach to zero in finite time, no matter
whether the consine maneuvering target or the step maneuvering target. Especially, the
convergence speed of the LOS angular rate under the proposed D-NFTSM guidance law
is significantly superior to that under the ANTSM guidance law. At the same time, it can
also be observed that the LOS angular rate under the ANTSM guidance law oscillates
around zero until it converges to zero for each case. However, the LOS angular rate
of the D-NFTSM guidance law fast converges to zero smoothly. Figures 3(c) and 4(c)
depict the convergence performance of sliding mode manifold. It can be seen that the
sliding mode manifold under the proposed guidance law converges to zero in finite time
(in approximately 4s) for the two cases, whose convergence speed is faster than that under
the ANTSM guidance law. From the convergence time of the LOS angle and sliding mode
manifold with the proposed D-NFTSM guidance law, it is obvious that the desired LOS
angle is achieved in finite time with the proposed guidance law after occurrence of the
sliding mode surface.

We can observe from Figures 3(d) to 4(d) that the missile lateral accelerations under
all the three guidance laws are within the reasonable bounds. And, at the start of the
engagement, the missile acceleration generated by the proposed D-NFTSM guidance law
is larger than that of the PN guidance law for the target acceleration profiles of case 1
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FIGURE 4. Responses under three guidance laws in case 2: (a) LOS angle;
(b) LOS angular rate; (c) Sliding mode manifold; (d) Missile acceleration
command; (e) Estimation error of disturbance; (f) Trajectories of missile

and target
TABLE 1. Miss distances and interception times
Guidance Case 1 Case 2
L Miss Interception Miss Interception

distance (m)  time (s)  distance (m)  time (s)
D-NFTSM 0.060 16.040 0.075 15.180
PNG 1.160 17.101 3.073 16.310
ANTSM 0.11 20.552 0.137 16.512

and case 2. However, the larger missile acceleration in the initial time under the proposed
guidance law can make the LOS angle and LLOS angular rate preferably converge to the
desired values, respectively. In addition, it is obvious that the proposed guidance law
does not bring about the chattering and singularity. However, owing to the oscillating
of the LOS angular rate under the ANTSM guidance law in the first 10 seconds, the
corresponding missile acceleration shows the control saturation phenomenon in the first 10
seconds, which causes the loss of guidance performance. From Figures 3(e) to 4(e), it can
be seen that the estimation error of lumped disturbance rapidly converges to zero, which
indicates that the NDOB can effectively estimate the real lumped disturbance. As can be
seen in Figures 3(f) to 4(f), with the implementation of the proposed D-NFTSM guidance
law, the missile can intercept the target successfully and have the shorter trajectory than
the other trajectories for the target acceleration profiles of case 1 and case 2.
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From Table 1, it can be noted that the interception time taken by the D-NFTSM, PNG
and ANTSM is comparable for all the target acceleration cases. The proposed D-NFTSM
guidance law in this paper has taken shorter time than the other two guidance laws for the
two cases. By comparing the miss distance, the miss distance resulting from the proposed
D-NFTSM guidance law is less than the other guidance laws. So, the designed D-NFTSM
guidance law has a sound and highly precise guidance performance, and it can guarantee
that the missile intercepts the maneuvering target successfully.

4.2. Varying speed missiles. In the above subsection, only the simulation results for
the constant speed missiles are shown. Nonetheless, as we all know, the speed of the
missile for a realistic missile model is variable; hence, the following simulation results
will be presented to demonstrate the effectiveness of the proposed guidance law in this
paper for missiles with varying speed which is as good as that for the constant speed
missiles. This is due to the inherently strong robustness of the designed guidance law.
For simplicity, only a two-dimensional model is considered to design the guidance law
in this paper. So, a realistic missile model [23] in the pitch plane is used to validate
the effectiveness of the designed guidance law. The thrust is assumed to be a prescribed
function of time. The equations of motion of a point-mass flying over a flat, non-rotating
Earth are given by

Ty = Vi €OS O (40)
Um = Vi sin @y, (41)
. T—-D
Vip = ——— — gsing,, (42)
m
. am — §COS P

Vin
where x,, and y,, are the position of the missile; m, T and D denote the mass, the thrust
and the drag of the missile, respectively.

For the realistic missile model, the aerodynamic drag D in Equation (42) is modeled as

k 2.2
D =D+ Dy; Dy=cgs; Dy= mam;
1 (44)
1 1
k= : = —pV?
TAe’ 1= 5PVm

where D; and D, are the zero-lift drag and induced drag; ¢ and k denote the zero-lift drag
coefficient and the induced drag coefficient; ¢, A,, e and p represent the dynamic pressure,
the aspect ratio, the efficiency factor and the atmosphere density, respectively, and s is
the reference area and assumed to be 1m?2. For the guidance problem, the zero-lift drag
coefficient and the induced drag coefficient are given as follows:

0.02 Ma < 0.93
) 0.0240.2(Ma — 0.93) Ma < 1.03 (45)

) 0.04+0.06(Ma — 1.03) Ma < 1.10

0.0442 — 0.007(Ma — 1.10) Ma > 1.10

0.2 Ma < 1.15
k= { 0.2+ 0.246(Ma — 1.15) Ma > 1.15 (46)
where Ma is the Much number and is given by
Vin

Ma=————, Rc=288J/Kkg (47)

V14R:Tp'
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where Tp is the temperature and is given by

{ 288.16 — 0.006y,, Ym < 11000
Tp —

216.66 Ym > 11000 (48)

The thrust and the mass of the missile are given as follows:

33000 0<t<15
T={ 7500 15<t<85 (49)
0 t>85

135 — 14.53¢ 0<t<15
m=1{ 113.205—331(t—1.5) 1.5<t<85 (50)
90.035 t>85

where ¢ is time in seconds. The atmosphere density is given by
p=1.15579 — 1.058 x 10"y, + 3.725 x 1077y, — 6 x 107 "y2, (51)

The initial conditions of missile and target and the parameters of the proposed D-
NFTSM guidance law (34) are chosen as the same as the previous simulation and the
target acceleration is also chosen as consine maneuvering a; = 7gcos(mt/4)m/s? which
is the same as the case 1. With the implement of the proposed D-NFTSM guidance
law, the LOS angle, the LOS angular rate, sliding mode manifold, missile acceleration
command variation of the missile speed, estimation error of the lumped disturbance and
the trajectories of missile and target are given in Figures 5(a)-5(g).

From Figures 5(a)-5(c), it can be seen that, under the proposed D-NFTSM guidance
law, the LOS angle, the LOS angular rate and the sliding mode manifold could also
converge to their corresponding desired values in finite time. We can observe from Figure
5(d) that the missile acceleration is less than the maximum practicable acceleration. From
Figure 5(e), it can be observed that, owing to the larger thrust compared with the drag,
the speed of the missile fast increases at the start of the engagement. However, the speed
of the missile decreases when the thrust is less than the drag on the missile. As the missile
speed decreases, the interception time for varying speed missiles is longer than that for
constant missiles. As shown in Figure 5(f), it can be seen that the NDOB can track the
real lumped disturbance precisely. The trajectories of the missile and the target are shown
in Figure 5(g), which demonstrate that the proposed guidance law can ensure that the
realistic missile intercepts the maneuvering target successfully. From the above analysis,
it can be known that the designed D-NFTSM guidance law also has better guidance
performance for the realistic missile intercepting the maneuvering target.

5. Conclusions. In this paper, we designed a new NDOB-based nonsingular fast termi-
nal sliding mode guidance law with impact angle constraints for the terminal guidance
problem of missiles intercepting the maneuvering targets. The proposed guidance law em-
ploys the NDOB to estimate the external disturbance, which is used to compensate the
actual external disturbance; and it proposes a fast terminal sliding mode control strategy
for guidance system to eliminate the singularity problem by using the saturation function.
By the developed control strategy, the guidance law can guarantee that the guidance sys-
tem states reach to the fast terminal sliding mode surface in finite time and converge to
zero along the fast terminal sliding mode surface in finite time. The effectiveness of the
proposed guidance law is verified by the numerical simulations which include the constant
speed and the varying speed missile against the maneuvering target.
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